首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Both cell-intrinsic and extrinsic pathways govern axon regeneration, but only a limited number of factors have been identified and it is not clear to what extent axon regeneration is evolutionarily conserved. Whether dendrites also regenerate is unknown. Here we report that, like the axons of mammalian sensory neurons, the axons of certain Drosophila dendritic arborization (da) neurons are capable of substantial regeneration in the periphery but not in the CNS, and activating the Akt pathway enhances axon regeneration in the CNS. Moreover, those da neurons capable of axon regeneration also display dendrite regeneration, which is cell type-specific, developmentally regulated, and associated with microtubule polarity reversal. Dendrite regeneration is restrained via inhibition of the Akt pathway in da neurons by the epithelial cell-derived microRNA bantam but is facilitated by cell-autonomous activation of the Akt pathway. Our study begins to reveal mechanisms for dendrite regeneration, which depends on both extrinsic and intrinsic factors, including the PTEN-Akt pathway that is also important for axon regeneration. We thus established an important new model system--the fly da neuron regeneration model that resembles the mammalian injury model--with which to study and gain novel insights into the regeneration machinery.  相似文献   

2.
Mammals and fish differ in their ability to express axon growth‐associated genes in response to CNS injury, which contributes to the differences in their ability for CNS regeneration. Previously we demonstrated that for the axon growth‐associated gene, gap43, regions of the rat promoter that are sufficient to promote reporter gene expression in the developing zebrafish nervous system are not sufficient to promote expression in regenerating retinal ganglion cells in zebrafish. Recently, we identified a 3.6‐kb gap43 promoter fragment from the pufferfish, Takifugu rubripes (fugu), that can promote reporter gene expression during both development and regeneration. Using promoter deletion analysis, we have found regions of the 3.6‐kb fugu gap43 promoter that are necessary for expression in regenerating, but not developing, retinal ganglion cells. Within the 3.6‐kb promoter, we have identified elements that are highly conserved among fish, as well as elements conserved among fish, mammals, and birds. Developmental Dynamics 239:482–495, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
The axon regeneration ability of neurons depends on the interplay of factors that promote and inhibit regeneration. In Caenorhabditis elegans, axon regeneration is promoted by the JNK MAP kinase (MAPK) pathway. Previously, we found that the endocannabinoid anandamide (AEA) inhibits the axon regeneration response of motor neurons after laser axotomy by suppressing the JNK signaling pathway. Here, we show that the G‐protein‐coupled receptors (GPCRs) NPR‐19 and NPR‐32 inhibit axon regeneration in response to AEA. Furthermore, we show that sensory neuron expression of the nape‐1 gene, which encodes an enzyme synthesizing AEA, causes the regenerating motor axons to avoid sensory neurons and this avoidant response depends on NPR‐19 and NPR‐32. These results indicate that the navigation of regenerating axons is modulated by the action of AEA on NPR‐19/32 GPCRs.  相似文献   

4.
The mammalian sirtuin SIRT6 is a site-specific histone deacetylase that regulates chromatin structure. SIRT6 is implicated in fundamental biological processes in aging, including maintaining telomere integrity, fine-tuning aging-associated gene expression programs, preventing genomic instability, and maintaining metabolic homeostasis. Despite these important functions, the basic molecular determinants of SIRT6 enzymatic function - including the mechanistic and regulatory roles of specific domains of SIRT6 - are not well understood. Sirtuin proteins consist of a conserved central ‘sirtuin domain’ - thought to comprise an enzymatic core - flanked by variable N- and C-terminal extensions. Here, we report the identification of novel functions for the N- and C-terminal domains of the human SIRT6 protein. We show that the C-terminal extension (CTE) of SIRT6 contributes to proper nuclear localization but is dispensable for enzymatic activity. In contrast, the N-terminal extension (NTE) of SIRT6 is critical for chromatin association and intrinsic catalytic activity. Surprisingly, mutation of a conserved catalytic histidine residue in the core sirtuin domain not only abrogates SIRT6 enzymatic activity but also leads to impaired chromatin association in cells. Together, our observations define important biochemical and cellular roles of specific SIRT6 domains, and provide mechanistic insight into the potential role of these domains as targets for physiologic and pharmacologic modulation.  相似文献   

5.
Viral myocarditis is inflammation of the myocardium mainly caused by a viral infection, and coxsackievirus B3 (CVB3) infection is one of the most common. It is well known that cardiomyocyte apoptosis is involved in the pathogenesis of viral myocarditis. microRNAs (miRNAs, miRs) are endogenous noncoding oligoribonucleotides involved in various pathological conditions, and miR-34a is one of the miRNAs causing apoptosis. Whether miR-34a participates in cardiomyocyte apoptosis during CVB3 infection and the underlying mechanisms is still unclear. In this in vitro study, we found that miR-34a expression increased in cardiomyocytes after CVB3 infection. Furthermore, we found that CVB3 infection augmented histone deacetylase 1 (HDAC1) and Bax expression while inhibiting sirtuin 1 (SIRT1) and Bcl-2 expression, along with the acetylated p53 (Ac-p53) upregulation in cardiomyocytes. The above-mentioned phenomenon was reversed by a miR-34a inhibitor after CVB3 infection. In addition, the Ac-p53 amount increased in CVB3-infected cardiomyocytes, and SRT1720 and trichostatin A (TSA) pretreatment decreased Ac-p53 levels. After pifithrin-α pretreatment of CVB3-infected cardiomyocytes, the protein expression level of HDAC1 decreased while that of SIRT1 increased. Moreover, miR-34a expression and CVB3-induced apoptosis of cardiomyocytes were attenuated by pretreatment with SRT1720, TSA, or pifithrin-α, accompanied with Bax downregulation and Bcl-2 upregulation. In summary, these data indicate that miR-34a induces cardiomyocyte apoptosis by downregulating SIRT1, and the activation of the SIRT1-p53 pathway contributes to CVB3-induced apoptosis of cardiomyocytes. Thus, miR-34a might serve as a potential therapeutic target because it promotes cardiomyocyte apoptosis through the SIRT1-p53 signaling pathway.  相似文献   

6.
7.
8.
目的:研究微小RNA-34a(microRNA-34a,miR-34a)在阿霉素诱导的心肌细胞凋亡中的作用及其作用靶基因。方法:建立阿霉素(doxorubicin,Dox)诱导的大鼠H9c2心肌细胞凋亡模型;TUNEL染色观察H9c2细胞凋亡;双萤光素酶报告实验检测miR-34a与潜在靶基因沉默信息调节因子1(silent information regulator 1,SIRT1)3'端非翻译区(3'-untranslated region,3'UTR)的结合作用;实时荧光定量PCR检测miR-34a和SIRT1 mRNA表达水平,Western blot检测SIRT1和凋亡相关蛋白表达水平。结果:阿霉素处理H9c2细胞之后,细胞发生凋亡,miR-34a的表达显著增强;双萤光素酶报告实验提示miR-34a与SIRT1 3'UTR可相互作用,并证实miR-34a可在转录后水平抑制SIRT1的表达,SIRT1蛋白水平在阿霉素处理的心肌细胞中显著下调;过表达miR-34a及沉默SIRT1均能一致性抑制Bcl-2表达,促进Bax和p66shc的表达,而过表达SIRT1能有效抑制阿霉素诱导的H9c2细胞凋亡。结论:SIRT1是miR-34a的靶基因,并介导了miR-34a在阿霉素诱导的心肌细胞凋亡中的作用。  相似文献   

9.
10.
The ability of neurons to undergo regenerative growth after injury is governed by cell-intrinsic and cell-extrinsic regeneration pathways. These pathways represent potential targets for therapies to enhance regeneration. However, the signaling pathways that orchestrate axon regeneration are not well understood. In Caenorhabditis elegans, the Jun N-terminal kinase (JNK) and p38 MAP kinase (MAPK) pathways are important for axon regeneration. We found that the C. elegans SVH-1 growth factor and its receptor, SVH-2 tyrosine kinase, regulate axon regeneration. Loss of SVH-1-SVH-2 signaling resulted in a substantial defect in the ability of neurons to regenerate, whereas its activation improved regeneration. Furthermore, SVH-1-SVH-2 signaling was initiated extrinsically by a pair of sensory neurons and functioned upstream of the JNK-MAPK pathway. Thus, SVH-1-SVH-2 signaling via activation of the MAPK pathway acts to coordinate neuron regeneration response after axon injury.  相似文献   

11.
The reduction of adult stem cell self-renewal can be an important mechanism of aging. MicroRNAs have been reported to be involved in aging processes. Through a microarray approach, we have identified miR-486-5p, the expression of which is progressively expressed in human adipose tissue-derived mesenchymal stem cells (hAT-MSCs) with aging. Overexpression of miR-486-5p induces a premature senescence-like phenotype and inhibits proliferation of hAT-MSCs and inhibits adipogenic and osteogenic differentiation, whereas inhibition of miR-486-5p has the opposite effects. miR-486-5p regulates the expression of silent information regulator 1 (SIRT1), a major regulator of longevity and metabolic disorders. Decrease of SIRT1 deacetylase activity in hAT-MSCs is correlated with their passage number. miR-486-5p inhibits SIRT1 expression through a miR-486-5p binding site within the 3'-untranslated region of SIRT1. Overexpression of miR-486-5p inhibits SIRT1 deacetylase activity in hAT-MSCs, and transfection of miR-486-5p inhibitor shows the opposite effect. Downregulation of SIRT1 in hAT-MSCs induces senescence and inhibits cell proliferation. Exposure to high glucose increases miR-486-5p expression and inhibits SIRT1 expression in hAT-MSCs. Our data pinpoint miR-486-5p as an endogenous inhibitor of SIRT1 that promotes hAT-MSCs senescence and is potentially applicable to therapeutic manipulation of hAT-MSCs dysfunction in metabolic disorders.  相似文献   

12.
目的:研究微小RNA-199a-5p(miR-199a-5p)对心肌成纤维细胞中纤维化相关基因表达的调控作用及其可能作用的靶基因。方法:原代分离并体外培养成体C57BL/6小鼠心肌成纤维细胞;双萤光素酶报告基因实验检测miR-199a-5p与潜在靶基因沉默信息调节因子1(SIRT1)3’端非翻译区(3’-UTR)的结合作用;实时荧光定量PCR(RT-q PCR)和Western blot法分别检测SIRT1以及纤维化标志物胶原蛋白(Col)1a1、Col3a1和α-平滑肌肌动蛋白(α-SMA)的mRNA和蛋白表达。结果:在血管紧张素Ⅱ(AngⅡ)诱导的小鼠心肌成纤维细胞中,Col1a1、Col3a1和α-SMA的表达增强,miR-199a-5p表达上调。在心肌成纤维细胞中过表达miR-199a-5p可以增强Col1a1、Col3a1和α-SMA的表达。双萤光素酶报告基因实验显示miR-199a-5p与SIRT1 3’-UTR有结合作用。RT-q PCR和Western blot结果证实miR-199a-5p可在转录水平抑制SIRT1表达。过表达miR-199a-5p和沉默SIRT1均能一致性促进心肌成纤维细胞中Col1a1、Col3a1和α-SMA的表达。抑制AngⅡ诱导的小鼠心肌成纤维细胞中NF-κB激活,可显著降低miR-199a-5p表达。结论:SIRT1是miR-199a-5p的作用靶基因,并介导miR-199a-5p促进纤维化标志物Col1a1、Col3a1和α-SMA的表达。  相似文献   

13.
14.
Peripherally projecting neurons undergo significant morphological changes during development and regeneration. This neuroplasticity is controlled by growth factors, which bind specific membrane bound kinase receptors that in turn activate two major intracellular signal transduction cascades. Besides the PI3 kinase/AKT pathway, activated extracellular signal-regulated kinase (ERK) plays a key role in regulating the mode and speed of peripheral axon outgrowth in the adult stage. Cell culture studies and animal models revealed that ERK signaling is mainly involved in elongative axon growth in vitro and long-distance nerve regeneration in vivo. Here, we review ERK dependent morphological plasticity in adult peripheral neurons and evaluate the therapeutic potential of interfering with regulators of ERK signaling to promote nerve regeneration. Anat Rec, 302:1261–1267, 2019. © 2019 Wiley Periodicals, Inc.  相似文献   

15.
Ma Y  Liu M  Li Y 《Medical hypotheses》2011,77(5):914-916
Growth-inhibitory chondroitin sulfate proteoglycans (CSPGs) contribute a lot to failure of axon regeneration. Chondroitinase ABC (ChABC) digests glycosaminoglycan chains attached in CSPGs and can thereby promote axonal regeneration beyond a lesion site. However, CSPGs expression are up-regulated for almost 7 weeks after spinal cord injury (SCI) in vivo, so single dose of exogenous ChABC is insufficient for long distance of axon sprout and functional recovery. It is considered an ideal strategy to transfect neurons and/or glia at the injury site with a vector containing the gene encoding chondroitinase, so they can secrete ChABC themselves. Mammalian cells in the current studies, however, can not secret ChABC efficiently. It is well established that glycosylation is a common obstacle for eukaryotic cells to secret bacterial protein. ChABC is a protein heavily glycosylated structurally, and it was reported that inhibiting the glycosylation of xylosyltransferase-1 with a DNA enzyme could reduce GAG chains in the lesion of spinal cord. So presence of glycosylation sites in the bacterial sequence is supposed the barrier that preventing ChABC secretion from mammalian cells. We intend to mutate the key N-glycosylation sites of the bacterial ChABC sequence and transduce it into BMSCs by lentivirus vector. The modified BMSCs are expected to promote axon regeneration through multiple mechanisms, providing sustained ChABC and neurotrophic factors, as well as filling in the cavities formed post-trauma. The transduced BMSCs with gene mutated in key glycosylation sites in the present hypothesis provide a promising strategy to promote axon regeneration.  相似文献   

16.
目的:探讨微小RNA-138-5p(miR-138-5p)抑制肺癌细胞增殖、迁移和侵袭能力的相关机制。方法:以肺癌细胞A549和H460作为研究对象,分别转染miR-NC(对照组)或miR-138-5p(实验组);生物信息学技术预测miR-138-5p的靶基因;RT-qPCR检测转染后细胞miR-138-5p、叉头框蛋白C1(FOXC1)mRNA和波形蛋白(vimentin)mRNA的相对表达量;Western blot法检测FOXC1、vimentin、E-cadherin、N-cadherin和β-catenin蛋白表达变化;MTS法和集落形成实验分别检测细胞的增殖能力;划痕愈合实验和Transwell法检测细胞迁移和侵袭能力。结果:miR-138-5p过表达显著降低FOXC1和vimentin的mRNA及蛋白的表达(P0.05),E-cadherin和β-catenin蛋白表达上调,N-cadherin蛋白表达下调,显著抑制肺癌细胞的增殖、迁移和侵袭能力(P0.05)。结论:miR-138-5p可以通过靶向干扰FOXC1和vimentin的表达抑制肺癌细胞的增殖、迁移和侵袭,可能是肺癌基因治疗的潜在靶点。  相似文献   

17.
In contrast to peripheral nerves, damaged axons in the mammalian brain and spinal cord rarely regenerate. Peripheral nerve injury stimulates neuronal expression of many genes that are not generally induced by CNS lesions, but it is not known which of these genes are required for regeneration. Here we show that co-expressing two major growth cone proteins, GAP-43 and CAP-23, can elicit long axon extension by adult dorsal root ganglion (DRG) neurons in vitro. Moreover, this expression triggers a 60-fold increase in regeneration of DRG axons in adult mice after spinal cord injury in vivo. Replacing key growth cone components, therefore, could be an effective way to stimulate regeneration of CNS axons.  相似文献   

18.
Sirtuins function with other biogenic molecules to promote adaptation to caloric restriction in a broad spectrum of eukaryotic species. Sirtuin pathways also converge in the mammalian brain where they appear to protect neurons from nutrient stress. However, few anatomical studies on sirtuins (e.g., SIRT1) are available, particularly those detailing the spatial distribution and subcellular localization pattern of SIRT1 in the brain parenchyma. Here, we report the characterization of a panel of SIRT1‐specific antibodies within rodent (i.e., rat and mouse) and human central nervous systems. Immunocytochemical and Western blot analyses indicate that the subcellular localization of SIRT1 is predominantly nuclear throughout the rodent brain and spinal cord. A similar subcellular distribution pattern of SIRT1 was detected in human central nervous system material. SIRT1 is ubiquitously present in areas of the brain especially susceptible to age‐related neurodegenerative states (e.g., the prefrontal cortex, hippocampus and basal ganglia). Further, we show no apparent species‐specific differences in the subcellular localization pattern of rodent versus human SIRT1. Finally, we identify the chemical phenotype of SIRT1‐containing neurons in a number of brain sites that are strongly compromised by aging. These data provide additional and important anatomical findings for the role of SIRT1 in the mammalian brain and suggest that SIRT1 pathways are broadly distributed in neurons most susceptible to senescence injury. Activating endogenous sirtuin pathways may, therefore, offer a therapeutic approach to delay and/or treat human age‐related diseases. Anat Rec, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

19.
The adult mammalian central nervous system (CNS) does not repair after injury. However, we and others have shown in earlier work that the neonatal CNS is capable of repair and importantly of allowing regenerating axons to re-navigate through the same pathways as they did during development. This phase of neonatal repair is restricted by the fragility of neurons after injury and a lack of trophic factors that enable their survival. Our aim is to define better the factors that sustain neurons after injury and allow regeneration to occur. We describe some of our work using Schwann cells to promote the regeneration of neurons from young postnatal rodents. We have established rapid methods for purifying Schwann cells without the use of either anti-mitotic agents to suppress contaminating fibroblasts or mitotic stimulation to generate large numbers of Schwann cells. The rapidly purified Schwann cells have been used to generate conditioned medium that we have shown stimulates axon regeneration in cultured retinal ganglion cell neurons. We also show that the positive effects of Schwann cells are still present after pharmacological blockade of the neurotrophin receptors, suggesting that novel factors mediate these effects.  相似文献   

20.
Sirtuin 2 (SIRT2) is one of seven known mammalian protein deacetylases homologous to the yeast master lifespan regulator Sir2. In recent years, the sirtuin protein deacetylases have emerged as candidate therapeutic targets for many human diseases, including metabolic and age-dependent neurological disorders. In non-neuronal cells, SIRT2 has been shown to function as a tubulin deacetylase and a key regulator of cell division and differentiation. However, the distribution and function of the SIRT2 microtubule (MT) deacetylase in differentiated, postmitotic neurons remain largely unknown. Here, we show abundant and preferential expression of specific isoforms of SIRT2 in the mammalian central nervous system and find that a previously uncharacterized form, SIRT2.3, exhibits age-dependent accumulation in the mouse brain and spinal cord. Further, our studies reveal that focal areas of endogenous SIRT2 expression correlate with reduced α-tubulin acetylation in primary mouse cortical neurons and suggest that the brain-enriched species of SIRT2 may function as the predominant MT deacetylases in mature neurons. Recent reports have demonstrated an association between impaired tubulin acetyltransferase activity and neurodegenerative disease; viewed in this light, our results showing age-dependent accumulation of the SIRT2 neuronal MT deacetylase in wild-type mice suggest a functional link between tubulin acetylation patterns and the aging brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号