首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Enzyme inhibitors in biorational approaches for pest control   总被引:1,自引:0,他引:1  
Conventional insecticides of broad spectrum have been widely used as the main tools for controlling insect pests. However, as the consequence of their toxicity and deep environmental impact, new biorational, and more specific approaches have been developed. In this review we present an overview of those pest control approaches which have resulted from studies dealing with inhibition of the enzymes involved in the physiology, growth, molting, development and reproduction of insect pests. These approaches involve synthetic compounds from laboratory studies and natural chemicals present in the crop plants. Recent developments using inhibitors expressed in transgenic plants are also outlined.  相似文献   

2.
Australian funnel-web spiders: master insecticide chemists.   总被引:3,自引:0,他引:3  
Arthropods are the most diverse animal group on the planet. Their ability to inhabit a vast array of ecological niches has inevitably brought them into conflict with humans. Although only a small minority are classified as pest species, they nevertheless destroy about a quarter of the world's annual crop production and transmit an impressive array of pathogens of human and veterinary public health importance. Arthropod pests have been controlled almost exclusively with chemical insecticides since the introduction of DDT in the 1940s. However, the evolution of resistance to many insecticides, coupled with increased awareness of the potential environmental and human and animal health impacts of these chemicals, has stimulated the search for new insecticidal compounds, novel molecular targets, and alternative control methods. Spider venoms are complex chemical cocktails that have evolved to kill or paralyze arthropod prey, and they represent a largely untapped reservoir of insecticidal compounds. This review focuses on several families of invertebrate-specific peptide neurotoxins that were isolated from the venom of Australian funnel-web spiders. These peptides are promising insecticide leads because of their selectivity for invertebrates and activity on previously unvalidated targets. These toxins should facilitate the development of novel target-based screens for new insecticide leads, while their mapped pharmacophores will provide templates for rational design of mimetics that act at these target sites. Furthermore, genes encoding these toxins can be used to improve the efficacy of insect-specific viruses.  相似文献   

3.
NP Chougule  BC Bonning 《Toxins》2012,4(6):405-429
The sap sucking insects (Hemiptera), which include aphids, whiteflies, plant bugs and stink bugs, have emerged as major agricultural pests. The Hemiptera cause direct damage by feeding on crops, and in some cases indirect damage by transmission of plant viruses. Current management relies almost exclusively on application of classical chemical insecticides. While the development of transgenic crops expressing toxins derived from the bacterium Bacillus thuringiensis (Bt) has provided effective plant protection against some insect pests, Bt toxins exhibit little toxicity against sap sucking insects. Indeed, the pest status of some Hemiptera on Bt-transgenic plants has increased in the absence of pesticide application. The increased pest status of numerous hemipteran species, combined with increased prevalence of resistance to chemical insecticides, provides impetus for the development of biologically based, alternative management strategies. Here, we provide an overview of approaches toward transgenic resistance to hemipteran pests.  相似文献   

4.
Insect pests are responsible for human suffering and financial losses worldwide. New and environmentally safe insecticides are urgently needed to cope with these serious problems. Resistance to current insecticides has resulted in a resurgence of insect pests, and growing concerns about insecticide toxicity to humans discourage the use of insecticides for pest control. The small market for insecticides has hampered insecticide development; however, advances in genomics and structural genomics offer new opportunities to develop insecticides that are less dependent on the insecticide market. This review summarizes the literature data that support the hypothesis that an insect-specific cysteine residue located at the opening of the acetylcholinesterase active site is a promising target site for developing new insecticides with reduced off-target toxicity and low propensity for insect resistance. These data are used to discuss the differences between targeting the insect-specific cysteine residue and targeting the ubiquitous catalytic serine residue of acetylcholinesterase from the perspective of reducing off-target toxicity and insect resistance. Also discussed is the prospect of developing cysteine-targeting anticholinesterases as effective and environmentally safe insecticides for control of disease vectors, crop damage, and residential insect pests within the financial confines of the present insecticide market.  相似文献   

5.
《Toxin reviews》2013,32(4):361-389
Insect pests decimate a significant proportion of the world's food supply and transmit a number of deadly human diseases. These arthropods are generally controlled by spraying broad-spectrum chemical insecticides. However, the emergence of insecticide-resistant insect populations, as well as increasing disquiet about the environmental and human health risks associated with certain agrochemicals, has stimulated the search for new arthropod-control strategies. Since the primary role of spider venoms is to kill or immobilize arthropod prey, it is not surprising that spider venoms have proved to be rich sources of insecticidal compounds. In this review we examine the function and three-dimensional structure of four families of novel insecticidal neurotoxins that have been isolated from the venom of Australian funnel-web spiders. Although all of these toxins are members of the inhibitor cystine-knot family, they have proved to be structural chameleons, with the three-dimensional fold often providing few clues about toxin function. However, significant progress is being made in identifying the targets and mapping the bioactive surfaces of these peptides. In addition to being useful lead compounds for insecticide design, these neurotoxins should provide valuable tools for the pharmacological and structural characterization of insecticide targets.  相似文献   

6.
Natural toxins for use in pest management   总被引:1,自引:0,他引:1  
Natural toxins are a source of new chemical classes of pesticides, as well as environmentally and toxicologically safer molecules than many of the currently used pesticides. Furthermore, they often have molecular target sites that are not exploited by currently marketed pesticides. There are highly successful products based on natural compounds in the major pesticide classes. These include the herbicide glufosinate (synthetic phosphinothricin), the spinosad insecticides, and the strobilurin fungicides. These and other examples of currently marketed natural product-based pesticides, as well as natural toxins that show promise as pesticides from our own research are discussed.  相似文献   

7.
Conventional insecticides are highly toxic to many living organisms as well as to the environment; consequently, new biorational and more specific approaches to pest control have been developed. In this paper, we present an update of those approaches resulting from studies on inhibition of enzymes involved in key processes of insects life, particularly growth, molting and development of larvae and intraspecific communication of adults. The enzymes covered include pheromone degrading enzymes, pheromone biosynthetic enzymes, oxidoreductases, juvenile hormones, juvenile hormone epoxide hydrolases, proteases, molting hormones and phenoloxidases. Although these approaches refer to control of insect pests, many of them can be in principle also considered suitable for medicinal chemistry studies, since the mechanism of action of these inhibitors on related enzymes is quite similar, if not equal, in both fields.  相似文献   

8.
Bacillus thuringiensis (Bt) is a gram-positive spore-forming soil bacterium that is distributed worldwide. Originally recognized as a pathogen of the silkworm, several strains were found on epizootic events in insect pests. In the 1960s, Bt began to be successfully used to control insect pests in agriculture, particularly because of its specificity, which reflects directly on their lack of cytotoxicity to human health, non-target organisms and the environment. Since the introduction of transgenic plants expressing Bt genes in the mid-1980s, numerous methodologies have been used to search for and improve toxins derived from native Bt strains. These improvements directly influence the increase in productivity and the decreased use of chemical insecticides on Bt-crops. Recently, DNA shuffling and in silico evaluations are emerging as promising tools for the development and exploration of mutant Bt toxins with enhanced activity against target insect pests. In this report, we describe natural and in vitro evolution of Cry toxins, as well as their relevance in the mechanism of action for insect control. Moreover, the use of DNA shuffling to improve two Bt toxins will be discussed together with in silico analyses of the generated mutations to evaluate their potential effect on protein structure and cytotoxicity.  相似文献   

9.
Synthetic pyrethroid insecticides were introduced into widespread use for the control of insect pests and disease vectors more than three decades ago. In addition to their value in controlling agricultural pests, pyrethroids are at the forefront of efforts to combat malaria and other mosquito-borne diseases and are also common ingredients of household insecticide and companion animal ectoparasite control products. The abundance and variety of pyrethroid uses contribute to the risk of exposure and adverse effects in the general population. The insecticidal actions of pyrethroids depend on their ability to bind to and disrupt voltage-gated sodium channels of insect nerves. Sodium channels are also important targets for the neurotoxic effects of pyrethroids in mammals but other targets, particularly voltage-gated calcium and chloride channels, have been implicated as alternative or secondary sites of action for a subset of pyrethroids. This review summarizes information published during the past decade on the action of pyrethroids on voltage-gated sodium channels as well as on voltage-gated calcium and chloride channels and provides a critical re-evaluation of the role of these three targets in pyrethroid neurotoxicity based on this information.  相似文献   

10.
Spider-venom peptides as bioinsecticides   总被引:2,自引:0,他引:2  
Over 10,000 arthropod species are currently considered to be pest organisms. They are estimated to contribute to the destruction of ~14% of the world's annual crop production and transmit many pathogens. Presently, arthropod pests of agricultural and health significance are controlled predominantly through the use of chemical insecticides. Unfortunately, the widespread use of these agrochemicals has resulted in genetic selection pressure that has led to the development of insecticide-resistant arthropods, as well as concerns over human health and the environment. Bioinsecticides represent a new generation of insecticides that utilise organisms or their derivatives (e.g., transgenic plants, recombinant baculoviruses, toxin-fusion proteins and peptidomimetics) and show promise as environmentally-friendly alternatives to conventional agrochemicals. Spider-venom peptides are now being investigated as potential sources of bioinsecticides. With an estimated 100,000 species, spiders are one of the most successful arthropod predators. Their venom has proven to be a rich source of hyperstable insecticidal mini-proteins that cause insect paralysis or lethality through the modulation of ion channels, receptors and enzymes. Many newly characterized insecticidal spider toxins target novel sites in insects. Here we review the structure and pharmacology of these toxins and discuss the potential of this vast peptide library for the discovery of novel bioinsecticides.  相似文献   

11.
Pesticides are chemicals with a great impact in the economy of any country. They are employed for the eradication of pests. Insects constitute one of these pests which are extremely difficult to control. With the passage of the time, insects have become resistant to pesticides, causing huge crop losses and diseases in humans. For this reason, there is an increasing need for the design of more potent insecticides. The present review is focused on the current state of the application of computational approaches as essential tools for the design of novel insecticidal agents. Also, a model based on a substructural approach is presented as a rational, efficient and promising alternative for the discovery of new insecticides.  相似文献   

12.
Receptor site-3 on voltage-gated sodium channels is targeted by a variety of structurally distinct toxins from scorpions, sea anemones, and spiders whose typical action is the inhibition of sodium current inactivation. This site interacts allosterically with other topologically distinct receptors that bind alkaloids, lipophilic polyether toxins, pyrethroids, and site-4 scorpion toxins. These features suggest that design of insecticides with specificity for site-3 might be rewarding due to the positive cooperativity with other toxins or insecticidal agents. Yet, despite the central role of scorpion alpha-toxins in envenomation and their vast use in the study of channel functions, molecular details on site-3 are scarce. Scorpion alpha-toxins vary greatly in preference for sodium channels of insects and mammals, and some of them are highly active on insects. This implies that despite its commonality, receptor site-3 varies on insect vs. mammalian channels, and that elucidation of these differences could potentially be exploited for manipulation of toxin preference. This review provides current perspectives on (i) the classification of scorpion alpha-toxins, (ii) their mode of interaction with sodium channels and pharmacological divergence, (iii) molecular details on their bioactive surfaces and differences associated with preference for channel subtypes, as well as (iv) a summary of the present knowledge about elements involved in constituting receptor site-3. These details, combined with the variations in allosteric interactions between site-3 and the other receptor sites on insect and mammalian sodium channels, may be useful in new strategies of insect control and future design of anti-insect selective ligands.  相似文献   

13.
本文重点介绍了苯酰基脲类、噻嗪酮这两类几丁质合成抑制剂类杀虫剂的发展概况和应用的有关杀虫特性及其目前在防治几类农作物害虫方面的应用情况,分析了其在应用方面的主要问题,并对其前景进行了讨论。  相似文献   

14.
1. The spiders of medical importance in the Asia-Pacific region include widow (family Theridiidae) and Australian funnel-web spiders (subfamily Atracinae). In addition, cupboard (family Theridiidae) and Australian mouse spiders (family Actinopodidae) may contain neurotoxins responsible for serious systemic envenomation. Fortunately, there appears to be extensive cross-reactivity of species-specific widow spider antivenom within the family Theridiidae. Moreover, Sydney funnel-web antivenom has been shown to be effective in the treatment of mouse spider envenomation. 2. alpha-Latrotoxin (alpha-LTx) appears to be the main neurotoxin responsible for the envenomation syndrome known as "latrodectism" following bites from widow spiders. This 120 kDa protein binds to distinct receptors (latrophilin 1 and neurexins) to induce neurotransmitter vesicle exocytosis via both Ca2+-dependent and -independent mechanisms, resulting in vesicle depletion. This appears to involve disruption to a process that normally inhibits vesicle fusion in the absence of Ca2+. Precise elucidation of the mechanism of action of alpha-LTx will lead to a major advancement in our understanding of vesicle exocytosis. 3. delta-Atracotoxins (delta-ACTX) are responsible for the primate-specific envenomation syndrome seen following funnel-web spider envenomation. These peptides induce spontaneous repetitive firing and prolongation of action potentials in excitable cells. This results from a hyperpolarizing shift of the voltage-dependence of activation and a slowing of voltage-gated Na+ channel inactivation. This action is due to voltage-dependent binding to neurotoxin receptor site-3 on insect and mammalian voltage-gated Na+ channels in a manner similar, but not identical, to scorpion alpha-toxins and sea anemone toxins. delta-Atracotoxins provide us with highly specific tools to study Na+ channel structure and function 4. omega- and Janus-faced ACTX, from funnel-web spider venom, are novel neurotoxins that show selective toxicity to insects. In particular omega-ACTX define a new insecticide target due to a specific action to block insect voltage-gated Ca2+ channels. Both these ACTX show promise for the development of baculoviral recombinant biopesticides expressing these toxins for the control of insecticide-resistant agricultural pests. In addition, they should provide valuable tools for the pharmacological and structural characterization of insecticide targets.  相似文献   

15.
Insect-specific toxins derived from Bacillus thuringiensis (Bt) provide a valuable resource for pest suppression. Here we review the different strategies that have been employed to enhance toxicity against specific target species including those that have evolved resistance to Bt, or to modify the host range of Bt crystal (Cry) and cytolytic (Cyt) toxins. These strategies include toxin truncation, modification of protease cleavage sites, domain swapping, site-directed mutagenesis, peptide addition, and phage display screens for mutated toxins with enhanced activity. Toxin optimization provides a useful approach to extend the utility of these proteins for suppression of pests that exhibit low susceptibility to native Bt toxins, and to overcome field resistance.  相似文献   

16.
Malaria a mosquito-borne disease caused by Plasmodium remains to be a main global burden despite concerted efforts to eliminate it. While diverse control strategies have been put in place for mosquito-borne diseases, vector control continues to be a critical component in infection prevention. Vector control majorly focuses on the eradication of mosquitoes using a variety of chemical insecticides that includes organochlorides, carbamates, organophosphates, and pyrethroids. The use of conventional insecticide-based as mosquito control strategies poses several challenges such as the widespread development of insecticide resistance, environmental damage concerns, and effects on non-target organisms. These challenges create a demand for the development and use of alternative pest control strategies that are sustainable, safer, and environmentally friendly to mosquito vector management. This review provides insight into alternative sustainable interventions for mosquito vector control in the form of biorational pesticides. Biorational pesticides are pesticides that have little or no effect on humans and environments and include entomopathogenic microorganisms, insect growth regulators, and endosymbiotic bacteria. It also puts into perspective their environmental impacts, benefits, and challenges. Further, countries like Sri Lanka, that are certified as malaria free by World Health Organization (WHO) incorporated the use of entomopathogenic bacteria, insect growth regulators and larvivorous fish in their national vector control programs leading to the successful elimination of malaria in 2016. We therefore highlight success stories of the countries that have implemented these interventions bringing out the lessons for countries that are battling malaria epidemics.  相似文献   

17.
Voltage-gated sodium channels are a major target for toxins and insecticides due to their central role in excitability, but due to the conservation of these channels in Animalia most insecticides do not distinguish between those of insects and mammals, thereby imposing risks to humans and livestock. Evidently, as long as modern agriculture depends heavily on the use of insecticides there is a great need for new substances capable of differentiating between sodium channel subtypes. Such substances exist in venomous animals, but ways for their exploitation have not yet been developed due to problems associated with manufacturing, degradation, and delivery to the target channels. Engineering of plants for expression of anti-insect toxins or use of natural vectors that express toxins near their target site (e.g. baculoviruses) are still problematic and raise public concern. In this problematic reality a rational approach might be to learn from nature how to design highly selective anti-insect compounds preferably in the form of peptidomimetics. This is a complex task that requires the elucidation of the face of interaction between insect-selective toxins and their sodium channel receptor sites. This review delineates current progress in: (i) elucidation of the bioactive surfaces of scorpion beta-toxins, especially the excitatory and depressant groups, which show high preference for insects and bind insect sodium channels with high affinity; (ii) studies of the mode of interaction of scorpion beta-toxins with receptor site-4 on voltage-gated sodium channels; and (iii) clarification of channel elements that constitute receptor site-4. This information may be useful in future attempts to mimic the bioactive surface of the toxins for the design of anti-insect selective peptidomimetics.  相似文献   

18.
Natural pyrethrin and synthetic pyrethroid insecticides have been considered among the safest classes of insecticides available. Pyrethrins and pyrethroids are classified on the basis of their chemical structures and their toxicologic, neurophysiologic and pharmacologic effects. Cellular effects of pyrethrin and pyrethroid insecticides have been postulated to involve interactions with sodium channels, receptor-ionophore complexes, neurotransmitters, and ATPases. Toxicity is a function of chemical structure, metabolism, route of exposure, and the presence or absence of synergists. Pyrethroid insecticides are neurotoxic, and the development and severity of clinical signs is proportional to the nervous tissue pyrethroid concentration. Type I pyrethroid poisoning in mice and rats produces a syndrome characterized by tremors, prostration and altered startle reflexes. Type II pyrethroid poisoning in mice and rats causes ataxia, convulsions, hyperactivity, choreoathetosis and profuse salivation. A presumptive diagnosis of pyrethrin/pyrethroid poisoning is based upon history of exposure, development of appropriate clinical signs, and chemical analysis for insecticide residues. Treatment of pyrethrin and pyrethroid toxicosis involves basic life support, seizure control when needed, and the prevention of further insecticide absorption.  相似文献   

19.
The mucosal administration of vaccines is an area currently receiving a high level of interest due to potential advantages offered by this technique. These advantages include the ability to administer vaccines without need for needles, thus improving patient compliance with vaccination schedules, and the capacity to induce immune responses capable of preventing infections at the site of acquisition. Despite these advantages a number of limitations exist which currently inhibit our ability to successfully develop new mucosal vaccines. As such, much research is currently focused on developing new adjuvants and delivery systems to overcome these difficulties. However, despite high levels of interest in this area, relatively few mucosal vaccine candidates have successfully progressed to human clinical trials. In the review that follows, we aim to provide the reader with an overview of the immune system with respect to induction of mucosal immune responses. Furthermore, the review provides an overview of a number of microbial (bacterial toxins, CpG DNA, cytokines/chemokines, live vectors, and virus like particles) and synthetic (microspheres, liposomes, and lipopeptides) strategies that have been investigated as adjuvants or delivery systems for mucosal vaccine development, with a focus on the delivery of vaccines via the oral route.  相似文献   

20.
Glenn F King 《Toxicon》2004,43(5):471-475
Spiders are remarkable for their complete reliance on predation as a trophic strategy. Their evolutionary success is due in large part to production of a complex venom that is designed to rapidly subdue or kill their prey. This issue provides an overview of the fascinating complexity of these venoms, a realistic account of the danger they pose to humans, and an examination of their immense but largely untapped potential for drug and insecticide discovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号