首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
H Onodera  K Kogure 《Brain research》1989,487(2):343-349
Autoradiographic imaging demonstrated predominant and reciprocal localization of forskolin and inositol 1,4,5-trisphosphate (IP3) binding sites in synaptic areas in the hippocampus. We produced selective damage to the CA1 pyramidal cells in the rat hippocampus by means of transient forebrain ischemia and analyzed the alteration of the intracellular signal transduction using quantitative autoradiography of these second messenger systems. The dendritic fields (stratum oriens, radiatum and lacunosummoleculare) in the CA1 showed 20% decrease in [3H]IP3 binding activity 3 h after ischemia, when no morphological abnormalities were obvious. Thereafter, grain density in these layers decreased and half of the binding sites were lost 2 days after ischemia. By contrast, the stratum pyramidale of the CA1 showed no significant change until 2 days after recirculation. Seven days after ischemia, when CA1 pyramidal cells were depleted, all layers in the CA1 subfield lost 85% of [3H]IP3 binding sites. In the CA3 subfield, only a small and transient alteration in the [3H]IP3 binding was noticed during recirculation. Postischemic reduction of [3H]forskolin binding sites was obvious in the CA1 only 1 h after ischemia followed by loss of 50% of binding activity 7 days after recirculation. These results suggest that forskolin and IP3 binding sites are predominantly distributed on the pyramidal cells in the CA1 subfield and that marked alteration of intracellular signal transduction precedes the delayed CA1 pyramidal cell death.  相似文献   

2.
The influence of transient forebrain ischemia on the temporal alteration of glutamate receptors in the hippocampal formation was analyzed by means of in vitro quantitative receptor autoradiography. We compared the binding of N-methyl-D-aspartate (NMDA) receptors using [3H]3-[+/-)2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP), noncompetitive NMDA antagonist binding sites using [3H]N-(1-(2-thienyl)-cyclohexyl)-3,4-piperidine (TCP), and kainate (KA) receptors. In the CA1 subfield of the hippocampus, the number of NMDA receptors and noncompetitive NMDA antagonist binding sites remained constant during the early stage of recirculation when the CA1 pyramidal cells remained histologically intact. A significant reduction of these receptor densities was observed 7 days following ischemia, when NMDA receptors and noncompetitive NMDA antagonist binding sites lost 64 and 29% of their binding sites in the stratum radiatum of the CA1, respectively. The KA receptor density in the CA1 subfield decreased by 44% 7 days after ischemia. Marked loss of the above-mentioned receptors in the CA1 after selective depletion of the CA1 pyramidal cells indicated that NMDA receptors, noncompetitive NMDA antagonist binding sites, and KA receptors in the CA1 are predominantly localized on the CA1 pyramidal cells. NMDA receptor density in the CA3 gradually decreased during the recirculation period. The stratum moleculare of the dentate gyrus, whose structure was histologically intact after ischemic insult, also showed a reduction of NMDA receptors 7 days following ischemia. [3H]KA receptor density in the stratum lucidum of the CA3 and in the hilus also decreased during recirculation. These  相似文献   

3.
Autoradiographic imaging demonstrated predominant and reciprocal localization of forskolin and inositol 1,4,5-trisphosphate (IP3) binding sites in synaptic areas in the hippocampus. We produced selective damage to the CA1 pyramidal cells in the rat hippocampus by means of transient forebrain ischemia and analyzed the alteration of the intracellular signal transduction using quantitative autoradiography of these second messenger systems. The dendritic fields (stritum oriens, radiutum and lacunosummoleculare) in the CA1 showed 20% decrease in [3H]IP3 binding activity 3 h after ischemia, when no morphological abnormalities contrast, the stratum pyramidale of the CA1 showed no significant change until 2 days after recirculation. Seven days after ischemia, when CA1 pyramidal cells were depleted, all layers in the CA1 subfield lost 85% of [3H]IP3 binding sites. In the CA3 subfield, only a small and transient alteration in the [3H]IP3 binding was noticed during recirculation. Postischemic reduction of [3H]forskolin binding sites was obvious in the CA1 only 1 h after ischemia followed by loss of 50% of binding activity 7 days after recirculation. These results suggest that forskolin and IP3 binding sites are predominantly distributed on the pyramidal cells in the CA1 subfield and that marked alteration of intracellular signal transduction precedes the delayed CA1 pyramidal cell death.  相似文献   

4.
Changes in the binding of [3H]cyclic AMP as an indicator of particulate cyclic AMP-dependent protein kinase (AMP-DPK) binding activity following transient forebrain ischemia were studied in the gerbil using in vitro autoradiography. [3H]Cyclic AMP binding in the strata pyramidale and lacunosum-moleculare of the hippocampal CA1, the stratum pyramidale of the CA3, and the dentate gyrus decreased transiently in the early postischemic phase but then recovered. However, [3H]cyclic AMP binding in the strata pyramidale and radiatum of the CA1, the granular layer of the dentate gyrus, and the upper layer of the cortex decreased again 7 days after ischemia. In the CA4 subfield and the lower layer of the cortex, the binding showed no significant alterations after ischemia. Administration of pentobarbital prior to the induction of ischemia prevented the decrease in [3H]cyclic AMP binding in the CA1 subfield 6 h and 7 days after ischemia, and showed protective effects against neuronal death of the CA1 pyramidal cells 7 days after ischemia. These results indicate that marked alteration of intracellular signal transduction precedes neuronal damage in the hippocampal CA1 subfield. Furthermore, postischemic reduction of [3H]cyclic AMP binding in the histologically intact cerebral cortex, CA3, and dentate gyrus may be the reflection of cellular dysfunction after energy failure.  相似文献   

5.
The effects of dizocilipine maleate (MK-801), a noncompetitive N-methyl-D-aspartate (NMDA) receptor/channel antagonist, were tested on the dysfunction of neurotransmitter and signal transduction systems and morphological damage 7 days after transient forebrain ischemia in gerbils. Neurotransmitter system (adenosine A1, muscarinic cholinergic receptor) and signal transduction system (inositol 1,4,5-trisphosphate receptor: IP3, protein kinase C: PKC, L-type calcium channels) binding sites were mapped by in vitro quantitative receptor autoradiography. All ligands used in the present study decreased significantly in the CA1 subfield 7 days after ischemia. In normothermic animals, pretreatment with MK-801 failed to protect against decreased receptor binding in the hippocampus 7 days after ischemia. Moreover, in a morphological study, pre- and posttreatment of MK-801 failed to show protective effects against ischemic neuronal damage. On the other hand, pretreatment of MK-801, without maintaining body temperature, prevented the neuronal death of CA1 subfield 7 days after ischemia. These results weaken the hypothesis that NMDA receptor/channel may play a pivotal role in the pathogenesis of neuronal damage after transient forebrain ischemia.  相似文献   

6.
Temporal changes in cholinergic functions following transient cerebral ischemia (10 min) were studied in the hippocampus of awake unrestrained gerbils using in vivo microdialysis. These data were compared with the results for temporal change in the area of each CA1 cell soma, measured with a microcomputer imaging device. KCl-induced release of acetylcholine (ACh) tended to be lower within 1 day after recirculation, and was significantly lower on the 4th, 7th and 14th days. Atropine-induced release of ACh gradually decreased over the test period. In histological estimation, no differences were observed within the 1st day, but a significant decrease of the area of CA1 cell soma was observed from the 4th to 14th days. Moreover, ischemia over 2 min decreased KCl- and atropine-induced ACh release on the 14th day without significant changes of hippocampal CA1 pyramidal cell. From these results, it is clear that ischemia produced dysfunction of hippocampal cholinergic neurons, and that dysfunction of the hippocampal cholinergic system following transient ischemia precedes pyramidal cell damage in the hippocampal CA1 subfield.  相似文献   

7.
H Kato  T Araki  H Hara  K Kogure 《Brain research》1991,553(1):33-38
We performed quantitative autoradiography to determine sequential alterations in the binding of muscarinic cholinergic and adenosine A1 receptors and of an L-type calcium channel blocker in the gerbil hippocampus following repeated brief ischemic insults. [3H]Quinuclidinyl benzilate (QNB). [3H]cyclohexyladenosine (CHA) and [3H]PN200-110 were used to label muscarinic and adenosine A1 receptors and L-type calcium channels, respectively. Changes at 1 h, 6 h, 1 day, 4 days and 1 month after three 2-min ischemic insults were compared with changes after single 2- or 6-min ischemia. Two-minute ischemia, which causes no histopathological neuronal damage, produced no persistent alterations in binding sites. We observed a transient and mild increase in binding activities, especially in [3H]CHA binding, at 1 h of recirculation. Following 6-min ischemia and three 2-min ischemic insults. [3H]QNB and [3H]PN200-110 binding decreased by more than 50% in the CA1 subfield by 1 month, but [3H]CHA binding decreased transiently by 20-30% at 4 days when delayed neuronal death of hippocampal CA1 pyramidal cells took place. Reductions in binding, especially in [3H]QNB binding, following three 2-min ischemic insults were greater and appeared earlier than those after 6-min ischemia. Furthermore, alterations extended to the CA3 subfield and the dentate gyrus following repeated insults. Thus, alterations in receptor binding after repeated ischemic insults were greater than those after equivalent single period of ischemia.  相似文献   

8.
Hwang IK  Lee KY  Yoo KY  Kim DS  Lee NS  Jeong YG  Kang TC  Han BH  Kim JS  Won MH 《Brain research》2005,1036(1-2):35-41
In the present study, ischemia-related changes in tyrosine kinase A (trkA) and phosphacan/protein tyrosine phosphatase-zeta/beta (PTP-zeta/beta) immunoreactivities and protein contents were examined in the hippocampus proper after transient forebrain ischemia for 5 min in a gerbil model. Our investigations showed that ischemia-induced changes occurred in trkA immunoreactivity in the hippocampal CA1 region, but not in the CA2/3 region of the hippocampus proper. In the sham-operated group, trkA immunoreactivity was barely detectable. trkA immunoreactivity increased from 30 min after ischemia and peaked at 12 h. Four days after ischemic insult, trkA immunoreactivity was observed in GFAP-immunoreactive astrocytes in the strata oriens and radiatum. In addition, we found that ischemia-related changes in trkA protein content were similar to immunohistochemical changes. On the other hand, PTP-zeta/beta immunoreactivities in the hippocampus proper were unaltered by forebrain ischemia. These results suggest that chronological changes of trkA after transient forebrain ischemia may be associated with an ischemic damage compensatory mechanism in CA1 pyramidal cells.  相似文献   

9.
The protective roles of Ca2+ channel blockers against ischemic hippocampal damage are still debated. We used autoradiography to study postischemic L-type Ca2+ channels (1,4-dihydropyridine Ca2+ channel blocker binding), adenosine A1 receptors, and muscarinic cholinergic receptors in the rat hippocampus using [3H]PN200-110 (PN), [3H]cyclohexyladenosine (CHA), and [3H]quinuclidinyl benzilate (QNB), respectively, in 49 rats subjected to 20 minutes of forebrain ischemia. The rats were decapitated after 1 (n = 7), 3 (n = 7), 6 (n = 8), 12 (n = 7), 24 (n = 6), 48 (n = 6), or 168 (n = 8) hours of recirculation; eight control rats were sham-operated but experienced no cerebral ischemia. Reduced receptor binding preceding the delayed death of CA1 pyramidal cells was first observed in the stratum oriens of the CA1 subfield. Significant reductions in [3H]PN, [3H]CHA, and [3H]QNB bindings of this stratum compared with control were noticed after 3 (35%, p less than 0.01), 12 (31%, p less than 0.01), and 1 (10%, p less than 0.05) hours of recirculation, respectively. By 168 hours after ischemia (when the populations of CA1 pyramidal cells were depleted) all strata in the CA1 subfield had lost most of their receptor sites, and [3H]PN, [3H]CHA, and [3H]QNB bindings in the stratum oriens were decreased to 23%, 30%, and 63% of control (p less than 0.01). Although [3H]PN binding in the CA3 subfield did not change significantly during 168 hours after ischemia, the histologically intact dentate gyrus exhibited a 31% loss of binding sites compared with control (p less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
H Hara  H Onodera  H Kato  T Araki  K Kogure 《Brain research》1991,545(1-2):87-96
Changes in second messenger and neurotransmitter system receptor ligand binding induced by transient forebrain ischemia were studied in the gerbil hippocampus. The animals were allowed variable periods of recovery ranging from 2 h to 7 days after 5-min bilateral carotid artery occlusion. The binding of second messenger systems ([3H]inositol 1,4,5-trisphosphate ([3H]IP3)to inositol 1,4,5-triphosphate, [3H]forskolin to adenylate cyclase and [3H]phorbol 12,13-dibutylate to protein kinase C) and neurotransmitter receptor systems ([3H]PN200-110 to L-type calcium channels. [3H]N6-cyclohexyl-adenosine to adenosine A1 and [3H]quinuclidinyl benzilate to muscarinic cholinergic receptor) were assayed using quantitative autoradiography. In the CA1 subfield, 2 h after ischemia, [3H]IP3, [3H]forskolin, and [3H]quinuclidinyl benzilate binding activities significantly decreased by 25, 17 and 13%, respectively, though no morphological abnormalities were obvious. Six hours after ischemia, the [3H]phorbol 12,13-dibutylate binding activity in the stratum oriens of the CA1 subfield increased by 15%. One day after ischemia, [3H]PN200-110 binding activity in this subfield decreased by 26%, and 7 days after ischemia, [3H]phorbol 12,13-dibutylate and [3H]N6-cyclohexyl-adenosine receptor binding activities decreased in this subfield. In particular, at 7 days after ischemia, [3H]IP3 binding activity in the CA1 subfield showed a complete decline. In the CA3 subfield, [3H]PN200-110 binding activity decreased 2 days after ischemia, and [3H]IP3 and [3H]N6-cyclohexyl-adenosine binding activities decreased 7 days after ischemia. In the dentate gyrus, the structure of which remained histologically intact after ischemic insult, [3H]IP3 and [3H]forskolin binding activities decreased 7 days after ischemia. In contrast, the [3H]phorbol 12,13-dibutylate binding activity increased in the molecular layer of the dentate gyrus 7 days after ischemia. These results indicate that marked alteration of intracellular signal transduction precedes neuronal damage in the hippocampal CA1 subfield and that the histologically intact CA3 and dentate gyrus also shows modulated neuronal transmission after ischemia.  相似文献   

11.
An antibody against rat calbindin-D28K, a calcium-binding protein present at high concentration in certain neurons of the central and peripheral nervous systems, was used to determine the progression of the pathological events in the rat hippocampus following experimental cerebral ischemia. Calbindin-D28K immunoreactivity is present in dentate granule cells and in the CA1-CA2 pyramidal cells. CA1 subfield contains a higher proportion of calbindin-D28K-positive pyramidal cells than does the CA2 subfield and CA1 cells are more immunoreactive than the CA2 cells. The pyramidal cells of the CA1 and CA2 subfields are vulnerable to ischemia. The cells in the CA1 became necrotic within 3-4 days after ischemia while those of the CA2 became necrotic within 2 days. There was a concomitant decrease in calbindin-D28K immunoreactivity in the whole hippocampal regio superior after ischemia which peaked 3 days postischemia. The difference in CA2 and CA1 vulnerability seemed to be inversely correlated with the calbindin-D28K contents of the CA2 and CA1 pyramidal cells. The decrease in the calbindin-D28K contents of these neurons was accompanied by cell damage. We therefore suggest that calbindin-D28K is an important factor for the survival of pyramidal cells in the hippocampal formation after ischemia.  相似文献   

12.
在大鼠四血管夹闭前脑缺血模型上,观察了侧脑室给予钾通道阻断剂四乙基铵(TEA)和4-氨基吡啶(4-AP)对脑缺血后海马CA1区锥体神经元迟发性死亡的保护作用。结果发现:再灌流30min后给予TEA组CA1区存活的锥体细胞数明显高于生理盐水对照组,而再灌流30min后给予4-AP组和缺血前30min给予TEA组的存活细胞数则与生理盐水对照组无明显差别。表明再灌流后给予TEA对脑缺血诱导的海马CA1区锥体神经元死亡具有明显的保护作用,提示钾通道可能在缺血后海马CA1区锥体细胞的迟发性死亡中发挥重要的作用。  相似文献   

13.
14.
The time course of rolipram (Ca2+/calmodulin independent cyclic adenosine monophosphate inhibitor) binding sites changes following gerbil transient forebrain ischemia was determined using receptor autoradiography. Gerbils subjected to 10-min ischemia revealed a significant reduction in rolipram binding in most selectively vulnerable regions early in the recirculation (1–5 h). Marked reduction in the rolipram binding was seen in the selectively vulnerable areas 48 h or 7 days after ischemia. Thereafter, the rolipram binding in the hippocampal CA1 and CA3 sectors, which were most vulnerable to ischemia, was severely reduced up to 1 month after recirculation. In contrast, the reduction of the rolipram binding activity in other regions recovered to sham-operated level or showed a slight recovery. Interestingly, the dentate gyrus, which was resistant to ischemia, also exhibited a significant reduction of the rolipram binding activity up to I month after ischemia. Eight months after ischemia, the hippocampal CA 1 and CA3 sectors showed severe shrinkage and marked reduction in the rolipram binding. Other regions exhibited no significant reduction in the rolipram binding except for a slight reduction in the thalamus. These results demonstrate that transient cerebral ischemia causes severe reduction in rolipram binding sites in selectively vulnerable areas, and this reduction precedes the neuronal cell loss. These findings may reflect the alteration of an intracellular phosphodiesterase activity after ischemia.  相似文献   

15.
Quantitative receptor autoradiography was used to measure the binding of gamma-aminobutyric acid (GABA) and benzodiazepine receptors after ischemia by means of transient occlusion of bilateral common carotid arteries in the gerbil. [3H]Muscimol was used to label the GABAA receptors and [3H]flunitrazepam to label central type benzodiazepine receptors. In the superolateral convexities of the frontal cortices, [3H]muscimol binding was increased in 60% of the animals killed 3 days after ischemia, and decreased in 67% of the animals killed 27 days after ischemia. Twenty-seven days after ischemia, [3H]flunitrazepam binding in the substantia nigra pars reticulata increased to 252% of the control, though the increase in [3H]muscimol binding was not significant. In the dorsolateral region of the caudate putamen, marked neuronal necrosis and depletion of both [3H]muscimol and [3H]flunitrazepam binding sites were observed 27 days after ischemia, the ventromedial region being left intact. In spite of the depletion of pyramidal cells in the CA1 region of the hippocampus, both [3H]muscimol and [3H]flunitrazepam binding sites were preserved 27 days after ischemia. Since our previous study revealed that adenosine A1 binding sites were depleted in the CA1 subfield of the hippocampus after ischemia correlating with neuronal damage, GABAA and benzodiazepine receptors may not be distributed predominantly on the pyramidal cells in the CA1 region.  相似文献   

16.
N6-cyclohexyl-[3H]adenosine [( 3H]CHA) was used for the in vitro visualization of the hippocampal adenosine A1 receptors in the gerbil. The strata radiatum and oriens of the hippocampus showed particularly high binding activity. Depletion of pyramidal cells and consequent severe decrease in [3H]CHA binding activity in the CA1 subfield were observed after transient ischemic insult. These results suggest that most adenosine receptors in the CA1 region are localized in association with pyramidal cells.  相似文献   

17.
Immunohistochemical techniques were employed to examine the changes in free ubiquitin within the hippocampus 1, 3, 7, 14, and 30 days after a unilateral perforant pathway lesion occurred in the rat brain. Immunoreactivity for ubiquitin was remarkably decreased in the cell body and proximal dendrites of neurons throughout the hippocampus ipsilateral to the lesion at 1 day post-lesion. At 3 days post-lesion, ubiquitin immunoreactivity was recovered in interneurons in the whole hippocampus as well as in mossy cells in the hilar region, although granule cells in the dentate gyrus and pyramidal cells in the CA1 subfield remained unlabeled, and pyramidal cells in the CA3 subfield demonstrated only weak immunoreactivity. In addition, we observed an increase in ubiquitin immunolabeling of the hilar neuropil ipsilateral to the lesion at 1 and 3 days post-lesion, and a decrease in immunolabeling in the inner portion of the molecular layer at 3 days post-lesion. All these alterations were transient, and by 7 days post-lesion, ubiquitin immunoreactivity was indistinguishable in the hippocampus ipsilateral to the lesion, compared to the controls. Immunoblot analysis also revealed a decrease in the amount of ubiquitin in the hippocampus ipsilateral to the lesion 1 and 3 days post-lesion. These data suggest that deafferentation of the perforant pathway results in transient reduction in free ubiquitin of the hippocampus, and that the ubiquitin system is involved in hippocampal plasticity following perforant lesions.  相似文献   

18.
A quantitative autoradiographic study was made on the binding of the phosphatidylinositol system ligand [3H]inositol(1,4,5)-trisphosphate (IP3) to forebrain sections from rats decapitated various times after 10 min of forebrain ischemia. To investigate the effect of a deafferentation of the hippocampal CA1, kainic acid-induced CA3-lesioned rats with or without 10 min of cerebral ischemia, were also included. The highest binding was found in the hippocampal CA1. Ten min of cerebral ischemia did not change the binding significantly. Between 5 min and 1 h of recirculation there was a 25-35% binding decline in all regions. In the CA1, where the pyramidal cells became necrotic 6 days after ischemia, there was a further decline to 16% of control. In the cortex, where there is no necrosis in this model, binding did not return to control values until day 14. Four days after a selective CA3 lesion with kainic acid, there was a significant 25% decline in the cortex, dentate gyrus and CA1, whereas in the necrotic CA3 binding declined to 54% of control. Ten min of ischemia did not alter this binding significantly. This decrease in calcium mobilizing intracellular receptors after ischemia and seizures could be due to increased membrane degradation, or to a more specific down-regulation following increased intracellular concentration of calcium and IP3.  相似文献   

19.
Shetty AK  Hattiangady B 《Hippocampus》2007,17(10):943-956
Degeneration of the CA3 pyramidal and dentate hilar neurons in the adult rat hippocampus after an intracerebroventricular kainic acid (KA) administration, a model of temporal lobe epilepsy, leads to permanent loss of the calcium binding protein calbindin in major fractions of dentate granule cells and CA1 pyramidal neurons. We hypothesize that the enduring loss of calbindin in the dentate gyrus and the CA1 subfield after CA3-lesion is due to disruption of the hippocampal circuitry leading to hyperexcitability in these regions; therefore, specific cell grafts that are capable of both reconstructing the disrupted circuitry and suppressing hyperexcitability in the injured hippocampus can restore calbindin. We compared the effects of fetal CA3 or CA1 cell grafting into the injured CA3 region of adult rats at 45 days after KA-induced injury on the hippocampal calbindin. The calbindin immunoreactivity in the dentate granule cells and the CA1 pyramidal neurons of grafted animals was evaluated at 6 months after injury (i.e. at 4.5 months post-grafting). Compared with the intact hippocampus, the calbindin in "lesion-only" hippocampus was dramatically reduced at 6 months post-lesion. However, calbindin expression was restored in the lesioned hippocampus receiving CA3 cell grafts. In contrast, in the lesioned hippocampus receiving CA1 cell grafts, calbindin expression remained less than the intact hippocampus. Thus, specific cell grafting restores the injury-induced loss of calbindin in the adult hippocampus, likely via restitution of the disrupted circuitry. Since loss of calbindin after hippocampal injury is linked to hyperexcitability, re-expression of calbindin in both dentate gyrus and CA1 subfield following CA3 cell grafting may suggest that specific cell grafting is efficacious for ameliorating injury-induced hyperexcitability in the adult hippocampus. However, electrophysiological studies of KA-lesioned hippocampus receiving CA3 cell grafts are required in future to validate this possibility.  相似文献   

20.
Transient forebrain ischemia was produced in gerbils by short-term occlusion of the common carotid arteries under halothane anesthesia. Histological analysis of brains 7 days post-ischemia demonstrated characteristic destruction of CA1 pyramidal cells. λ Opiate binding (measured with [3H]naloxone in the presence of 300 nM diprenorphine) at 7 days post-ischemia was significantly increased in the stratum lucidum of the hippocampus (the mossy fiber layer), but not in any other region measured, including other hippocampal regions, cortex, amygdala, caudate putamen, thalamus, and hypothalamus. The increase in mossy fiber λ binding was slow to develop (no increase detected up to 48 h post-ischemia), and long-lasting (binding remained elevated at 32 days post-ischemia). While MK-801 significantly inhibited CA1 pyramidal cell destruction when administered 20 min prior to ischemia, the increase in mossy fiber λ binding was still evident. None of seven different opioid agonists and antagonists examined had an effect on either the pyramidal cell damage or increased mossy fiber λ binding seen 7 days after ischemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号