首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
This study investigates the effects of one of the most frequently used brominated flame-retardants (BFR), tetrabromobisphenol-A (TBBPA), on formation of reactive oxygen species (ROS) and calcium levels in human neutrophil granulocytes. TBBPA enhanced ROS production in a concentration-depended manner (1-12 microM), measured as 2,7-dichlorofluorescein diacetate amplified (DCF) fluorescence. The results on ROS production by TBBPA was confirmed by lucigenin-amplified chemiluminescence. The TBBPA induced formation of ROS was due to activation of respiratory burst, as shown by the NADPH oxidase inhibitor DPI (10 microM). TBBPA induced activation of respiratory burst was also inhibited by the MEK 1/2 inhibitor U0126 (10 microM), the PKC inhibitor BIM (0.25 microM), and the tyrosine kinase inhibitor erbstatin-A (25 microM). We also found a small reduction in ROS formation in the absence of extracellular calcium and when verapamil was added. The phosphorylation of ERK 1/2 was confirmed by Western blotting. TBBPA also induced a concentration dependent increase in intracellular free calcium measured with Fura-2/AM. We suggest that exposure of human neutrophil granulocytes to the brominated flame retardant TBBPA leads to an activation of the NADPH oxidase primarily by an ERK 1/2 stimulated pathway. The data also show that PKC, calcium, and tyrosine kinases may be involved in the activation.  相似文献   

2.
Polybrominated diphenyl ethers (PBDE) and hexabromocyclododecane (HBCD) are compounds used as additive flame retardants in plastics, electronic equipment, and textiles. The aim of the present study was to investigate the in vitro effects of the pentabrominated diphenyl ether mixture, DE-71, and HBCD on cerebellar granule cells (CGC). Both DE-71 and HBCD induced death of CGC in low micromolar concentrations. The NMDA receptor antagonist MK801 (3 μM), and the antioxidant α-tocopherol (50 μM) significantly reduced the cell death. Incubation of the compounds together with the rat liver post-mitochondrial (S9) fraction reduced cell death by 58 and 64% for DE-71 and HBCD, respectively. No ROS formation and no elevation in intracellular calcium were observed. We further demonstrated apoptotic morphology (Hoechst straining) after exposure to low levels of the two brominated flame retardants and signs of DNA laddering were found after DE-71 exposure. However, other hallmarks of apoptosis, like caspase activity, were absent indicating an atypical form of apoptosis induced by DE-71. After intraperitoneal injection of the two compounds both DE-71 and HBCD were found in significant amounts in brain (559 ± 194 and 49 ± 13 μg/kg, respectively) and liver (4,010 ± 2,437 and 1,248 ± 505 μg/kg, respectively) 72 h after injection. Our results indicate that the lower brominated PBDEs have a higher potency of bioaccumulation than HBCD, and that both compounds have a neurotoxic potential in vitro.  相似文献   

3.
Polybrominated diphenyl ethers (PBDEs) are widely used as flame retardants and have been detected in human blood, adipose tissue, and breast milk. Developmental and long-term exposures to these contaminants may pose a human health risk, especially to children. Previously, we demonstrated that polychlorinated biphenyls (PCBs), which are neurotoxic and structurally similar to PBDEs, perturbed intracellular signaling events, including calcium homeostasis and subsequent events such as protein kinase C (PKC), which are critical for the normal function and development of the nervous system. The objective of the present study was to test whether commercial PBDE mixtures (DE-71, a pentabrominated dipheyl ether mixture, and DE-79, a mostly octabromodiphenyl ether mixture) affected intracellular signaling mechanisms in a similar way to that of PCBs and other organohalogens, as an attempt to understand the common mode of action for these persistent chemicals. PKC translocation was studied by determining (3)H-phorbol ester ((3)H-PDBu) binding in rat cerebellar granule cells, and calcium buffering was determined by measuring (45)Ca(2+) uptake by microsomes and mitochondria isolated from adult male rat brain (frontal cortex, cerebellum, and hippocampus). As seen with PCBs, DE-71 increased PKC translocation and inhibited (45)Ca(2+) uptake by both microsomes and mitochondria in a concentration-dependent manner. The effect of DE-71 on (45)Ca(2+) uptake seems to be similar in all three brain regions. Between the two organelles, DE-71 inhibited mitochondrial (45)Ca(2+) uptake to a greater extent than microsomal (45)Ca(2+) uptake. DE-79 had no effects on either neurochemical event even at 30 mug/ml. Aroclor 1254 altered both events to a greater extent compared to DE-71 on a weight basis. When the results were compared on a molar basis, Aroclor 1254 altered PKC translocation and microsomal (45)CaP(2+) uptake to a greater extent than DE-71, however, Aroclor 1254 and DE-71 equally affected mitochondrial (45)Ca(2+) uptake. These results indicate that PBDEs perturbed intracellular signaling mechanisms in rat brain as do other organohalogen compounds and the efficacy between the commercial PCB and PBDE mixtures seem to vary with different endpoints.  相似文献   

4.
DE-71, a commercial mixture, was used to test the sensitivity of the female and male pubertal protocol to detect thyroid active chemicals. These protocols are being evaluated for the U.S. EPA's Endocrine Disruptor Screening Program as part of a Tier I Screening Battery. To examine the ability of these protocols to screen for chemicals that induce the clearance of thyroid hormone, we examined male and female Wistar rats following DE-71 exposure. Rats were gavaged daily with 0, 3, 30, or 60 mg/kg DE in corn oil from postnatal day (PND) 23-53 in the male or PND 22-41 in the female. The temporal effects of DE-71 on liver enzymes and thyroid hormones were measured in another group of males and females following only 5 days of dosing (PND 21 to 26 in females and PND 23 to 28 in males). Serum T4 was significantly decreased at 30 and 60 mg/kg following the 5-day exposures and in the 21-day exposed females. Doses of 3, 30, and 60 mg/kg decreased T4 in 31-day exposed males. Serum T3 was decreased and TSH elevated by 30 and 60 mg/kg in the 31-day exposed males only. Decreased colloid area and increased follicular cell heights (indicative of the hypothyroid state) were observed in thyroids of the 60 mg/kg groups of 20- and 31-day exposed female and males. Increased liver-to-body weight ratios coincided with a significant induction of uridinediphosphate-glucuronosyltransferase (UDGPT; two to four-fold), and ethoxy- and pentoxy-resorufin-O-deethylase (EROD and PROD) at the two highest doses in all exposures. Of the androgen dependent tissues in the 31-day exposed males, seminal vesicle (SV) and ventral prostate (VP) weights were reduced at 60 mg/kg, while testes and epididymal weights were not affected. Preputial separation (PPS) was also significantly delayed by doses of 30 and 60 mg/kg. In the female, the 60 mg/kg dose also caused a significant delay in the age of vaginal opening. Based upon the thyroid hormone response data, this study provides evidence that the 31-day alternative Tier 1 male protocol is a more sensitive test protocol than the 5-day or female pubertal protocol for thyrotoxic agents that act via up-regulation of hepatic metabolism. This apparent greater sensitivity may be due a greater body burden attained following the longer dosing regimen as compared with that of the female protocol, or to gender specific differences in thyroid hormone metabolism. Also, the delay in PPS and reduction in SV and VP weights may indicate a modification or inhibition of endogenous androgenic stimulation directly by DE-71 or a secondary effect that occurs in response to a DE-induced change in thyroid hormones.  相似文献   

5.
Polybrominated diphenyl ethers (PBDEs) are used in large quantities as flame retardant additives. In a recent study, we have seen that neonatal exposure to some brominated flame retardants can cause permanent aberrations in spontaneous motor behavior that seem to worsen with age. In view of an increasing amount of PBDEs in mother's milk and in the environment, the present study was undertaken to investigate whether there is a critical and limited phase, during neonatal life, for induction of persistent neurotoxic effects of 2,2',4,4',5-pentaBDE (PBDE 99). Neonatal NMRI male mice were exposed on day 3, 10, or 19 to 8 mg 2,2',4,4',5-pentaBDE/kg body weight. Uptake and retention of 2,2',4,4',5-penta[(14)C]BDE were studied in the mouse brain after exposure to 1.5 M becquerel (Bq) 2,2',4,4',5-penta[(14)C]BDE /kg body weight (bw) on postnatal day 3, 10, or 19. Spontaneous motor behavior was observed in 4-month-old mice. Mice exposed to 2,2',4,4',5-pentaBDE on day 3 or 10 showed significantly impaired spontaneous motor behavior, whereas no effect was seen in mice exposed on day 19. Neonatal mice exposed to 2,2',4,4',5-penta[(14)C]BDE 99 on postnatal day 3, 10, or 19 were sacrificed 24 h or 7 days posttreatment. The amount of radioactivity, given as per mille ( per thousand) of total amount administered, was between 3.7 and 5.1 per thousand in the three different age categories at 24 h after administration. Seven days after the administration, 2,2',4,4',5-penta[(14)C]BDE or its metabolites could still be detected in the brain. The amount of radioactivity in the brain was not higher in mice exposed on day 3 or 10 when compared to exposure on day 19. Thus, the behavioral disturbances observed in adult mice following neonatal exposure to 2,2',4,4',5-pentaBDE are induced during a defined critical period of neonatal brain development.  相似文献   

6.
Polybrominated diphenyl ethers (PBDEs), widely used as flame-retardants, are now recognized as globally distributed pollutants, and are detected in most environmental and biological samples, including human blood, adipose tissue, and breast milk. Due to their wide use in commercial products and their persistent nature, long-term exposure to PBDEs may pose a human health risk, especially to children. Our previous reports showed that the commercial PBDE mixture, DE-71, affected protein kinase C (PKC) and calcium homeostasis in a similar way to those of a structurally-related polychlorinated biphenyl (PCB) mixture. These intracellular signaling events are associated with neuronal development and learning and memory function. The objectives of the present study were to test whether environmentally relevant PBDE congeners, with different position and number of bromines, affected PKC translocation in cerebellar granule neuronal cultures and compare the potency and efficacy of PBDE congeners with their 14C-accumulation. All the tested PBDE congeners increased 3H-phorbol ester (PDBu) binding, and a significant effect was seen as low as 10 microM. Among the congeners tested, 2,2',4,4'-tetrabromodiphenyl ether (PBDE 47) increased 3H-PDBu binding in a concentration-dependent manner and to a greater extent than other congeners. These effects were seen at concentrations and exposure times where no cytotoxicity was observed. The efficacy of PBDE congeners varied with their structural composition, and the effects seen on 3H-PDBu binding with some PBDE congeners are similar to those of PCB congeners. Cerebellar granule neurons accumulated all three PBDE congeners (PBDEs 47, 99, and 153) following exposure. At the lowest concentration (0.67 microM), about 13-18% of the total dose of 14C-PBDE congeners was accumulated by these neurons. There were distinct differences in the pattern of 14C-PBDE accumulation among the PBDE congeners. The 14C-PBDE accumulation, either represented as percent basis or nanomole basis, was much lower for the 30.69 microM PBDE 99 and 10.69-30.69 microM PBDE 153 than at the lower concentrations, which may be due to low solubility of these congeners. The accumulation pattern with PBDE 47 did not vary with concentration. On a nanomole accumulation basis, PBDEs 47, 99, and 153 accumulation was linear with time. While the nanomole accumulation was linear with concentration for PBDE 47, it is nonlinear for PBDEs 99 and 153. The pattern of PBDE accumulation seems to correlate with the effects on PKC translocation, with regression values of 0.773-0.991. These results indicate that PBDEs affected PKC translocation in neurons in a similar way to those of other organohalogens, some PBDE congeners are equally efficacious as the respective PCB congeners, and PBDE accumulation correlated well with PKC translocation, suggesting a common mode of action for this group of chemicals.  相似文献   

7.
Brominated diphenyl ethers (BDEs) are persistent environmental contaminants found in human blood, tissues, and milk. To assess the impact of the commercial BDE mixture DE‐71 on the developing immune system in relation to hepatic and thyroid changes, adult (F0) rats were exposed to DE‐71 by gavage at doses of 0, 0.5, 5, or 25 mg/kg body weight (bw)/d for 21 weeks. F0 rats were bred and exposure continued through gestation, lactation and postweaning. F1 pups were weaned and exposed to DE‐71 by gavage from postnatal day (PND) 22 to 42. On PND 42, half of the F1 rats were assessed for toxicologic changes. The remaining F1 rats were challenged with the T‐dependent antigen keyhole limpet hemocyanin (KLH) and immune function was assessed on PND 56. Dose‐dependent increases in total BDE concentrations were detected in the liver and adipose of all F0 and F1 rats. In F0 rats, increased liver weight, hepatocellular hypertrophy, and decreased serum thyroxine (T4) were characteristic of DE‐71 exposure. In F1 rats perinatal DE‐71 exposure caused a nondose‐dependent increase in body weight and dose‐dependent increases in liver weight and hepatocellular hypertrophy. Serum T3 and T4 levels were decreased. In spleen from DE‐71 exposed rats the area occupied by B cells declined while the area occupied by T cells increased; however, cellular and humoral immune responses to KLH challenge were not altered. Thus hepatic and thyroid changes in rats exposed perinatally to DE‐71 were associated with altered splenic lymphocyte populations, an effect which has been linked to hypothyroidism. © 2011 Wiley Periodicals, Inc. Environ Toxicol, 2013.  相似文献   

8.
The structural similarities between polybrominated diphenyl ethers and immunotoxic halogenated aromatic compounds suggest that the polybrominated diphenyl ethers might affect the immune system. The present study was undertaken to investigate the immunological effects of some purified PBDE-congeners on human lymphocyte function in vitro. Polychlorinated biphenyl congeners were also included in the study. Mitogen-induced DNA synthesis and immunoglobulin synthesis by lymphocytes from blood donors were examined following polybrominated diphenyl ether or polychlorinated biphenyl exposure in vitro in order to determine the immunotoxic potential of these substances. No effects on mitogen-induced proliferation or immunoglobulin synthesis were observed after exposure of cells to concentrations up to 10−5 M. The negative findings in this study indicate that certain functions of human peripheral lymphocytes, i.e. proliferation and immunoglobulin synthesis, are insensitive to the direct action of polybrominated diphenyl ethers and polychlorinated biphenyls. Our results are in accordance with other recent studies in which no effects on immunological parameters were demonstrated by exposure of lymphocytes to polyhalogenated aromatic hydrocarbons in vitro.  相似文献   

9.
Polybrominated diphenyl ethers (PBDEs) are used as flame-retardants and have recently been shown to be increasing in the environment and in human mother's milk. We have recently reported that neonatal exposure to 2,2',4,4',5-pentaBDE (PBDE 99) can induce persistent aberrations in spontaneous behavior and also affect learning and memory functions in the adult animal. The present study indicates that the cholinergic system, in its developing stage, may be a target of and sensitive to PBDEs. Neonatal exposure of male NMRI mice on postnatal day 10, to 2,2',4,4',5-pentaBDE (8 mg/kg bw) was shown to alter the response to a cholinergic agent, nicotine, at an adult age. The nicotine-induced behavior test revealed a hypoactive response to nicotine in PBDE 99-treated animals, whereas the response of controls was an increased activity. These findings show similarities to observations made from neonatal exposure to PCBs and nicotine, compounds shown to affect cholinergic nicotinic receptors. This indicates that PBDE 99 can affect the cholinergic system and might thereby interact with other environmental toxicants.  相似文献   

10.
The immune defence of mussels is comprised of cell-mediated and humoral mechanisms, in which haemocytes or blood cells play a key role. Environmental pollutants such as metallic and organic xenobiotics exert immunotoxical effects on aquatic organisms. Some of these xenobiotics are known to give rise to highly reactive oxygen species (ROS), thereby leading to oxidative damage to tissue macromolecules including DNA, proteins and lipids. Previously we have detected enhancement of ROS production together with severe alterations in the actin cytoskeleton after exposure of mussel haemocytes to the carcinogenic polycyclic aromatic hydrocarbon benzo[a]pyrene (b[a]p). In a similar way, cadmium is also known to cause disruption of the actin cytoskeleton in mussel haemocytes, however it is not known whether this effect occurs by direct action or through ROS production. The aim of the present study was to decipher whether cytoskeletal alterations caused by Cd in mussel haemocytes are linked to increased ROS production. ROS-producing model compounds copper (Cu), paraquat and b[a]p were used in parallel experiments for comparative purposes. In all contaminant exposure experiments actin cytoskeleton appeared damaged. On the other hand, ROS production was increased in paraquat and b[a]p exposure experiments but decreased in haemocytes exposed to Cu while no significant effects were detected in Cd exposure experiments. In conclusion, it appears that deleterious effects of Cu and Cd on the integrity of the actin cytoskeleton of haemocytes are not directly linked to ROS production, at least at the exposure conditions used in the present study.  相似文献   

11.
Brominated flame retardants (BFRs) are present in many consumer products ranging from fabrics to plastics and electronics. Wide use of flame retardants can pose an environmental hazard and it is of interest to determine the mechanism of their toxicity. Of all the BFRs, 3,3',5,5'-tetrabromobisphenol A (TBBPA) is produced in the largest volume. Previous studies by Szymanska et al. (2000) have shown that TBBPA is hepatotoxic in rats. We report here that when TBBPA (100 or 600 mg/kg) dissolved in DMSO and alpha-(4-pyridyl-1-oxide)-N-t-butylnitrone (POBN) was administered ip to male Sprague-Dawley rats the POBN/CH(3) spin adduct was detected by electron paramagnetic resonance (EPR) in the bile. When (13)C-DMSO was employed the POBN/C(13)H(3) adduct was observed. Also present in the bile was the 2,6-dibromobenzosemiquinone radical derived from 2,6-dibromohydroquinone, a known metabolite of TBBPA. Reaction of the 2,6-dibromobenzosemiquinone radical with oxygen would generate superoxide from which hydrogen peroxide can form by dismutation. The hydroxyl radical generated via the Fenton reaction from hydrogen peroxide reacts in vivo with DMSO to give the methyl radical which is trapped by POBN. These observations suggest that the hepatotoxicity of TBBPA in rats may be due to the in vivo generation of the hydroxyl radical as a result of redox reactions involving the TBBPA metabolite 2,6-dibromohydroquinone and its corresponding semiquinone radical.  相似文献   

12.
The mechanisms underlying the apoptotic activity of the immunosuppressive drug cyclosporine A and its O-hydroxyethyl-D-(Ser)(8)-derivative SDZ IMM125 in rat hepatocytes are not yet fully understood. It was the purpose of the present study to investigate the role of anti- and pro-oxidants and of caspase-3 and intracellular Ca(2+) in SDZ IMM125-induced apoptosis in rat hepatocytes. SDZ IMM125 induced an increase in chromatin condensation and fragmentation, and the activation of caspase-3. Supplementing the cell cultures with the antioxidants, D,L-alpha-tocopherol-polyethylene-glycol-1000-succinate, ascorbic acid, and the reducing agent, dithiothreitol, significantly inhibited the SDZ IMM125-mediated increase in chromatin condensation and fragmentation, and caspase-3 activity. D,L-alpha-tocopherol-polyethylene-glycol-1000-succinate and dithiothreitol caused significant inhibition on SDZ IMM125-mediated cellular Ca(2+) uptake. The glutathione synthetase inhibitor, buthionine sulfoximine, increased SDZ IMM125-mediated caspase-3 action in parallel to chromatin condensation and fragmentation as well as Ca(2+) influx. Supplementation the culture medium with the intracellular Ca(2+) chelator bis-(o-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid as well as omission of calcium in the medium reduced SDZ IMM125-induced apoptosis whereas the calcium supplementation of the culture medium elevated SDZ IMM125-induced apoptosis. Calcium antagonists inhibited SDZ IMM125-induced caspase-3 activation. Our data indicate that SDZ IMM125-mediated apoptosis in rat hepatocytes can be inhibited by antioxidants, and that the intracellular redox-state can act as a modulator of cytotoxicity and apoptosis. Further, the results suggest that SDZ IMM125-induced uptake of extracellular calcium is also a redox-sensitive process and that the increased intracellular calcium might directly cause apoptosis by increasing the caspase-3 activity as a central event in the cyclosporine-induced apoptotic mechanism.  相似文献   

13.
In the present study, we have analyzed the response of human smooth muscle cell (SMC)s to oxidative stress, in terms of recruitment of key elements of the stress-activated protein kinase (SAPK) pathway, such as Rac(1), p38, and the small heat shock protein (HSP)27. The level of expression of three small HSPs, alphaB-crystallin, HSP20, HSP27, as well as the phosphorylation levels of HSP27 and p38, were higher in cultured, asynchronously growing SMCs originating from left interior mammary artery (LIMA) than those originating from aorta, saphenous vein, and umbilical vein, validating the choice of SMCs from LIMA as a model system in our study. In synchronized, quiescent SMCs from LIMA, oxidative stress (H(2)O(2) stimulation)-induced membrane translocation of Rac(1), p38 phosphorylation, membrane translocation, and phosphorylation of HSP27. In these cells, simvastatin (S), an HMG-CoA reductase inhibitor, blocked, in a mevalonate-dependent way, oxidative stress-induced membrane translocation of Rac(1). However, S pretreatment prior to oxidative stress increased the levels of p38 phosphorylation, HSP27 membrane translocation/phosphorylation, actin polymerization, and apoptosis in these cells, in a mevalonate-dependent way. These results establish that S pretreatment has a stimulatory effect on the stress-activated p38/HSP27 pathway, despite its blocking effect on Rac(1) activation.  相似文献   

14.
We previously found that human chymase cleaves big endothelins (ETs) at the Tyr(31)-Gly(32) bond and produces 31-amino acid ETs (1-31), without any further degradation products. In the present study, we investigated the effects of various antioxidants on the ET-1 (1-31)-induced change in intracellular signaling and proliferation of cultured rat aortic smooth muscle cells (RASMC). ET-1 (1-31) stimulated rapid and significant activation of the mitogen-activated protein (MAP) kinase family, i.e. extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun NH(2)-terminal kinase (JNK), and p38 MAPK, in RASMC to an extent similar to that of ET-1. All of the antioxidants examined, i.e. N-acetyl-L-cysteine (NAC), diphenyleneiodonium chloride (DPI), and L-(+)-ascorbic acid (ascorbic acid), inhibited both ET-1 (1-31)- and ET-1-induced JNK and p38 MAPK activation but not ERK1/2 activation. Electron paramagnetic resonance (EPR) spectroscopy measurements revealed that NAC, DPI, and ascorbic acid inhibited xanthine oxidase-induced superoxide (O(2)(.-)) generation in a cell-free system. ET-1 (1-31) in addition to ET-1 increased the generation of cellular reactive oxygen species (ROS) in RASMC. ET-1 (1-31)- and ET-1-induced cellular ROS generation was inhibited similarly by NAC, DPI, and ascorbic acid in RASMC. Gel-mobility shift analysis showed that ET-1 (1-31) and ET-1 caused an increase in activator protein-1 (AP-1)-DNA binding activity in RASMC that was inhibited by the above three antioxidants. ET-1 (1-31) increased [3H]thymidine incorporation into cells to an extent similar to that of ET-1. This ET-1 (1-31)-induced increase in [3H]thymidine incorporation was also inhibited by NAC and DPI, but not by ascorbic acid. These results suggest that antioxidants inhibit ET-1 (1-31)-induced RASMC proliferation by inhibiting ROS generation within the cells. The underlying mechanisms of the inhibition of cellular proliferation by antioxidants may be explained, in part, by the inhibition of JNK activation and the resultant inhibition of AP-1-DNA binding.  相似文献   

15.
Doxorubicin is a potent cytostatic drug which is applied for the treatment of various kinds of malignant diseases. In spite of the routine use of this drug its major adverse effect, the dose-dependent cardiotoxicity, cannot be prevented yet. However, several clinical trials indicated that iron chelators are able to moderate the noxious effect more efficiently than radical scavenging antioxidants. This in turn supports the idea that doxorubicin-iron complexes are involved in triggering the cardiotoxicity of this drug by catalyzing the formation of oxygen radicals. However, both the mode of generation of doxorubicin-iron complexes and the consequences in vivo are not understood so far. In order to figure out whether or not doxorubicin can utilize iron from the transport protein transferrin for complex formation and prooxidative activities we studied the redox state of iron and its regulatory control by ceruloplasmin and ascorbate in the plasma of dogs suffering from malignant lymphoma by electron spin resonance spectroscopy. The respective electron spin resonance intensities prior to and after treatment with doxorubicin were compared with those from healthy controls. Our results revealed that dogs with lymphoma exhibit lower levels of paramagnetic copper in ceruloplasmin (-22%) and iron in transferrin (-33%) than healthy animals. Likewise the concentration of ascorbate radicals was lower in patients with lymphoma than in healthy subjects. The decreased cupric state of ceruloplasmin is equivalent to a diminished ferroxidase activity in plasma and therefore indicates indirectly an impaired antioxidant activity in these patients. Administration of doxorubicin in vivo further reduced the concentration of paramagnetic copper (-18%) and iron (-13%) while the concentration of ascorbate radicals remained unchanged. This decrease was also seen during the in vitro incubation of plasma with doxorubicin suggesting a direct interaction of the drug with the paramagnetic metal species. Model experiments revealed that the effect is based on a doxorubicin-induced release of iron from transferrin which is enhanced by ascorbate and the subsequent formation of doxorubicin-iron complexes. This mechanism was shown to trigger the formation of hydroxyl radicals from H(2)O(2) and to cause an oxidation of the antioxidant ceruloplasmin. Our data demonstrate that cardiotoxic doxorubicin-iron complexes are not only formed in cardiomyocytes itself as generally assumed, but are also present in the circulation. Therefore, these findings provide an additional rationale for potential benefit of iron chelators during doxorubicin chemotherapy.  相似文献   

16.
The various reactions of peroxynitrite (ONOO(-)) with enzymes, macromolecules and lipids, have been shown to influence cellular functions and may be involved in the pathogenesis of various diseases. Therefore, targeting ONOO(-)-induced cytotoxicity is now accepted as a viable strategy to alleviate disease signs in numerous diseases. There is a growing interest in the antioxidant characteristics and use of dietary flavonoids in the management of ONOO(-)-related diseases. Baicalein, a major bioactive flavonoid constituent of Scutellaria baicalensis Georgi, possesses a multitude of pharmacological activities that have been associated with its antioxidant effects. In this study, we have investigated the ONOO(-) scavenging ability of baicalein and its protective effect on ONOO(-)-induced cell death in cultured LLC-PK(1) cells. Baicalein was able to scavenge ONOO(-) in a concentration-dependent manner, which was comparable to penicillamine. In addition, baicalein at the concentration range of 10-50 microM increased cell viability and decreased LDH leakage in 3-morpholinosydnonimine (SIN-1)-treated cells, reflecting its prevention of ONOO(-)-induced cytotoxicity. These results suggest that the protective effects of baicalein can be explained with respect to its ability to scavenge ONOO(-) and may be useful as a possible therapeutic strategy for the treatment of involved diseases.  相似文献   

17.
Diclofenac, a widely used nonsteroidal anti-inflammatory drug, has been associated with rare but severe cases of clinical hepatotoxicity. Diclofenac causes concentration-dependent cell death in human hepatocytes (after 24-48 h) by mitochondrial permeabilization via poorly defined mechanisms. To explore whether the cyclophilin D (CyD)-dependent mitochondrial permeability transition (mPT) and/or the mitochondrial outer membrane permeabilization (MOMP) was primarily involved in mediating cell death, we exposed immortalized human hepatocytes (HC-04) to apoptogenic concentrations of diclofenac (>500 microM) in the presence or absence of inhibitors of upstream mediators. The CyD inhibitor, cyclosporin A (CsA, 2 microM) fully inhibited diclofenac-induced cell injury, suggesting that mPT was involved. However, CyD gene silencing using siRNA left the cells susceptible to diclofenac toxicity, and CsA still protected the CyD-negative cells from lethal injury. Diclofenac induced early (9 h) activation of Bax and Bak and caused mitochondrial translocation of Bax, indicating that MOMP was involved in cell death. Inhibition of Bax protein expression by using siRNA significantly protected HC-04 from diclofenac-induced cell injury. Diclofenac also induced early Bid activation (tBid formation, 6 h), which is an upstream mechanism that initiates Bax activation and mitochondrial translocation. Bid activation was sensitive to the Ca2+ chelator, BAPTA. In conclusion, we found that Bax/Bak-mediated MOMP is a key mechanism of diclofenac-induced lethal cell injury in human hepatocytes, and that CsA can prevent MOMP through inhibition of Bax activation. These data support our concept that the Ca2+-Bid-Bax-MOMP axis is a critical pathway in diclofenac (metabolite)-induced hepatocyte injury.  相似文献   

18.
Broccoli (Brassica oleracea var. italica) has been defined as a cancer preventive food. Nevertheless, broccoli contains potentially genotoxic compounds as well. We performed the wing spot test of Drosophila melanogaster in treatments with organically grown broccoli (OGB) and co-treatments with the promutagen urethane (URE), the direct alkylating agent methyl methanesulfonate (MMS) and the carcinogen 4-nitroquinoline-1-oxide (4-NQO) in the standard (ST) and high bioactivation (HB) crosses with inducible and high levels of cytochrome P450s (CYPs), respectively. Larvae of both crosses were chronically fed with OGB or fresh market broccoli (FMB) as a non-organically grown control, added with solvents or mutagens solutions. In both crosses, the OGB added with Tween–ethanol yielded the expected reduction in the genotoxicity spontaneous rate. OGB co-treatments did not affect the URE effect, MMS showed synergy and 4-NQO damage was modulated in both crosses. In contrast, FMB controls produced damage increase; co-treatments modulated URE genotoxicity, diminished MMS damage, and did not change the 4-NQO damage. The high dietary consumption of both types of broccoli and its protective effects in D. melanogaster are discussed.  相似文献   

19.
Lonidamine is a safe, clinically useful anti-tumor drug, but its efficacy is generally low when used in monotherapy. We here demonstrate that lonidamine efficaciously cooperates with the anti-leukemic agent arsenic trioxide (ATO, Trisenox™) to induce apoptosis in HL-60 and other human leukemia cell lines, with low toxicity in non-tumor peripheral blood lymphocytes. Apoptosis induction by lonidamine/ATO involves mitochondrial dysfunction, as indicated by early mitochondrial permeability transition pore opening and late mitochondrial transmembrane potential dissipation, as well as activation of the intrinsic apoptotic pathway, as indicated by Bcl-XL and Mcl-1 down-regulation, Bax translocation to mitochondria, cytochrome c and Omi/HtrA2 release to the cytosol, XIAP down-regulation, and caspase-9 and -3 cleavage/activation, with secondary (Bcl-2-inhibitable) activation of the caspase-8/Bid axis. Lonidamine stimulates reactive oxygen species production, and lonidamine/ATO toxicity is attenuated by antioxidants. Lonidamine/ATO stimulates JNK phosphorylation/activation, and apoptosis is attenuated by the JNK inhibitor SP600125. In addition, lonidamine elicits ERK and Akt/mTOR pathway activation, as indicated by increased ERK, Akt, p70S6K and rpS6 phosphorylation, and these effects are reduced by co-treatment with ATO. Importantly, co-treatment with MEK/ERK inhibitor (U0126) and PI3K/Akt (LY294002) or mTOR (rapamycin) inhibitors, instead of ATO, also potentiates lonidamine-provoked apoptosis. These results indicate that: (i) lonidamine efficacy is restrained by drug-provoked activation of MEK/ERK and Akt/mTOR defensive pathways, which therefore represent potential therapeutic targets. (ii) Co-treatment with ATO efficaciously potentiates lonidamine toxicity via defensive pathway inhibition and JNK activation. And (iii) conversely, the pro-oxidant action of lonidamine potentiates the apoptotic efficacy of ATO as an anti-leukemic agent.  相似文献   

20.
The effect of persimmon peel polyphenol (PPP) on high glucose-induced oxidative stress was investigated using LLC-PK(1) cells, which is susceptible to oxidative stress. High-concentration glucose (30 mM) treatment induced LLC-PK(1) cell death, but high molecular-PPP (HMPPP) and low molecular-PPP (LMPPP), at concentrations of 5 or 10 microg/ml, significantly inhibited the high glucose-induced cytotoxicity. Furthermore, treatment with HMPPP or LMPPP dose-dependently reduced the intracellular reactive oxygen species level increased by 30 mM glucose. In addition, nitric oxide, superoxide and peroxynitrite levels were increased by 30 mM glucose treatment, but they were concentration-dependently inhibited by HMPPP or LMPPP treatment. High glucose levels induced the overexpressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) proteins, but HMPPP or LMPPP treatment reduced the overexpressions of these proteins. HMPPP or LMPPP also inhibited the nuclear translocation of nuclear factor-kappa B (NF-kappaB) induced by 30 mM glucose in LLC-PK(1) cells. In particular, LMPPP exhibited stronger inhibitory activities on high glucose induced oxidative stress than HMPPP. These findings indicate the potential benefits of persimmon peel as a valuable source of antioxidants in the diabetic condition which will reduce the oxidative stress induced by hyperglycemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号