首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We describe an ultrahigh speed endoscopic swept source optical coherence tomography (OCT) system for clinical gastroenterology using a vertical-cavity surface-emitting laser (VCSEL) and micromotor imaging catheter. The system had a 600 kHz axial scan rate and 8 µm axial resolution in tissue. Imaging was performed with a 3.2 mm diameter imaging catheter at 400 frames per second with a 12 µm spot size. Three-dimensional OCT (3D-OCT) imaging was performed in patients with a cross section of pathologies undergoing upper and lower endoscopy. The use of distally actuated imaging catheters enabled OCT imaging with more flexibility, such as volumetric imaging in the small intestine and the assessment of hiatal hernia using retroflex imaging. The high rotational scanning stability of the micromotor enabled 3D volumetric imaging with micron scale volumetric accuracy for both en face OCT and cross-sectional imaging, as well as OCT angiography (OCTA) for 3D visualization of subsurface microvasculature. The ability to perform both structural and functional 3D OCT imaging in the GI tract with microscopic accuracy should enable a wide range of studies and enhance the sensitivity and specificity of OCT for detecting pathology.OCIS codes: (110.2350) Fiber optics imaging, (120.3890) Medical optics instrumentation, (120.5800) Scanners, (110.6880) Three-dimensional image acquisition, (140.7260) Vertical cavity surface emitting lasers, (170.2150) Endoscopic imaging, (170.2680) Gastrointestinal, (170.3880) Medical and biological imaging, (170.4500) Optical coherence tomography  相似文献   

2.
We demonstrate swept source OCT utilizing vertical-cavity surface emitting laser (VCSEL) technology for in vivo high speed retinal, anterior segment and full eye imaging. The MEMS tunable VCSEL enables long coherence length, adjustable spectral sweep range and adjustable high sweeping rate (50–580 kHz axial scan rate). These features enable integration of multiple ophthalmic applications into one instrument. The operating modes of the device include: ultrahigh speed, high resolution retinal imaging (up to 580 kHz); high speed, long depth range anterior segment imaging (100 kHz) and ultralong range full eye imaging (50 kHz). High speed imaging enables wide-field retinal scanning, while increased light penetration at 1060 nm enables visualization of choroidal vasculature. Comprehensive volumetric data sets of the anterior segment from the cornea to posterior crystalline lens surface are also shown. The adjustable VCSEL sweep range and rate make it possible to achieve an extremely long imaging depth range of ~50 mm, and to demonstrate the first in vivo 3D OCT imaging spanning the entire eye for non-contact measurement of intraocular distances including axial eye length. Swept source OCT with VCSEL technology may be attractive for next generation integrated ophthalmic OCT instruments.OCIS codes: (110.4500) Optical coherence tomography, (120.4640) Optical instruments, (140.3600) Lasers, tunable, (170.4460) Ophthalmic optics and devices, (170.4470) Ophthalmology  相似文献   

3.
Cardiac motion artifacts, non-uniform rotational distortion and undersampling affect the image quality and the diagnostic impact of intravascular optical coherence tomography (IV-OCT). In this study we demonstrate how these limitations of IV-OCT can be addressed by using an imaging system that we called “Heartbeat OCT”, combining a fast Fourier Domain Mode Locked laser, fast pullback, and a micromotor actuated catheter, designed to examine a coronary vessel in less than one cardiac cycle. We acquired in vivo data sets of two coronary arteries in a porcine heart with both Heartbeat OCT, working at 2.88 MHz A-line rate, 4000 frames/s and 100 mm/s pullback speed, and with a commercial system. The in vivo results show that Heartbeat OCT provides faithfully rendered, motion-artifact free, fully sampled vessel wall architecture, unlike the conventional IV-OCT data. We present the Heartbeat OCT system in full technical detail and discuss the steps needed for clinical translation of the technology.OCIS codes: (170.4500) Optical coherence tomography, (170.3880) Medical and biological imaging, (170.2150) Endoscopic imaging, (110.6880) Three-dimensional image acquisition, (110.2350) Fiber optics imaging, (120.5800) Scanners, (120.3890) Medical optics instrumentation  相似文献   

4.
Depth resolved and en face OCT visualization in vivo may have important clinical applications in endoscopy. We demonstrate a high speed, two-dimensional (2D) distal scanning capsule with a micromotor for fast rotary scanning and a pneumatic actuator for precision longitudinal scanning. Longitudinal position measurement and image registration were performed by optical tracking of the pneumatic scanner. The 2D scanning device enables high resolution imaging over a small field of view and is suitable for OCT as well as other scanning microscopies. Large field of view imaging for screening or surveillance applications can also be achieved by proximally pulling back or advancing the capsule while scanning the distal high-speed micromotor. Circumferential en face OCT was demonstrated in living swine at 250 Hz frame rate and 1 MHz A-scan rate using a MEMS tunable VCSEL light source at 1300 nm. Cross-sectional and en face OCT views of the upper and lower gastrointestinal tract were generated with precision distal pneumatic longitudinal actuation as well as proximal manual longitudinal actuation. These devices could enable clinical studies either as an adjunct to endoscopy, attached to an endoscope, or as a swallowed tethered capsule for non-endoscopic imaging without sedation. The combination of ultrahigh speed imaging and distal scanning capsule technology could enable both screening and surveillance applications.OCIS codes: (170.4500) Optical coherence tomography, (170.3880) Medical and biological imaging, (170.2150) Endoscopic imaging, (170.2680) Gastrointestinal  相似文献   

5.
We have designed and fabricated a 4 mm diameter rigid endoscopic probe to obtain high resolution micro-optical coherence tomography (µOCT) images from the tracheal epithelium of living swine. Our common-path fiber-optic probe used gradient-index focusing optics, a selectively coated prism reflector to implement a circular-obscuration apodization for depth-of-focus enhancement, and a common-path reference arm and an ultra-broadbrand supercontinuum laser to achieve high axial resolution. Benchtop characterization demonstrated lateral and axial resolutions of 3.4 μm and 1.7 μm, respectively (in tissue). Mechanical standoff rails flanking the imaging window allowed the epithelial surface to be maintained in focus without disrupting mucus flow. During in vivo imaging, relative motion was mitigated by inflating an airway balloon to hold the standoff rails on the epithelium. Software implemented image stabilization was also implemented during post-processing. The resulting image sequences yielded co-registered quantitative outputs of airway surface liquid and periciliary liquid layer thicknesses, ciliary beat frequency, and mucociliary transport rate, metrics that directly indicate airway epithelial function that have dominated in vitro research in diseases such as cystic fibrosis, but have not been available in vivo.OCIS codes: (170.4500) Optical coherence tomography, (170.2150) Endoscopic imaging, (170.1610) Clinical applications, (170.4580) Optical diagnostics for medicine  相似文献   

6.
We present a new instrument that is capable of imaging human photoreceptors in three dimensions. To achieve high lateral resolution, the system incorporates an adaptive optics system. The high axial resolution is achieved through the implementation of optical coherence tomography (OCT). The instrument records simultaneously both, scanning laser ophthalmoscope (SLO) and OCT en-face images, with a pixel to pixel correspondence. The information provided by the SLO is used to correct for transverse eye motion in post-processing. In order to correct for axial eye motion, the instrument is equipped with a high speed axial eye tracker. In vivo images of foveal cones as well as images recorded at an eccentricity from the fovea showing cones and rods are presented.OCIS codes: (170.3890) Medical optics instrumentation, (110.1080) Active or adaptive optics, (170.4470) Ophthalmology, (330.5310) Vision - photoreceptors, (110.4500) Optical coherence tomography  相似文献   

7.
With a Gaussian-like broadband light source from high brightness Ce3+:YAG single-clad crystal fiber, a full-field optical coherence tomography using a home-designed Mirau objective realized high quality images of in vivo and excised skin tissues. With a 40 × silicone-oil-immersion Mirau objective, the achieved spatial resolutions in axial and lateral directions were 0.9 and 0.51 μm, respectively. Such a high spatial resolution enables the separation of lamellar structure of the full epidermis in both the cross-sectional and en face planes. The number of layers of stratum corneum and its thickness were quantitatively measured. This label free and non-invasive optical probe could be useful for evaluating the water barrier of skin tissue in clinics. As a preliminary in vivo experiment, the blood vessel in dermis was also observed, and the flowing of the red blood cells and location of the melanocyte were traced.OCIS codes: (060.2380) Fiber optics sources and detectors, (170.4500) Optical coherence tomography, (160.1435) Biomaterials, (170.3880) Medical and biological imaging, (180.3170) Interference microscopy  相似文献   

8.
Minimally invasive imaging of upper airway obstructions in children and adults is needed to improve clinical decision-making. Toward this goal, we demonstrate an anatomical optical coherence tomography (aOCT) system delivered via a small-bore, flexible endoscope to quantify the upper airway lumen geometry. Helical scans were obtained from a proximally-scanned fiber-optic catheter of 820 μm outer diameter and >2 mm focal length. Coupled with a long coherence length wavelength-swept light source, the system exhibited an SNR roll-off of < 10 dB over a 10 mm range. Operating at 10 rotations/s, the average accuracy of segmented cross-sectional areas was found to be −1.4 ± 1.0%. To demonstrate the capability of this system, aOCT was performed on a pediatric airway phantom and on ex vivo swine trachea. The ability for quantitative endoscopy afforded by this system can aid in diagnosis, medical and surgical decision making, and predictive modeling of upper airway obstructive disorders.OCIS codes: (170.4500) Optical coherence tomography, (170.3880) Medical and biological imaging, (170.3890) Medical optics instrumentation, (170.2150) Endoscopic imaging  相似文献   

9.
Image acquisition speed of optical coherence tomography (OCT) remains a fundamental barrier that limits its scientific and clinical utility. Here we demonstrate a novel multi-camera adaptive optics (AO-)OCT system for ophthalmologic use that operates at 1 million A-lines/s at a wavelength of 790 nm with 5.3 μm axial resolution in retinal tissue. Central to the spectral-domain design is a novel detection channel based on four high-speed spectrometers that receive light sequentially from a 1 × 4 optical switch assembly. Absence of moving parts enables ultra-fast (50ns) and precise switching with low insertion loss (−0.18 dB per channel). This manner of control makes use of all available light in the detection channel and avoids camera dead-time, both critical for imaging at high speeds. Additional benefit in signal-to-noise accrues from the larger numerical aperture afforded by the use of AO and yields retinal images of comparable dynamic range to that of clinical OCT. We validated system performance by a series of experiments that included imaging in both model and human eyes. We demonstrated the performance of our MHz AO-OCT system to capture detailed images of individual retinal nerve fiber bundles and cone photoreceptors. This is the fastest ophthalmic OCT system we know of in the 700 to 915 nm spectral band.OCIS codes: (110.1080) Active or adaptive optics, (170.4500) Optical coherence tomography, (120.3890) Medical optics instrumentation, (170.0110) Imaging systems, (170.4470) Ophthalmology, (330.5310) Vision - photoreceptors  相似文献   

10.
We developed a piezoelectric-transducer- (PZT) based miniature catheter with an outer diameter of 3.5 mm for ultrahigh-speed endoscopic optical coherence tomography (OCT). A miniaturized PZT bender actuates a fiber and the beam is scanned through a GRIN lens and micro-prism to provide high-speed, side-viewing capability. The probe optics can be pulled back over a long distance to acquire three-dimensional (3D) data sets covering a large area. Imaging is performed with 11 μm axial resolution in air (8 μm in tissue) and 20 μm transverse resolution, at 960 frames per second with a Fourier domain mode-locked laser operating at 480 kHz axial scan rate. Using a high-speed data acquisition system, endoscopic OCT imaging of the rabbit esophagus and colon in vivo and human colon specimens ex vivo is demonstrated.  相似文献   

11.
Joint-aperture optical coherence tomography (JA-OCT) is an angle-resolved OCT method, in which illumination from an active channel is simultaneously probed by several passive channels. JA-OCT increases the collection efficiency and effective sensitivity of the OCT system without increasing the power on the sample. Additionally, JA-OCT provides angular scattering information about the sample in a single acquisition, so the OCT imaging speed is not reduced. Thus, JA-OCT is especially suitable for ultra high speed in-vivo imaging. JA-OCT is compared to other angle-resolved techniques, and the relation between joint aperture imaging, adaptive optics, coherent and incoherent compounding is discussed. We present angle-resolved imaging of the human retina at an axial scan rate of 1.68 MHz, and demonstrate the benefits of JA-OCT: Speckle reduction, signal increase and suppression of specular and parasitic reflections. Moreover, in the future JA-OCT may allow for the reconstruction of the full Doppler vector and tissue discrimination by analysis of the angular scattering dependence.OCIS codes: (170.4500) Optical coherence tomography, (170.3880) Medical and biological imaging, (120.3890) Medical optics instrumentation, (030.6140) Speckle  相似文献   

12.
Polarization sensitive optical coherence tomography (PS-OCT) is a functional extension of conventional OCT and can assess depth-resolved tissue birefringence in addition to intensity. Most existing PS-OCT systems are relatively complex and their clinical translation remains difficult. We present a simple and robust all-fiber PS-OCT system based on swept source technology and polarization depth-encoding. Polarization multiplexing was achieved using a polarization maintaining fiber. Polarization sensitive signals were detected using fiber based polarization beam splitters and polarization controllers were used to remove the polarization ambiguity. A simplified post-processing algorithm was proposed for speckle noise reduction relaxing the demand for phase stability. We demonstrated systems design for both ophthalmic and catheter-based PS-OCT. For ophthalmic imaging, we used an optical clock frequency doubling method to extend the imaging range of a commercially available short cavity light source to improve polarization depth-encoding. For catheter based imaging, we demonstrated 200 kHz PS-OCT imaging using a MEMS-tunable vertical cavity surface emitting laser (VCSEL) and a high speed micromotor imaging catheter. The system was demonstrated in human retina, finger and lip imaging, as well as ex vivo swine esophagus and cardiovascular imaging. The all-fiber PS-OCT is easier to implement and maintain compared to previous PS-OCT systems and can be more easily translated to clinical applications due to its robust design.OCIS codes: (170.4500) Optical coherence tomography, (230.5440) Polarization-selective devices, (170.4580) Optical diagnostics for medicine  相似文献   

13.
We designed and implemented a magnetic-driven scanning (MDS) probe for endoscopic optical coherence tomography (OCT). The probe uses an externally-driven tiny magnet in the distal end to achieve unobstructed 360-degree circumferential scanning at the side of the probe. The design simplifies the scanning part inside the probe and thus allows for easy miniaturization and cost reduction. We made a prototype probe with an outer diameter of 1.4 mm and demonstrated its capability by acquiring OCT images of ex vivo trachea and artery samples from a pigeon. We used a spectrometer-based Fourier-domain OCT system and the system sensitivity with our prototype probe was measured to be 91 dB with an illumination power of 850 μW and A-scan exposure time of 1 ms. The axial and lateral resolutions of the system are 6.5 μm and 8.1 μm, respectively.OCIS codes: (170.4500) Optical coherence tomography, (170.3880) Medical and biological imaging, (170.2150) Endoscopic imaging, (120.5800) Scanners  相似文献   

14.
We developed an ultrahigh speed, handheld swept source optical coherence tomography (SS-OCT) ophthalmic instrument using a 2D MEMS mirror. A vertical cavity surface-emitting laser (VCSEL) operating at 1060 nm center wavelength yielded a 350 kHz axial scan rate and 10 µm axial resolution in tissue. The long coherence length of the VCSEL enabled a 3.08 mm imaging range with minimal sensitivity roll-off in tissue. Two different designs with identical optical components were tested to evaluate handheld OCT ergonomics. An iris camera aided in alignment of the OCT beam through the pupil and a manual fixation light selected the imaging region on the retina. Volumetric and high definition scans were obtained from 5 undilated normal subjects. Volumetric OCT data was acquired by scanning the 2.4 mm diameter 2D MEMS mirror sinusoidally in the fast direction and linearly in the orthogonal slow direction. A second volumetric sinusoidal scan was obtained in the orthogonal direction and the two volumes were processed with a software algorithm to generate a merged motion-corrected volume. Motion-corrected standard 6 x 6 mm2 and wide field 10 x 10 mm2 volumetric OCT data were generated using two volumetric scans, each obtained in 1.4 seconds. High definition 10 mm and 6 mm B-scans were obtained by averaging and registering 25 B-scans obtained over the same position in 0.57 seconds. One of the advantages of volumetric OCT data is the generation of en face OCT images with arbitrary cross sectional B-scans registered to fundus features. This technology should enable screening applications to identify early retinal disease, before irreversible vision impairment or loss occurs. Handheld OCT technology also promises to enable applications in a wide range of settings outside of the traditional ophthalmology or optometry clinics including pediatrics, intraoperative, primary care, developing countries, and military medicine.OCIS codes: (170.4460) Ophthalmic optics and devices, (170.5755) Retina scanning, (170.3880) Medical and biological imaging, (170.4500) Optical coherence tomography, (170.4470) Ophthalmology  相似文献   

15.
In this study, a spectral-domain optical coherence tomography (SD-OCT) system was used for noninvasive imaging of the adult zebrafish brain. Based on a 1325 nm light source and two high-speed galvo mirrors, our SD-OCT system can offer a large field of view of brain morphology with high resolution (12 μm axial and 13 μm lateral) at video rate (27 frame/s). In vivo imaging of both the control and injured brain was performed using adult zebrafish model. The recovered results revealed that olfactory bulb, optic commissure, telencephalon, tectum opticum, cerebellum, medulla, preglomerular complex and posterior tuberculum could be clearly identified in the cross-sectional SD-OCT images of the adult zebrafish brain. The reconstructed results also suggested that SD-OCT can be used for diagnosis and monitoring of traumatic brain injury. In particular, we found the reconstructed volumetric SD-OCT images enable a comprehensive three-dimensional characterization of the control or injured brain in the intact zebrafish.OCIS codes: (170.3880) Medical and biological imaging, (110.4500) Optical coherence tomography, (170.0110) Imaging systems  相似文献   

16.
Intravascular optical frequency-domain imaging (OFDI), a second-generation optical coherence tomography (OCT) technology, enables imaging of the three-dimensional (3D) microstructure of the vessel wall following a short and nonocclusive clear liquid flush. Although 3D vascular visualization provides a greater appreciation of the vessel wall and intraluminal structures, a longitudinal imaging pitch that is several times bigger than the optical imaging resolution of the system has limited true high-resolution 3D imaging, mainly due to the slow scanning speed of previous imaging catheters. Here, we demonstrate high frame-rate intravascular OFDI in vivo, acquiring images at a rate of 350 frames per second. A custom-built, high-speed, and high-precision fiber-optic rotary junction provided uniform and high-speed beam scanning through a custom-made imaging catheter with an outer diameter of 0.87 mm. A 47-mm-long rabbit aorta was imaged in 3.7 seconds after a short contrast agent flush. The longitudinal imaging pitch was 34 μm, comparable to the transverse imaging resolution of the system. Three-dimensional volume-rendering showed greatly enhanced visualization of tissue microstructure and stent struts relative to what is provided by conventional intravascular imaging speeds.OCIS codes: (170.4500) Optical coherence tomography, (170.2150) Endoscopic imaging, (170.3880) Medical and biological imaging  相似文献   

17.
We analyze the benefits and problems of in vivo optical coherence tomography (OCT) imaging of the human retina at A-scan rates in excess of 1 MHz, using a 1050 nm Fourier-domain mode-locked (FDML) laser. Different scanning strategies enabled by MHz OCT line rates are investigated, and a simple multi-volume data processing approach is presented. In-vivo OCT of the human ocular fundus is performed at different axial scan rates of up to 6.7 MHz. High quality non-mydriatic retinal imaging over an ultra-wide field is achieved by a combination of several key improvements compared to previous setups. For the FDML laser, long coherence lengths and 72 nm wavelength tuning range are achieved using a chirped fiber Bragg grating in a laser cavity at 419.1 kHz fundamental tuning rate. Very large data sets can be acquired with sustained data transfer from the data acquisition card to host computer memory, enabling high-quality averaging of many frames and of multiple aligned data sets. Three imaging modes are investigated: Alignment and averaging of 24 data sets at 1.68 MHz axial line rate, ultra-dense transverse sampling at 3.35 MHz line rate, and dual-beam imaging with two laser spots on the retina at an effective line rate of 6.7 MHz.OCIS codes: (170.4500) Optical coherence tomography, (170.3880) Medical and biological imaging, (170.4460) Ophthalmic optics and devices, (120.3890) Medical optics instrumentation, (140.3510) Lasers, fiber  相似文献   

18.
We have built a polarization-sensitive swept source Optical Coherence Tomography (OCT) instrument capable of wide-field in vivo imaging in the oral cavity. This instrument uses a hand-held side-looking fiber-optic rotary pullback catheter that can cover two dimensional tissue imaging fields approximately 2.5 mm wide by up to 90 mm length in a single image acquisition. The catheter spins at 100 Hz with pullback speeds up to 15 mm/s allowing imaging of areas up to 225 mm2 field-of-view in seconds. A catheter sheath and two optional catheter sheath holders have been designed to allow imaging at all locations within the oral cavity. Image quality of 2-dimensional image slices through the data can be greatly enhanced by averaging over the orthogonal dimension to reduce speckle. Initial in vivo imaging results reveal a wide-field view of features such as epithelial thickness and continuity of the basement membrane that may be useful in clinic for chair-side management of oral lesions.OCIS codes: (170.4500) Optical coherence tomography, (170.3890) Medical optics instrumentation, (170.4580) Optical diagnostics for medicine, (170.1610) Clinical applications, (170.1850) Dentistry, (170.4940) Otolaryngology  相似文献   

19.
Spectrally encoded confocal microscopy (SECM) is a reflectance confocal microscopy technology that can rapidly image large areas of luminal organs at microscopic resolution. One of the main challenges for large-area SECM imaging in vivo is maintaining the same imaging depth within the tissue when patient motion and tissue surface irregularity are present. In this paper, we report the development of a miniature vari-focal objective lens that can be used in an SECM endoscopic probe to conduct adaptive focusing and to maintain the same imaging depth during in vivo imaging. The vari-focal objective lens is composed of an aspheric singlet with an NA of 0.5, a miniature water chamber, and a thin elastic membrane. The water volume within the chamber was changed to control curvature of the elastic membrane, which subsequently altered the position of the SECM focus. The vari-focal objective lens has a diameter of 5 mm and thickness of 4 mm. A vari-focal range of 240 μm was achieved while maintaining lateral resolution better than 2.6 μm and axial resolution better than 26 μm. Volumetric SECM images of swine esophageal tissues were obtained over the vari-focal range of 260 μm. SECM images clearly visualized cellular features of the swine esophagus at all focal depths, including basal cell nuclei, papillae, and lamina propria.OCIS codes: (220.3620) Lens system design, (170.1790) Confocal microscopy, (170.2150) Endoscopic imaging, (170.3890) Medical optics instrumentation, (170.2680) Gastrointestinal, (170.4730) Optical pathology  相似文献   

20.
A handheld confocal microscope using a rapid MEMS scanning mirror facilitates real-time optical biopsy for simple cancer diagnosis. Here we report a handheld confocal microscope catheter using high definition and high frame rate (HDHF) Lissajous scanning MEMS mirror. The broad resonant frequency region of the fast axis on the MEMS mirror with a low Q-factor facilitates the flexible selection of scanning frequencies. HDHF Lissajous scanning was achieved by selecting the scanning frequencies with high greatest common divisor (GCD) and high total lobe number. The MEMS mirror was fully packaged into a handheld configuration, which was coupled to a home-built confocal imaging system. The confocal microscope catheter allows fluorescence imaging of in vivo and ex vivo mouse tissues with 30 Hz frame rate and 95.4% fill factor at 256 × 256 pixels image, where the lateral resolution is 4.35 μm and the field-of-view (FOV) is 330 μm × 330 μm. This compact confocal microscope can provide diverse handheld microscopic applications for real-time, on-demand, and in vivo optical biopsy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号