首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 723 毫秒
1.
In vitro 1H MRS of human bile has shown potential in the diagnosis of various hepatopancreatobiliary (HPB) diseases. Previously, in vivo 1H MRS of human bile in gallbladder using a 1.5 T scanner demonstrated the possibility of quantification of choline‐containing phospholipids (chol‐PLs). However, other lipid components such as bile acids play an important role in the pathophysiology of the HPB system. We have employed a higher magnetic field strength (3 T), and a custom‐built receive array coil, to improve the quality of in vivo 1H MRS of human bile in the gallbladder. We obtained significant improvement in the quality of 1D spectra (17 healthy volunteers) using a respiratory‐gated PRESS sequence with well distinguished signals for total bile acids (TBAs) plus cholesterol resonating at 0.66 ppm, taurine‐conjugated bile acids (TCBAs) at 3.08 ppm, chol‐PLs at 3.22 ppm, glycine‐conjugated bile acids (GCBAs) at 3.74 ppm, and the amide proton (?NH) arising from GCBAs and TCBAs in the region 7.76–8.05 ppm. The peak areas of these signals were measured by deconvolution, and subsequently the molar concentrations of metabolites were estimated with good accuracy, except for that of TBAs plus cholesterol. The concentration of TBAs plus cholesterol was overestimated in some cases, which could be due to lipid contamination. In addition, we report the first 2D L‐COSY spectra of human gallbladder bile in vivo (obtained in 15 healthy volunteers). 2D L‐COSY spectra will be helpful in differentiating various biliary chol‐PLs in pathological conditions of the HPB system. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Proton (1H) MRS enables non‐invasive biochemical assay with the potential to characterize malignant, benign and healthy breast tissues. In vitro studies using perchloric acid extracts and ex vivo magic angle spinning spectroscopy of intact biopsy tissues have been used to identify detectable metabolic alterations in breast cancer. The challenges of 1H MRS in vivo include low sensitivity and significant overlap of resonances due to limited chemical shift dispersion and significant inhomogeneous broadening at most clinical magnetic field strengths. Improvement in spectral resolution can be achieved in vivo and in vitro by recording the MR spectra spread over more than one dimension, thus facilitating unambiguous assignment of metabolite and lipid resonances in breast cancer. This article reviews the recent progress with two‐dimensional MRS of breast cancer in vitro, ex vivo and in vivo. The discussion includes unambiguous detection of saturated and unsaturated fatty acids, as well as choline‐containing groups such as free choline, phosphocholine, glycerophosphocholine and ethanolamines using two‐dimensional MRS. In addition, characterization of invasive ductal carcinomas and healthy fatty/glandular breast tissues non‐invasively using the classification and regression tree (CART) analysis of two‐dimensional MRS data is reviewed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
The purpose of this study was to evaluate the use of dynamic contrast‐enhanced (DCE) MRI, in vivo 1H MRS and ex vivo high resolution magic angle spinning (HR MAS) MRS of tissue samples as methods to detect early treatment effects of docetaxel in a breast cancer xenograft model (MCF‐7) in mice. MCF‐7 cells were implanted subcutaneously in athymic mice and treated with docetaxel (20, 30, and 40 mg/kg) or saline six weeks later. DCE‐MRI and in vivo 1H MRS were performed on a 7 T MR system three days after treatment. The dynamic images were used as input for a two‐compartment model, yielding the vascular parameters Ktrans and ve. HR MAS MRS, histology, and immunohistochemical staining for proliferation (Ki‐67), apoptosis (M30 cytodeath), and vascular/endothelial cells (CD31) were performed on excised tumor tissue. Both in vivo spectra and HR MAS spectra were used as input for multivariate analysis (principal component analysis (PCA) and partial least squares regression analysis (PLS)) to compare controls to treated tumors. Tumor growth was suppressed in docetaxel‐treated mice compared to the controls. The anti‐tumor effect led to an increase in Ktrans and ve values in all the treated groups. Furthermore, in vivo MRS and HR MAS MRS revealed a significant decrease in choline metabolite levels for the treated groups, in accordance with reduced proliferative index as seen on Ki‐67 stained sections. In this study DCE‐MRI, in vivo MRS and ex vivo HR MAS MRS have been used to demonstrate that docetaxel treatment of a human breast cancer xenograft model results in changes in the vascular dynamics and metabolic profile of the tumors. This indicates that these MR methods could be used to monitor intra‐tumoral treatment effects. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
The acquisition of magnetic resonance spectroscopy (MRS) signals by multiple receiver coils can improve the signal‐to‐noise ratio (SNR) or alternatively can reduce the scan time maintaining a reliable SNR. However, using phased array coils in MRS studies requires efficient data processing and data combination techniques in order to exploit the sensitivity improvement of the phased array coil acquisition method. This paper describes a novel method for the combination of MRS signals acquired by phased array coils, even in presence of correlated noise between the acquisition channels. In fact, although it has been shown that electric and magnetic coupling mechanisms produce correlated noise in the coils, previous algorithms developed for MRS data combination have ignored this effect. The proposed approach takes advantage of a noise decorrelation stage to maximize the SNR of the combined spectra. In particular Principal Component Analysis (PCA) was exploited to project the acquired spectra in a subspace where the noise vectors are orthogonal. In this subspace the SNR weighting method will provide the optimal overall SNR. Performance evaluation of the proposed method is carried out on simulated 1H‐MRS signals and experimental results are obtained on phantom 1H‐MR spectra using a commercially available 8‐element phased array coil. Noise correlations between elements were generally low due to the optimal coil design, leading to a fair SNR gain (about 0.5%) in the center of the field of view (FOV). A greater SNR improvement was found in the peripheral FOV regions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
We investigate the profile of choline metabolites and the expression of the genes of the Kennedy pathway in biopsies of human gliomas (n = 23) using 1H High Resolution Magic Angle Spinning (HR‐MAS, 11.7 Tesla, 277 K, 4000 Hz) and individual genetic assays. 1H HR‐MAS spectra allowed the resolution and relative quantification by the LCModel of the resonances from choline (Cho), phosphocholine (PC) and glycerophosphorylcholine (GPC), the three main components of the combined tCho peak observed in gliomas by in vivo 1H NMR spectroscopy. All glioma biopsies depicted a prominent tCho peak. However, the relative contributions of Cho, PC, and GPC to tCho were different for low and high grade gliomas. Whereas GPC is the main component in low grade gliomas, the high grade gliomas show a dominant contribution of PC. This circumstance allowed the discrimination of high and low grade gliomas by 1H HR‐MAS, a result that could not be obtained using the tCho/Cr ratio commonly used by in vivo 1H NMR spectroscopy. The expression of the genes involved in choline metabolism has been investigated in the same biopsies. High grade gliomas depict an upregulation of the β gene of choline kinase and phospholipase C, as well as a downregulation of the cytidyltransferase B gene, the balance of these being consistent with the accumulation of PC. In the low grade gliomas, phospholipase A1 and lysophospholypase are upregulated and phospholipase D is downregulated, supporting the accumulation of GPC. The present findings offer a promising procedure that will potentially help to accurately grade glioma tumors using 1H HR‐MAS, providing in addition the genetic background for the alterations of choline metabolism observed in high and low grade gliomas. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Kim SY  Lee H  Kim HJ  Bang E  Lee SH  Lee DW  Woo DC  Choi CB  Hong KS  Lee C  Choe BY 《NMR in biomedicine》2011,24(10):1235-1242
Subanesthetic doses of ketamine, a noncompetitive N‐methyl‐D ‐aspartate (NMDA) receptor antagonist, impair prefrontal cortex (PFC) function in the rat and produce symptoms in humans similar to those observed in patients with schizophrenia. In the present study, in vivo 1H‐MRS and ex vivo 1H high‐resolution magic angle spinning (HR‐MAS) spectroscopy was used to examine the brain metabolism of rats treated with subanesthetic doses of ketamine (30 mg/kg) for 6 days. A single voxel localization sequence (PRESS, TR/TE = 4000/20 ms and NEX = 512) was used to acquire the spectra in a 30‐µl voxel positioned in the cerebral cortex (including mainly PFC) of the rats (ketamine group: n = 12; saline group: n = 12) anesthetized with isoflurane. After the in vivo 1H‐MRS acquisition, the animals were sacrificed and the cerebral cortex tissues were extracted (ketamine group: n = 7; saline group: n = 7) for ex vivo 1H HR‐MAS spectroscopy (CPMG sequence, 2.0‐s presaturation delay, 2.0‐s acquisition time, 128 transients and 4‐ms inter‐pulse delay) using a 500‐MHz NMR spectrometer. All proton metabolites were quantified using the LCModel. For the in vivo spectra, there was a significant increase in glutamate concentration in the cerebral cortex of the ketamine group compared with the controls (p < 0.05). For the ex vivo HR‐MAS spectra, there was a significant increase in the glutamate/total creatine ratio, and a decrease in the glutamine/total creatine and glutamine/glutamate ratios in the cerebral cortex tissue of the ketamine group compared with the controls. The results of the present study demonstrated that administration of subanesthetic doses of ketamine in the rat may exert at least part of their effect in the cerebral cortex by activation of glutamatergic neurotransmission. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
The accuracy of metabolite concentrations measured using in vivo proton (1H) MRS is enhanced following correction for spin–spin (T2) relaxation effects. In addition, metabolite proton T2 relaxation times provide unique information regarding cellular environment and molecular mobility. Echo‐time (TE) averaging 1H MRS involves the collection and averaging of multiple TE steps, which greatly simplifies resulting spectra due to the attenuation of spin‐coupled and macromolecule resonances. Given the simplified spectral appearance and inherent metabolite T2 relaxation information, the aim of the present proof‐of‐concept study was to develop a novel data processing scheme to estimate metabolite T2 relaxation times from TE‐averaged 1H MRS data. Spectral simulations are used to validate the proposed TE‐averaging methods for estimating methyl proton T2 relaxation times for N‐acetyl aspartate, total creatine, and choline‐containing compounds. The utility of the technique and its reproducibility are demonstrated using data obtained in vivo from the posterior‐occipital cortex of 10 healthy control subjects. Compared with standard methods, distinct advantages of this approach include built‐in macromolecule resonance attenuation, in vivo T2 estimates closer to reported values when maximum TE ≈ T2, and the potential for T2 calculation of metabolite resonances otherwise inseparable in standard 1H MRS spectra recorded in vivo. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
Magnetic resonance spectroscopy (MRS) is a powerful tool capable of investigating the metabolic status of several tissues in vivo. In particular, single‐voxel‐based 1H spectroscopy provides invaluable biochemical information from a volume of interest (VOI) and has therefore been used in a variety of studies. Unfortunately, typical one‐dimensional MRS data suffer from severe signal overlap and thus important metabolites are difficult to distinguish. One method that is used to disentangle overlapping resonances is the two‐dimensional J‐resolved spectroscopy (JPRESS) experiment. Due to the long acquisition duration of the JPRESS experiment, a limited number of points are acquired in the indirect dimension, leading to poor spectral resolution along this dimension. Poor spectral resolution is problematic because proper peak assignment may be hindered, which is why the zero‐filling method is often used to improve resolution as a post‐processing step. However, zero‐filling leads to spectral artifacts, which may affect visualization and quantitation of spectra. A novel method utilizing a covariance transformation, called covariance J‐resolved spectroscopy (CovJ), was developed in order to improve spectral resolution along the indirect dimension (F1). Comparison of simulated data demonstrates that peak structures remain qualitatively similar between JPRESS and the novel method along the diagonal region (F1 = 0 Hz), whereas differences arise in the cross‐peak (F1≠0 Hz) regions. In addition, quantitative results of in vivo JPRESS data acquired on a 3T scanner show significant correlations (r2>0.86, p<0.001) when comparing the metabolite concentrations between the two methods. Finally, a quantitation algorithm, ‘COVariance Spectral Evaluation of 1H Acquisitions using Representative prior knowledge’ (Cov‐SEHAR), was developed in order to quantify γ‐aminobutyric acid and glutamate from the CovJ spectra. These preliminary findings indicate that the CovJ method may be used to improve spectral resolution without hindering metabolite quantitation for J‐resolved spectra.  相似文献   

9.
The aim of this study was to investigate the use of 1H‐MRS with various echo times to characterize subcutaneous human adipose tissue (SAT) triglyceride composition and to validate the findings with fatty acid (FA) analysis of SAT biopsies by gas chromatography (GC). 1H‐MRS spectra were acquired with a 1.5 Tesla clinical imager from the SAT of 17 healthy volunteers, with 10 undergoing SAT biopsy. Spectra were localized with PRESS and a series of echo times; 30,50,80,135,200,300 and 540 ms were acquired with TR = 3000 ms. Prior knowledge from phantom measurements was used to construct AMARES fitting models for the lipid spectra. SAT FA composition were compared with serum lipid levels and subject characteristics in 17 subjects. Long TE (135,200 ms) spectra corresponded better with the GC data than short TE (30,50 ms) spectra. TE = 135 ms was found optimal for determining diallylic content (R = 0.952, p < 0.001) and TE = 200 ms was optimal for determining olefinic content (R = 0.800, p < 0.01). The improved performance of long TE spectra is a result of an improved baseline and better peak separation, due to J‐modulation and suppression of water. The peak position of the diallylic resonance correlated with the average double bond content of polyunsatured fatty acids with R = 0.899 (p < 0.005). The apparent T2 of the methylene resonance displayed relatively small inter‐individual variation, 88.1 ± 1.1 ms (mean ± SD). The outer methyl triplet line of ω‐3 PUFA at 1.08 ppm could be readily detected and quantitated from spectra obtained at TE = 540. The ω‐3 resonance correlated with the ω‐3 content determined by GC with R = 0.737 (p < 0.05, n = 8). Age correlated significantly with SAT diallylic content (R = 0.569, p = 0.017, n = 17), but serum lipid levels showed no apparent relation to SAT FA composition. We conclude that long TE 1H‐MRS provides a robust non‐invasive method for characterizing adipose tissue triglycerides in vivo. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
The topoisomerase I inhibitor, irinotecan, and its active metabolite SN‐38 have been shown to induce G2/M cell cycle arrest without significant cell death in human colon carcinoma cells (HCT‐116). Subsequent treatment of these G2/M‐arrested cells with the cyclin‐dependent kinase inhibitor, flavopiridol, induced these cells to undergo apoptosis. The goal of this study was to develop a noninvasive metabolic biomarker for early tumor response and target inhibition of irinotecan followed by flavopiridol treatment in a longitudinal study. A total of eleven mice bearing HCT‐116 xenografts were separated into two cohorts where one cohort was administered saline and the other treated with a sequential course of irinotecan followed by flavopiridol. Each mouse xenograft was longitudinally monitored with proton (1H)‐decoupled phosphorus (31P) magnetic resonance spectroscopy (MRS) before and after treatment. A statistically significant decrease in phosphocholine (p = 0.0004) and inorganic phosphate (p = 0.0103) levels were observed in HCT‐116 xenografts following treatment, which were evidenced within twenty‐four hours of treatment completion. Also, a significant growth delay was found in treated xenografts. To discern the underlying mechanism for the treatment response of the xenografts, in vitro HCT‐116 cell cultures were investigated with enzymatic assays, cell cycle analysis, and apoptotic assays. Flavopiridol had a direct effect on choline kinase as measured by a 67% reduction in the phosphorylation of choline to phosphocholine. Cells treated with SN‐38 alone underwent 83 ± 5% G2/M cell cycle arrest compared to untreated cells. In cells, flavopiridol alone induced 5 ± 1% apoptosis while the sequential treatment (SN‐38 then flavopiridol) resulted in 39 ± 10% apoptosis. In vivo 1H‐decoupled 31P MRS indirectly measures choline kinase activity. The decrease in phosphocholine may be a potential indicator of early tumor response to the sequential treatment of irinotecan followed by flavopiridol in noninvasive and/or longitudinal studies. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
The placenta is a temporary organ that is essential for a healthy pregnancy. It performs several important functions, including the transport of nutrients, the removal of waste products and the metabolism of certain substances. Placental disorders have been found to account for over 50% of stillbirths. Despite this, there are currently no methods available to directly and non‐invasively assess placental function in utero. The primary aim of this pilot study was to investigate the use of 1H MRS for this purpose. 1H MRS offers the possibility to detect several placental metabolites, including choline, lipids and the amino acids glutamine and glutamate (Glx), which are vital to fetal development and placental function. Here, in utero placental spectra were acquired from nine small for gestational age (SGA) pregnancies, a cohort who are at increased risk of perinatal morbidity and mortality, and from nine healthy gestation‐matched pregnancies. All subjects were between 26 and 39 weeks of gestation. Placenta Glx, choline and lipids at 1.3 and 0.9 ppm were quantified as amplitude ratios to that of intrinsic H2O. Wilcoxon signed rank tests indicated a significant difference in Glx/H2O (p = 0.024) between the two groups, but not in choline/H2O (p = 0.722) or in either lipid/H2O ratio (1.3 ppm, p = 0.813; 0.9 ppm, p = 0.058). This study has demonstrated that 1H MRS has potential for the detection of placental metabolites in utero. This warrants further investigation as a tool for the monitoring of placental function. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
The purpose of the study was to investigate the capability of 1H MRS and MRI methods for detecting early response to radiation therapy in non‐Hodgkin's lymphoma (NHL). Studies were performed on the WSU‐DLCL2 xenograft model in nude mice of human diffuse large B‐cell lymphoma, the most common form of NHL. Radiation treatment was applied as a single 15 Gy dose to the tumor. Tumor lactate, lipids, total choline, T2 and apparent diffusion coefficients (ADC) were measured before treatment and at 24 h and 72 h after radiation. A Hadamard‐encoded slice‐selective multiple quantum coherence spectroscopy sequence was used for detecting lactate (Lac) while a stimulated echo acquisition mode sequence was used for detection of total choline (tCho) and lipids. T2‐ and diffusion‐weighted imaging sequences were used for measuring T2 and ADC. Within 24 h after radiation, significant changes were observed in the normalized integrated resonance intensities of Lac and the methylenes of lipids. Lac/H2O decreased by 38 ± 15% (p = 0.03), and lipid (1.3 ppm, CH2)/H2O increased by 57 ± 14% (p = 0.01). At 72 h after radiation, tCho/H2O decreased by 45 ± 14% (p = 0.01), and lipid (2.8 ppm, polyunsaturated fatty acid)/H2O increased by 970 ± 36% (p = 0.001). ADC increased by 14 ± 2% (p = 0.003), and T2 did not change significantly. Tumor growth delay and regression were observed thereafter. This study enabled comparison of the relative sensitivities of various 1H MRS and MRI indices to radiation and suggests that 1H MRS/MRI measurements detect early responses to radiation that precede tumor volume changes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
The effects of the selective peroxisome proliferator activated receptor‐gamma (PPAR‐γ) inhibitor GW9662 on phenylbutyrate (PB)‐induced NMR‐detectable lipid metabolites was investigated on DU145 prostate cancer cells. DU145 cells were perfused with 10 mM PB in the presence or absence of 1 µM of GW9662 and the results monitored by 31P and diffusion‐weighted 1H NMR spectroscopy. GW9662 completely reversed PB‐induced NMR‐visible lipid and total choline accumulation in 1H spectra and glycerophosphocholine and β‐NTP in 31P spectra. In addition, pre‐incubation with GW9662 significantly reduced PB‐induced caspase‐3 activation, reversed the G1 block as measured by flow cytometry, and otherwise had little effect on cell survival as measured by MTT assay. These results suggest that the NMR visible lipid accumulation and apoptosis induced by PB treatment occurs through a mechanism that is mediated by PPAR‐γ. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
In vivo proton magnetic resonance spectroscopy (1H MRS) of outbred stock ICR male mice (originating from the Institute of Cancer Research) was used to study the brain (hippocampus) metabolic response to the pro‐inflammatory stimulus and to the acute deficiency of the available energy, which was confirmed by measuring the maximum oxygen consumption. Inhibition of glycolysis by means of an injection with 2‐deoxy‐d ‐glucose (2DG) reduced the levels of gamma‐aminobutyric acid (GABA, p < 0.05, in comparison with control, least significant difference (LSD) test), N‐acetylaspartate (NAA, p < 0.05, LSD test) and choline compounds, and at the same time increased the levels of glutamate and glutamine. An opposite effect was found after injection with bacterial lipopolysaccharide (LPS) – a very common pro‐inflammatory inducer. An increase in the amounts of GABA, NAA and choline compounds in the brain occurred in mice treated with LPS. Different metabolic responses to the energy deficiency and the pro‐inflammatory stimuli can explain the contradictory results of the brain 1H MRS studies under neurodegenerative pathology, which is accompanied by both mitochondrial dysfunction and inflammation. The prevalence of the excitatory metabolites such as glutamate and glutamine in 2DG treated mice is in good agreement with excitation observed during temporary reduction of the available energy under acute hypoxia or starvation. In turn, LPS, as an inducer of the sickness behavior, which was manifested as depression, sleepiness, loss of appetite etc., shifts the brain metabolic pattern toward the prevalence of the inhibitory neurotransmitter GABA. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
Multi‐channel phased receive arrays have been widely adopted for magnetic resonance imaging (MRI) and spectroscopy (MRS). An important step in the use of receive arrays for MRS is the combination of spectra collected from individual coil channels. The goal of this work was to implement an improved strategy termed OpTIMUS (i.e., op timized t runcation to i ntegrate m ulti‐channel MRS data u sing rank‐R s ingular value decomposition) for combining data from individual channels. OpTIMUS relies on spectral windowing coupled with a rank‐R decomposition to calculate the optimal coil channel weights. MRS data acquired from a brain spectroscopy phantom and 11 healthy volunteers were first processed using a whitening transformation to remove correlated noise. Whitened spectra were then iteratively windowed or truncated, followed by a rank‐R singular value decomposition (SVD) to empirically determine the coil channel weights. Spectra combined using the vendor‐supplied method, signal/noise2 weighting, previously reported whitened SVD (rank‐1), and OpTIMUS were evaluated using the signal‐to‐noise ratio (SNR). Significant increases in SNR ranging from 6% to 33% (P ≤ 0.05) were observed for brain MRS data combined with OpTIMUS compared with the three other combination algorithms. The assumption that a rank‐1 SVD maximizes SNR was tested empirically, and a higher rank‐R decomposition, combined with spectral windowing prior to SVD, resulted in increased SNR.  相似文献   

16.
Poly(adenosine diphosphate ribose) polymerases (PARPs) are multifunctional proteins which play a role in many cellular processes. Namely, PARP1 and PARP2 have been shown to be involved in DNA repair, and therefore are valid targets in cancer treatment with PARP inhibitors, such as rucaparib, currently in clinical trials. Proton magnetic resonance spectroscopy (1H‐MRS) was used to study the impact of rucaparib in vitro and ex vivo in liver tissue from mice, via quantitative analysis of nicotinamide adenosine diphosphate (NAD+) spectra, to assess the potential of MRS as a biomarker of the PARP inhibitor response. SW620 (colorectal) and A2780 (ovarian) cancer cell lines, and PARP1 wild‐type (WT) and PARP1 knock‐out (KO) mice, were treated with rucaparib, temozolomide (methylating agent) or a combination of both drugs. 1H‐MRS spectra were obtained from perchloric acid extracts of tumour cells and mouse liver. Both cell lines showed an increase in NAD+ levels following PARP inhibitor treatment in comparison with temozolomide treatment. Liver extracts from PARP1 WT mice showed a significant increase in NAD+ levels after rucaparib treatment compared with untreated mouse liver, and a significant decrease in NAD+ levels in the temozolomide‐treated group. The combination of rucaparib and temozolomide did not prevent the NAD+ depletion caused by temozolomide treatment. The 1H‐MRS results show that NAD+ levels can be used as a biomarker of PARP inhibitor and methylating agent treatments, and suggest that in vivo measurement of NAD+ would be valuable.  相似文献   

17.
Increased sensitivity and chemical shift dispersion at ultra‐high magnetic fields enable the precise quantification of an extended range of brain metabolites from 1H MRS. However, all previous neurochemical profiling studies using single‐voxel MRS at 7 T have been limited to data acquired from the occipital lobe with half‐volume coils. The challenges of 1H MRS of the human brain at 7 T include short T2 and complex B1 distribution that imposes limitations on the maximum achievable B1 strength. In this study, the feasibility of acquiring and quantifying short‐echo (TE = 8 ms), single‐voxel 1H MR spectra from multiple brain regions was demonstrated by utilizing a 16‐channel transceiver array coil with 16 independent transmit channels, allowing local transmit B1 (B1+) shimming. Spectra were acquired from volumes of interest of 1–8 mL in brain regions that are of interest for various neurological disorders: frontal white matter, posterior cingulate, putamen, substantia nigra, pons and cerebellar vermis. Local B1+ shimming substantially increased the transmit efficiency, especially in the peripheral and ventral brain regions. By optimizing a STEAM sequence for utilization with a 16‐channel coil, artifact‐free spectra were acquired with a small chemical shift displacement error (<5% /ppm/direction) from all regions. The high signal‐to‐noise ratio enabled the quantification of neurochemical profiles consisting of at least nine metabolites, including γ‐aminobutyric acid, glutamate and glutathione, in all brain regions. Significant differences in neurochemical profiles were observed between brain regions. For example, γ‐aminobutyric acid levels were highest in the substantia nigra, total creatine was highest in the cerebellar vermis and total choline was highest in the pons, consistent with the known biochemistry of these regions. These findings demonstrate that single‐voxel 1H MRS at ultra‐high field can reliably detect region‐specific neurochemical patterns in the human brain, and has the potential to objectively detect alterations in neurochemical profiles associated with neurological diseases. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
This study extensively investigates different strategies for the absolute quantitation of N‐acetyl aspartate, creatine and choline in white and grey matter by 1H‐MRS at 1.5 T. The main focus of this study was to reliably estimate metabolite concentrations while reducing the scan time, which remains as one of the main problems in clinical MRS. Absolute quantitation was based on the water‐unsuppressed concentration as the internal standard. We compared strategies based on various experimental protocols and post‐processing strategies. Data were obtained from 30 control subjects using a PRESS sequence at several TE to estimate the transverse relaxation time, T2, of the metabolites. Quantitation was performed with the algorithm QUEST using two different metabolite signal basis sets: a whole‐metabolite basis set (WhoM) and a basis set in which the singlet signals were split from the coupled signals (MSM). The basis sets were simulated in vivo for each TE used. Metabolites' T2s were then determined by fitting the estimated signal amplitudes of the metabolites obtained at different TEs. Then the absolute concentrations (mM) of the metabolites were assessed for each subject using the estimated signal amplitudes and either the mean estimated relaxation times of all subjects (mean protocol, MP) or the T2 estimated from the spectra derived from the same subject (individual protocol, IP). Results showed that MP represents a less time‐consuming alternative to IP in the quantitation of brain metabolites by 1H‐MRS in both grey and white matter, with a comparable accuracy when performed by MSM. It was also shown that the acquisition time might be further reduced by using a variant of MP, although with reduced accuracy. In this variant, only one water‐suppressed and one water‐unsuppressed spectra were acquired, drastically reducing the duration of the entire MRS examination. However, statistical analysis highlights the reduced accuracy of MP when performed using WhoM, particularly at longer echo times. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
This study investigated the association between the total choline (tCho) concentration and the clinical characteristics and biomarker status of breast cancer. Sixty‐two patients with breast cancer, 1.5 cm or larger in size on MR images, were studied. The tCho concentration was correlated with the MRI features, contrast enhancement kinetics, clinical variables and biomarkers. Pairwise two‐tailed Spearman's nonparametric test was used for statistical analysis. The tCho concentration was higher in high‐grade than moderate‐/low‐grade tumors (p = 0.04) and in tumors with higher Ktrans and kep (p < 0.001 for both). The association of tCho concentration with age (p = 0.05) and triple negative biomarker (p = 0.09) approached significance. tCho was not detected in 17 patients, including 15 with invasive ductal cancer and two with infiltrating lobular cancer. Fifteen of the 17 patients had moderate‐ to low‐grade cancers, and 11 had human epidermal growth factor‐2‐negative cancer, suggesting that these two factors might lead to false‐negative choline. Higher tCho concentration in high‐grade tumors and tumors with higher Ktrans and kep indicates that choline is associated with cell proliferation and tumor angiogenesis. The higher choline level in younger women may be caused by their more aggressive tumor type. The results presented here may aid in the better interpretation of 1H MRS for the diagnosis of breast lesions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
This review is focused on describing the use of magnetic resonance (MR) spectroscopy for metabolic imaging of brain tumors. We will first review the MR metabolic imaging findings generated from preclinical models, focusing primarily on in vivo studies, and will then describe the use of metabolic imaging in the clinical setting. We will address relatively well‐established 1H MRS approaches, as well as 31P MRS, 13C MRS and emerging hyperpolarized 13C MRS methodologies, and will describe the use of metabolic imaging for understanding the basic biology of glioma as well as for improving the characterization and monitoring of brain tumors in the clinic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号