首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: IgA nephropathy (IgAN) is characterized by raised serum IgA1 and predominant mesangial IgA1 deposits of polymeric nature. The mechanism of polymeric IgA1 (pIgA1) deposition in the kidney mesangium is poorly understood in IgAN. It has been suggested that increased sialic acid content and anionic charge of the pIgA1 molecules may be operational in the IgA1 deposition in human mesangial cells (HMCs). The present study examined the binding of pIgA1 with different surface charges to HMCs. The binding characteristics of IgA1 to HMCs in the presence of polycation (poly-L-lysine) or polyanion (heparin) were also investigated. METHODS: IgA1 was purified in sera from patients with IgAN and from healthy controls by jacalin affinity chromatography. IgA1 was further separated into pIgA1 and monomeric IgA1 (mIgA1) by fast protein liquid chromatography (FPLC). pIgA1 or mIgA1 with different net charges on their surface were resolved by ion exchange chromatography (IEC) with a Mono Q column. The binding characteristics of pIgA1 and mIgA1 to HMCs in the presence or absence of polycation or polyanion were examined by flow cytometry. RESULTS: In patients with IgAN, the absolute amount of mIgA1 and pIgA1 is significantly higher than that of healthy controls (P < 0. 001). There was significant increase in binding of pIgA1 from patients with IgAN to HMC and cell lysate. pIgA1 that interacted strongly with the ion exchanger also bound more to HMCs when compared with IgA1 interacted weakly with the ion exchanger (P < 0. 001). The anionic charged pIgA1 from patients was significantly higher than that of healthy controls (P < 0.001). Preincubation with poly-L-lysine increased the binding of pIgA1 to HMCs. The binding of pIgA1 to HMCs was decreased by preincubation with heparin. CONCLUSIONS: The binding of IgA to HMCs is charge dependent. Polymeric IgA with the highest net negative charge binds more to HMCs. Preincubation with polyanion decreased the binding of polymeric IgA to HMCs. These results suggest an important role for anionic charge in IgA1 deposition onto the kidney mesangial cells.  相似文献   

2.
IgA nephropathy (IgAN) is characterized by mesangial deposition of polymeric IgA1 (pIgA1) and complement. Complement activation via mannose-binding lectin and the lectin pathway is associated with disease progression. Furthermore, recent studies have indicated a possible role for secretory IgA. IgAN is associated with abnormalities in circulating IgA, including aberrant O-linked glycosylation. This study characterized and compared functional properties and N-linked glycosylation of highly purified monomeric IgA (mIgA) and pIgA from patients with IgAN and control subjects. Total serum IgA was affinity-purified from patients (n = 11) and control subjects (n = 11) followed by size separation. pIgA but not mIgA contained secretory IgA, and its concentration was significantly higher in patients with IgAN than in control subjects. Both in patients with IgAN and in control subjects, IgA binding to the GalNAc-specific lectin Helix Aspersa and to mannose-binding lectin was much stronger for pIgA than for mIgA. Furthermore, binding of IgA to mesangial cells largely was restricted to polymeric IgA. Binding of pIgA to mesangial cells resulted in increased production of IL-8, predominantly with IgA from patients with IgAN. Quantitative analysis of N-linked glycosylation of IgA heavy chains showed significant differences in glycan composition between mIgA and pIgA, including the presence of oligomannose exclusively on pIgA. In conclusion, binding and activation of mesangial cells, as well as lectin pathway activation, is a predominant characteristic of pIgA as opposed to mIgA. Furthermore, pIgA has different N-glycans, which may recruit lectins of the inflammatory pathway. These results underscore the role of pIgA in glomerular inflammation in IgAN.  相似文献   

3.
BACKGROUND: It has been suggested that polymeric IgA (pIgA) or IgA immune complexes play a significant pathogenic role in IgA nephropathy (IgAN). Macrophage migration inhibitory factor (MIF) shares many activities with other pro-inflammatory cytokines. In human glomerulonephritis, including IgAN, glomerular expression of MIF is found to correlate with progressive renal injury. We hypothesized that deposition of pIgA within the kidney may lead to enhanced synthesis of MIF by mesangial cells. METHODS: In this study we examined the effect of pIgA and monomeric IgA (mIgA) from randomly selected patients with IgAN in clinical quiescence on the gene expression and protein synthesis of MIF in cultured human mesangial cells (HMC). RESULTS: Both pIgA and mIgA from IgAN patients or matched healthy controls increased MIF gene expression and protein synthesis in a dose-dependent fashion. The magnitude of MIF protein induction by pIgA (100 microg/ml) was similar to that of tumour necrosis factor-alpha (TNF-alpha) at 10 pg/ml. In all subjects, the induction of MIF was higher for pIgA when compared with mIgA (P < 0.01). Furthermore, the up-regulation of MIF synthesis by either pIgA or mIgA was significantly higher in IgAN patients than in healthy controls (P < 0.05). Similarly, pIgA and mIgA were able to induce TNF-alpha gene expression and protein synthesis in mesangial cells. Incubation of mesangial cells with neutralizing antibody to TNF-alpha reduced the MIF synthesis induced by pIgA. CONCLUSION: We demonstrate that pIgA is capable of inducing MIF and TNF-alpha production in HMC, which may play a major pathogenic role in IgAN. Induction of MIF can be partially blocked by neutralizing antibody to TNF-alpha, suggesting the possibility that up-regulation of MIF synthesis in HMC is mediated via an amplifying proinflammatory loop involving TNF-alpha.  相似文献   

4.
BACKGROUND: Elution of IgA from renal biopsies of patients with primary IgA nephropathy (IgAN) has suggested that mesangial IgA deposits are mainly multimeric in nature. This macromolecular IgA consists of dimeric and polymeric IgA and may be derived from the circulation. In children with IgAN, circulating macromolecular IgA levels correlate with bouts of macroscopic haematuria, but in adults a correlation with disease activity is less clear. Therefore, we have designed a novel method to assess the levels of polymeric IgA (pIgA) in sera from patients and controls. METHODS: A novel precipitation assay using recombinant CD89 was developed to measure pIgA. Polymeric IgA levels were measured in serum samples obtained from healthy volunteers (n = 21) and patients with IgAN (n = 51). Subsequently, serum pIgA levels were correlated with clinical parameters of disease. RESULTS: Serum pIgA levels were significantly increased in patients with IgAN. However, pIgA concentrations relative to total IgA were significantly lower in sera of patients with IgAN. No correlation was found between serum pIgA levels and clinical parameters of IgAN, such as decline of glomerular filtration rate, haematuria or proteinuria. CONCLUSIONS: Although absolute levels of serum pIgA are increased in patients with IgAN as compared with controls, levels of pIgA relative to total serum IgA are lower. No significant correlation was found between serum concentrations of pIgA and clinical parameters of disease. These data support the notion that it is not the size alone, but the physicochemical composition of the macromolecular IgA that is the key factor leading to mesangial deposition.  相似文献   

5.
Structural features of IgA molecules which contribute to IgA nephropathy.   总被引:6,自引:0,他引:6  
IgA nephropathy (IgAN) is characterised by the mesangial deposition of polymeric IgA1 (pIgA1). pIgA1 production is reduced in the mucosal immune system in IgAN and increased in the marrow; this switch may be secondary to a defect in gammadeltaT cell control of IgA production. However this does not explain the mechanism by which pIgA1 deposits in the mesangium. There is no direct evidence that classical immune complex deposition occurs in IgAN and alternative mechanisms resulting from physicochemical abnormalities of the IgA1 molecule, particular altered glycosylation, have been proposed. IgA1 has a distinctive hinge region which is a site for O-glycosylation. There is reduced terminal galactose on the hinge region O-glycans of circulating IgA1 in IgAN, perhaps due to a defect in B cell beta1,3 galactosyltransferase. A concomitant O-glycan defect in mesangial IgA1 has not yet been proven. Altered hinge O-glycosylation may have substantial impact on the quaternary structure of the IgA1 molecule influencing its capacity to interact with matrix proteins, IgA receptors on mesangial cells and leucocytes, and complement; it may therefore play a key role in the pathogenesis of mesangial deposition of IgA1 and subsequent glomerular injury in IgAN.  相似文献   

6.
7.
BACKGROUND: Earlier studies have suggested that complexes of the human IgA receptor FcalphaRI/CD89 with mouse IgA are pathogenic upon deposition in the renal mesangium. Transgenic mice expressing FcalphaRI/CD89 on macrophages/monocytes developed massive mesangial IgA deposition and a clinical picture of IgA nephropathy (IgAN). Based on these findings, the purpose of this study was to design an experimental model of IgAN by injection of human CD89 in mice. The interaction of mouse IgA with CD89 was investigated further. METHODS: Recombinant human soluble CD89 and a chimeric CD89-Fc protein were generated, produced, purified and injected in mice. Renal cryosections were stained for IgA and CD89. The interaction of mouse IgA with CD89 was analysed by fluorescence-activated cell sorting (FACS) analysis, enzyme-linked immunosorbent assay (ELISA) and plasmon resonance technology. RESULTS: Injection of recombinant human CD89 did not result in significant IgA or CD89 deposition in the renal mesangium. However, CD89 staining in the liver was found to be positive. CD89 was rapidly cleared from circulation without signs of complex formation with IgA. FACS analysis, ELISA and plasmon resonance techniques all revealed a dose-dependent binding of human IgA to recombinant CD89, while no detectable binding was seen of mouse IgA, either of serum IgA or of different monoclonal mouse IgA preparations. CONCLUSIONS: An experimental model for IgAN in mice could not be obtained by injection of recombinant CD89. This is compatible with our in vitro biochemical data showing a lack of binding between recombinant human CD89 and mouse IgA.  相似文献   

8.
The effects of polymeric IgA1 (pIgA1) and monomeric IgA1 (mIgA1) from patients with IgA nephropathy (IgAN) on the renin-angiotensin system (RAS) and TGF-beta synthesis were examined in cultured human mesangial cells (HMC). Both pIgA1 and mIgA1 induced renin gene expression in HMC, in a dose-dependent manner. Similar findings were observed for TGF-beta gene and protein expression. The values measured in HMC incubated with pIgA1 were significantly higher than those in HMC incubated with equivalent amounts of mIgA1. When similar experiments were performed with the addition of either captopril or losartan, there was a significant increase in the renin gene expression by HMC, whereas the synthesis of TGF-beta was markedly reduced. The TGF-beta signal transduction pathways in HMC were studied by measuring the receptor-regulated Smad proteins (Smad 2 and 3) and common-partner Smad proteins (Smad 4). pIgA1 from patients with IgAN upregulated Smad activity in HMC, and the activity observed in HMC that had been preincubated with pIgA1 was readily suppressed with optimal concentrations of captopril or losartan. The effects of pIgA1 on the RAS were further examined in HMC incubated with IgA isolated from 30 patients with IgAN, 30 healthy subjects, and disease control subjects with other diseases. pIgA1 induction of angiotensin II or TGF-beta synthesis in HMC was significantly greater with preparations from patients with IgAN, compared with healthy or disease control subjects. The findings support a pathogenetic role of pIgA1 in IgAN through upregulation of the RAS and TGF-beta, leading to chronic renal failure with renal fibrosis.  相似文献   

9.
IgA nephropathy (IgAN), the most common primary glomerulonephritis in the world, is characterized by IgA immune complex-mediated mesangial cell proliferation. The transferrin receptor (TfR) was identified previously as an IgA1 receptor, and it was found that, in biopsies of patients with IgAN, TfR is overexpressed and co-localizes with IgA1 mesangial deposits. Here, it is shown that purified polymeric IgA1 (pIgA1) is a major inducer of TfR expression (three- to four-fold increase) in quiescent human mesangial cells (HMC). IgA-induced but not cytokine-induced HMC proliferation is dependent on TfR engagement as it is inhibited by both TfR1 and TfR2 ectodomains as well as by the anti-TfR mAb A24. It is dependent on the continued presence of IgA1 rather than on soluble factors released during IgA1-mediated activation. In addition, pIgA1-induced IL-6 and TGF-beta production from HMC was specifically inhibited by mAb A24, confirming that pIgA1 triggers a TfR-dependent HMC activation. Finally, upregulation of TfR expression induced by sera from patients with IgAN but not from healthy individuals was dependent on IgA. It is proposed that deposited pIgA1 or IgA1 immune complexes could initiate a process of auto-amplification involving hyperexpression of TfR, allowing increased IgA1 mesangial deposition. Altogether, these data unveil a functional cooperation between pIgA1 and TfR for IgA1 deposition and HMC proliferation and activation, features that are commonly implicated in the chronicity of mesangial injuries observed in IgAN and that could explain the recurrence of IgA1 deposits in the mesangium after renal transplantation.  相似文献   

10.
BACKGROUND: The presence of IgA together with the myeloid IgA-receptor FcalphaRI/CD89 in the circulation of patients with IgA nephropathy (IgAN) has been suggested as a specific pathogenic factor for mesangial deposition. However, in a recent study we found these complexes also in serum samples from healthy subjects. To investigate whether these circulating complexes are specific for IgAN, the levels and characteristics of IgA-CD89 complexes were analyzed in patients with IgAN and healthy controls. METHODS: Specific ELISAs with different poly- and monoclonal antibodies and a sensitive dot-blot method were used to measure IgA-CD89 levels in serum and purified IgA samples obtained from healthy volunteers (N = 30) and patients with IgAN (N = 35). Fractionated samples of purified IgA were used to compare the size characteristics of the IgA-CD89 complexes. RESULTS: Almost all CD89 in serum of patients with IgAN and controls was associated with high molecular weight IgA. Quantitative analysis of IgA-CD89 complexes in purified IgA revealed no significant difference between patients with IgAN and controls. No correlation was found between levels of IgA-CD89 complexes and clinical parameters associated with progressive IgAN. CONCLUSIONS: CD89 in the circulation is found mainly linked to high molecular weight IgA. The presence of these complexes is not specific for IgAN. Therefore, if IgA-CD89 complexes are involved in the pathogenesis of primary IgA nephropathy, additional factors are required to explain the IgA-CD89 complex-mediated renal inflammation.  相似文献   

11.
T-cell homing receptor expression in IgA nephropathy.   总被引:1,自引:0,他引:1  
BACKGROUND: IgA nephropathy (IgAN) is characterized by mesangial deposition of polymeric IgA (pIgA). In IgAN, mucosal pIgA production is reduced while systemic production is increased, making the latter the likely source of mesangial pIgA, and suggesting a displacement of pIgA-producing cells from mucosal to systemic sites. Upon activation, lymphocytes migrate through the circulation up-regulating homing receptors (HR) which direct their return to appropriate effector locations. We investigated the HR expression of T-cell subsets in IgAN, healthy adults and membranous nephropathy (MN). METHODS: Peripheral blood cells were labelled for CD3, CD4 and CD8, and for L-selectin (naive cells), integrin alpha4beta1 (systemically homing cells) and integrin alpha4beta7 (mucosally homing cells) and analysed by flow immunocytometry. RESULTS: In IgAN, CD3 T cells displayed reduced L-selectin and increased alpha4beta1hi expression, with no difference in alpha4beta7. No abnormality of T-cell HR expression was found in MN. Both IgAN and healthy adults maintained their patterns of T-cell HR expression when studied again at a later time point, and the changes in IgAN were entirely accounted for by the CD4 T-cell subset with CD8 HR expression being normal. CONCLUSIONS: The consistently reduced L-selectin expression by CD4 T cells indicates increased activation of this subset in IgAN. These activated cells express alpha4beta1 rather than alpha4beta7, and therefore home to systemic effector sites. CD4 T cells regulate antibody production, including IgA. As pIgA is overproduced in systemic sites in IgAN, we hypothesize that these activated systemic homing CD4 T cells may direct the aberrant systemic pIgA production observed in IgAN.  相似文献   

12.
BACKGROUND: In IgA nephropathy (IgAN), circulating IgA1 molecules display an abnormal pattern of O-glycosylation. This abnormality may potentially contribute to mesangial IgA1 deposition, but this is unproven because the O-glycosylation of mesangial IgA1 has not been analyzed. METHODS: IgA1 was eluted from glomeruli isolated from the kidneys of three IgAN patients obtained after nephrectomy or at postmortem. Serum from these patients, other patients with IgAN, and controls was subjected to the same treatment as the glomerular eluates. The O-glycosylation of eluted and serum IgA1 was measured by lectin binding using an enzyme-linked immunosorbent assay-based system. RESULTS: In all three cases, the lectin binding of IgA1 eluted from the glomeruli of IgAN patients was markedly higher than that of the serum IgA1 of the same individual, and also all but one of a series of serum IgA1 samples from other patients and controls. CONCLUSIONS: The higher lectin binding of glomerular compared with serum IgA1 suggests that O-glycosylated IgA1 molecules abnormally and selectively deposit in the kidney. These results provide the first evidence that mesangial IgA1 is abnormally O-glycosylated, and support a direct role for abnormal IgA1 O-glycosylation in the mechanism of mesangial IgA deposition in IgAN.  相似文献   

13.
IgA nephropathy (IgAN) is characterized by deposits of IgA in the renal mesangium. It is thought that deposits of IgA mainly involve high molecular weight (HMW) IgA1. However, there is limited information on the exact composition of HMW IgA in these deposits. In this study, we investigated the presence of secretory IgA (SIgA) in human serum and in the glomerular deposits of a patient with IgAN. Furthermore, we analyzed the interaction of SIgA with mesangial cells. With enzyme-linked immunosorbent assay, SIgA concentrations in the serum of IgAN patients and healthy controls were measured. Both patients and controls had circulating SIgA that was restricted to the HMW fractions. Patients tended to have higher levels of SIgA, but this difference was not significant. However, in patients with IgAN, high serum SIgA concentrations were associated with hematuria. Binding of size-fractionated purified serum IgA and SIgA to mesangial cells was investigated with flow cytometry. These studies showed stronger binding of SIgA to primary mesangial cells compared to binding of serum IgA. Importantly, after isolation and elution of glomeruli from a nephrectomized transplanted kidney from a patient with recurrent IgAN, we demonstrated a 120-fold accumulation of SIgA compared to IgA1 in the eluate. In conclusion, we have demonstrated that SIgA strongly binds to human mesangial cells, and is present in significant amounts in serum. Furthermore, we showed that SIgA is accumulated in the glomeruli of an IgAN patient. These data suggest an important role for SIgA in the pathogenesis of IgAN.  相似文献   

14.
Pathogenesis of IgA nephropathy   总被引:20,自引:0,他引:20  
In IgA nephropathy (IgAN), there is dysregulation of the IgA response to a wide range of antigens. The dysregulation promotes synthesis of polymeric IgA1 (pIgA1) with physicochemical characteristics that favor mesangial deposition, including altered O-glycosylation of the hinge region. This may be the synthesis of IgA in the systemic compartment, which has the phenotype of mucosal IgA. There is not a change in IgA1 structure to an entirely abnormal form; rather, there is a shift that results in a proportional increase in forms of IgA1 also found in healthy individuals. Altered O-glycosylation could favor pIgA1 deposition by promoting formation of macromolecular IgA and immune complexes. Mesangial injury follows through interactions of pIgA1 with the cells and extracellular matrix proteins of the mesangium and the activation of complement. The final clinical expression of IgAN also depends on generic factors, including hypertension and proteinuria, and a fibrotic renal response. No single "IgAN gene" has been identified, and it is likely that multiple interacting genes will eventually prove to underlie susceptibility to IgAN and the risk of progressive renal disease. These new pathogenic insights have not yet led to new therapeutic opportunities.  相似文献   

15.
16.
SUMMARY: Deposits of IgA together with complement in different body tissues support the hypothesis that IgA can trigger inflammatory mechanisms. IgA nephropathy (IgAN) is characterized by predominant mesangial IgA1 deposits of a polymeric nature. So far, the mechanism of polymeric IgA1 deposition in the kidney mesangium is poorly understood in IgAN. the exact pathophysiological sequel preceding renal fibrosis following the mesangial deposition of IgA immune complexes remains speculative. Recent in vitro studies revealed that binding of IgA to mesangial cells led to increased expression of growth factors, cytokines, and integrins. the release of these proinflammatory factors is likely to enhance inflammatory injury. In addition, the local renin-angiotensin system present in renal tissues also contributes to renal fibrosis through the activation of transforming growth factor-β. the question of whether polymeric IgA isolated from patients with IgAN exerted any upregulatory effect on the synthesis of macrophage migration inhibitory factor (MIF) and components of the renin-angiotensin system in human mesangial cells was explored. the in vitro studies revealed that polymeric IgA from IgAN patients upregulated the gene expression of renin and MIF in human mesangial cells in a dose-dependent manner. These findings further support the notion that glomerular deposition of IgA is not only a pathological epiphenomenon of IgAN, but that polymeric IgA exerts a pathophysiologic effect on the mesangial cells leading to renal fibrosis.  相似文献   

17.
18.
H C Chen  J Y Guh  J M Chang  Y H Lai 《Nephron》2001,88(3):211-217
BACKGROUND: IgA nephropathy (IgAN) is characterized by predominant deposition of IgA in the glomerular mesangium. Serum IgA is often elevated in patients with IgAN, and it has been postulated that it is responsible for the mesangial lesions. However, the direct effect of circulating IgA on mesangial cells is not clear. METHODS: We investigated the effects of sera and IgA which were isolated from patients with IgAN on thymidine uptake, superoxide and fibronectin production and fibronectin mRNA expression of cultured rat mesangial cells, and we compared the findings to the effects of IgA isolated from patients with non-IgA mesangial proliferative glomerulonephritis (MsPGN) and normal controls. IgA was isolated with affinity chromatography using cyanogen bromide activated Sepharose 4B coupled to sheep antihuman IgA antiserum. RESULTS: Our results demonstrated that both sera and IgA from patients with IgAN dose-dependently increased mitogenesis of mesangial cells as measured by (3)H-labeled thymidine uptake. The thymidine uptake by sera and IgA isolated from patients with IgAN was significantly higher than that of sera and IgA isolated from patients with MsPGN and normal controls. Sera and IgA from patients with IgAN significantly enhanced superoxide and fibronectin production and fibronectin mRNA expression of mesangial cells. The superoxide and fibronectin production was also significantly higher as compared with patients with MsPGN and normal controls. CONCLUSIONS: Our results indicate that circulating IgA isolated from patients with IgAN is different from that of patients with MsPGN and normal controls and may potentially induce oxidative injury and production of extracellular matrix of glomerular mesangial cells in IgAN.  相似文献   

19.
The mechanism of the binding of IgA to the mesangium in IgA nephropathy (IgAN) is unknown. Interactions between IgA and components of the mesangial matrix may contribute. We measured by enzyme-linked immunosorbent assay the binding of serum IgA, IgG, and IgM from patients with IgAN, human immunodeficiency virus type I (HIV) infection, and healthy controls to purified native collagen types I to VI, and to an extract of normal kidney tissue. HIV infection is an appropriate disease control because of the lack of mesangial IgA deposits, despite high serum levels of IgA and IgA1-containing immune complexes. Increased levels of IgA-binding to collagen types I and V and the kidney extract were found only in IgAN. Both IgAN and HIV-infected patients had increased IgA-binding to collagen types II, III, and VI. Preabsorption of the sera with gelatin substantially reduced the IgA-binding to collagen types I to IV, but not to types V and VI. This finding suggests that the binding to collagen type V is not fibronectin-mediated, but may reflect autoantibody formation. Thus, fibronectin-mediated IgA-collagen interactions are not specific for IgAN, and their pathogenetic role is questionable. The role of IgA anti-collagen type V antibodies requires further study.  相似文献   

20.
Abnormalities of IgA arise in alcoholic cirrhosis, including mesangial IgA deposits with possible development of secondary IgA nephropathy (IgAN). Since little is known about circulating immune complexes in cases of secondary IgAN, we analyzed IgA-associated parameters in the serum of 32 patients with compensated or advanced alcoholic cirrhosis. Galactose deficiency and decreased sialylation of IgA1, as well as increased amounts of abnormally glycosylated polymeric IgA1, were detected in the serum of patients with advanced alcoholic cirrhosis. Moreover, aberrant IgA1 formed complexes with IgG and soluble CD89 in serum of patients with advanced alcoholic cirrhosis, similar to those found in primary IgAN. The IgA1 of alcoholic cirrhosis, however, had a modified N-glycosylation, not found in primary IgAN. In patients with alcoholic cirrhosis and IgAN, IgA deposits were associated with CD71 overexpression in mesangial areas, suggesting that CD71 might be involved in deposit formation. Although the IgA1 found in alcoholic cirrhosis bound more extensively to human mesangial cells than control IgA1, they differ from primary IgAN by not inducing mesangial cell proliferation. Thus, abnormally glycosylated IgA1 and soluble CD89-IgA and IgA-IgG complexes, features of primary IgAN, are also present in alcoholic cirrhosis. Hence, common mechanisms appear to be shared by diseases of distinct origins, indicating that common environmental factors may influence the development of IgAN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号