首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The distribution within the brainstem of cell bodies and efferent fibers projecting in the cervical vagus was studied with retrograde transport of horseradish peroxidase (HRP). Five to eight days after multiple microinjections of HRP into either the cervical vagosympathetic trunk or the nodose ganglion the brainstems and nodose ganglia were perfused and processed by the tetramethyl benzidine method. HRP-positive neurons were found in three brainstem regions: a dorsal cell column comprising the dorsal motor nucleus of the vagus (dmnX), a ventrolateral group in the region of nucleus ambiguus (nA), and scattered cells along a line between these columns. The density of labeled neurons was greatest within dmnX. Axons from cells of the ventrolateral column projected dorsomedially; just ventral to dmnX they turned laterally to exit the medulla in multiple rootlets. Within nA labelled neurons were distributed according to size, with larger cells more medial and smaller ones more lateral. Caudal to nA in nucleus retroambigualis and nucleus dorsalis medialis cell bodies appeared segregated into clusters.  相似文献   

2.
The origin and course of efferent vagal fibers, which innervate the rat thymus, were investigated by a fluorescent retrograde double labeling method, using Fast blue (FB) and Diamidino yellow dihydrochloride (DY) as tracers. In the same animal, one tracer was injected into the cranial portion of the right lobe of the thymus and the other dye was deposited around the cut end of the right recurrent laryngeal nerve. The neuronal population giving origin to the recurrent nerve was mapped by using retrograde labeling with HRP applied to the central stump of the nerve. The HRP retrograde axonal transport showed that most efferent vagal fibers of the recurrent nerve have their perikarya in the nucleus retroambigualis (NRA), nucleus ambiguus (NA), and to a lesser extent in the nucleus retrofacialis (NRF). In fluorescent retrograde double labeling of thymus and recurrent laryngeal nerve both single and double labeled cells were found. The cells labeled by the injections into the thymus were colocalized with the neurons labeled by the tracer deposited in the recurrent laryngeal nerve to the NRA, NA, and NRF. Moreover along the rostrocaudal extent of the NRF and NA double labeled cells were present, showing that some of the thymic efferents are collaterals of the recurrent nerve fibers. Our experiments shown that some thymic vagal fibres originate from neurons of nucleus dorsalis nervi vagi (NDV) as demonstrated both by HRP and FB injected thymuses. The possible role of these efferents in thymic function is briefly discussed.  相似文献   

3.
The medullary distribution of afferent fibers and cells of origin of the cervical vagal trunk and of the vagal innervation of the stomach have been studied using the anterograde and retrograde transport of horseradish peroxidase (HRP). Injections of HRP were made into the cervical vagus nerve, the stomach wall, the proximal small intestine, or the peritoneal cavity. Two to four days following the injections, the rats were perfused and the medullae oblongatae and nodose ganglia were processed using the tetramethyl benzidine method. Cervical vagus nerve injections of HRP resulted in heavy anterograde labeling in the ipsilateral nucleus of the tractus solitarius (NTS) and the commissural nucleus. Lighter labeling was seen in these regions on the contralateral side, but did not extend as far rostrally in the NTS. Labeling was also seen in the area postrema. Retrogade labeling of somata was present in the ipsilateral side in the nodose ganglion, throughout the whole extent of the dorsal motor nucleus of the vagus, much of the nucleus ambiguus and in rostral levels of the cervical spinal cord. After stomach injections, labeling indicative of afferent fibers was observed bilaterally in the dorsomedial and medial portions of the NTS and in the commissural nucleus. Labeled efferent fibres arose from neurons in the dorsal motor nucleus of the vagus, nucleus ambiguus and the cervical spinal cord. Retrogradely labeled somata were found bilaterally, throughout the rostrocaudal length of the dorsal motor nucleus in all cases with stomach injections. In some, but not all cases, labeled somata were seen bilaterally in compact areas within the nucleus ambiguus, particularly rostrally. Control injections of HRP into the intestinal wall and peritoneal cavity indicated that the stomach was the primary source of afferent and efferent labeling in the medulla following subdiaphragmatic injections.  相似文献   

4.
Perikarya and central endings of muscle afferents of the sternomastoid nerve of the rat were investigated using the horseradish peroxidase (HRP) method in its modification by Mesulam. Application of an aqueous solution of HRP to the cut sternomastoid nerve was followed by heavy labeling of cell bodies in ipsilateral spinal ganglia C3 and C4. In addition, a number of peripheral and central processes of spinal ganglion cells clearly showed reaction product. Labeled structures in the spinal cord and medulla oblongata were regarded as axons and/or terminals of sternomastoid nerve primary afferents because the motor root to this nerve had been interrupted before the application of HRP.Analysis of serial sections and mapping of all labeled nervous structures in the CNS revealed many stained axons and terminals in the medial parts of dorsal and ventral horns as well as in the medial part of zona intermedia in the segments C1–C3. Clearly labeled zones were also seen in the central and lateral areas of the ventral horn. These zones correspond to the location of the motor nuclei for the sternomastoid and infrahyal muscles, partly also for the longus colli and splenius capitis muscles. The labeled area in the zona intermedia includes the field of the nucleus cervicalis centralis, which was shown by other authors to receive input from primary afferents of the neck region as well as from vestibular nuclei via fasciculus longitudinalis medialis, and which in turn sends many fibers into the cerebellum. Label was also found in many axons of the fasciculus cuneatus and in terminals spreading over the whole nucleus cuneatus lateralis. Here, close relations of those terminals to perikarya were seen. Only weak labeling was found in laminae I–III of the upper three spinal cord segments.  相似文献   

5.
The VIIIth cranial nerve projections in the hagfish, which has only one circular canal in the ear, were studied by transganglionic HRP transport. This nerve has two branches, the nervus utricularis (N. utr.) and the nervus saccularis (N. sac.), each with its own ganglion, the ganglion utriculare (G. utr.) and the ganglion sacculare (G. sac.), respectively. Although the G. sac. has uniformly small cells, the G. utr. consists of two separate cell masses, a ventral mass of large cells and a dorsal mass of small cells. The small cells were labeled in both ganglia after horseradish peroxidase (HRP) injection into the endolymphatic space. The greater part of the terminal areas of these two branches overlapped in the ventral nucleus of the area acoustico-lateralis, but the terminals of the N. sac. extended slightly further in a caudal direction. No projections to the primordial cerebellum and no retrogradely labeled cells in the brain were found. The large cells in the ventral part of the G. utr. seem to be general cutaneous neurons, and the dorsal part of the area acousticolateralis seems to receive lateral line input.  相似文献   

6.
Following HRP (Horseradish Peroxidase) injections to cricothyroid muscle, recurrent laryngeal nerve and the vagal nerve at the level of nodose ganglion, labeled motoneurons were found to show a characteristic distribution in the brain stem of the monkey. Cricothyroid motoneurons extended from a level caudal to the facial nucleus to a level caudal to the middle part of the inferior olivary nucleus (IO) and were scattered around the outer area of nucleus ambiguus (Amb). Motoneurons supplying the recurrent laryngeal nerve were found between a level rostral to the middle of IO and its caudal end. Distribution was compact in the lateral part, but was scattered in the dorsomedial part of Amb. On injection of HRP into the nodose ganglion of the vagal nerve, labeled motoneurons were seen in two cell columns: In the Amb and in the dorsal motor nucleus of the vagus. The former extended from the rostral level of IO to the caudal end of IO, also showing connections with the retroambigual nucleus.  相似文献   

7.
Horseradish peroxidase (HRP, Sigma Type VI) crystals were encased in a parafilm envelope and applied to the transected central ends of the left and right cervical vagus nerves and the anterior and posterior esophageal vagus nerves of adult male hooded rats. Injections of 30% HRP were made into the muscle wall of the fundus and antrum regions of the stomach. After 48 hr survival time, animals were perfused intracardially with a phosphate buffer plus sucrose wash followed by glutaraldehyde and paraformaldehyde fixative. The brain stem, spinal cord and corresponding dorsal root ganglia, superior cervical sympathetic ganglion, and the nodose ganglion were removed and cut into 50 micron sections. All tissue was processed with tetramethylbenzidine (TMB) for the blue reaction according to Mesulum and counterstained with neutral red. Sequential sections were examined under a microscope. Labeled neurons and nerve terminals were identified using bright and dark field condensers and polarized light. In tissue from animals that had HRP applied to the cervical vagus nerves, retrogradely labeled neurons were identified ipsilaterally in the medulla located in the dorsal motor nucleus of the vagus (DMN) and the nucleus ambiguus (NA). Labeled cells extended from the DMN into the spinal cord in ventral-medial and laminae X regions C1 and C2 of cervical segments. Many neurons were labeled in the nodose ganglion. Anterogradely labeled terminals were observed throughout and adjacent to the solitary nucleus (NTS) dorsal to the DMN and intermixed among labeled neurons located in the DMN. In tissue from animals that had HRP applied to the esophageal vagus nerves, similar labeling was observed. However, fewer neurons were identified in the NA, the nodose ganglion, and only in laminae X of the cervical spinal cord segments C1 and C2. Also, very little terminal labeling was observed in and adjacent to the NTS. Labeled neurons in tissue from animals that had HRP injected into the stomach wall were observed bilaterally in the DMN, nodose ganglion, and only in laminae X at the C1 and C2 levels of the spinal cord. Labeled neurons also were observed in the dorsal root ganglia of the thoracic cord. These data indicate that cervical cord and NA neurons are important in the supradiaphragmatic motor innervation by the vagus. Also, many afferents to the NTS originate above the diaphragm. In addition, some afferents from the stomach enter the central nervous system via the thoracic spinal cord.  相似文献   

8.
Amphibians have two auditory organs specialized for reception of airborne sounds: the amphibian papilla and the basilar papilla. In this report we examine the morphology of the ganglion cells and the afferent innervation of the sensory epithelium in both auditory organs of the leopard frog, Rana pipiens pipiens. Extracellular injections of either biocytin or horseradish peroxidase (HRP) were made into the VIII nerve; they labeled ganglion cells, their axons, and their terminal fibers within the papillae. Ganglion cells that projected to either the amphibian papilla or basilar papilla had cell bodies that were morphologically distinct from other labeled cells. In the amphibian papilla thick fibers terminated in the rostral portion and thin fibers terminated in the caudal portion. Labeled fibers in the rostral portion traveled short distances before making contacts with up to nine hair cells whereas labeled fibers in the caudal portion traveled longer distances and contacted no more than five hair cells. In the basilar papilla labeled fibers were thick (around 4 microns) and terminated on as many as nine hair cells. Consistent with studies from the bullfrog, Rana catesbeiana, our results suggest that the amphibian papilla of R. pipiens pipiens has a convergent innervation (i.e., multiple hair cells provide input to a single ganglion cell) and is topographically organized. However, in contrast to reports in other ranid species, a highly convergent innervation like that found in the amphibian papilla is also found in the basilar papilla.  相似文献   

9.
The organization of visceral sensory neurons in thoracic dorsal root ganglia (DRG) was studied by retrograde transport of horseradish peroxidase (HRP) from the central cut end of the left major splanchnic nerve of the cat. The majority of HRP-labeled cells were concentrated between T5 and T11. Within a DRG, labeled splanchnic neurons were found in all sectors. There was no consistent pattern of localization within the ganglion although clustering of visceral cell bodies was apparent. It may be that each clustered group of cells innervates individual viscera or reflects a degree of functional segregation.  相似文献   

10.
The motor and sensory connections of the cervical vagus nerve and of its inferior ganglion (nodose ganglion) have been traced in the medulla oblongata of 32 adult cats with the neuroanatomical methods of horseradish peroxidase (HRP) histochemistry and amino acid autoradiography (ARG). In 14 of these subjects, an aqueous solution of HRP was applied unilaterally to the central end of the severed cervical vagus nerve. In 13 other cases, HRP was injected directly into the nodose ganglion. Three of these 13 subjects had undergone infranodose vagotomy 6 weeks prior to the HRP injection. A mixture of tritiated amino acid was injected into the nodose ganglion in five additional cats. The retrograde transport of HRP yielded reaction product in nerve fibers and perikarya of parasympathetic and somatic motoneurons in the medulla oblongata. Furthermore, a tetramethyl benzidine (TMB) method for visualizing HRP enabled the demonstration of anterograde and transganglionic transport, so that central sensory connections of the nodose ganglion and of the vagus nerve could also be traced. The central distribution of silver grain following injections of tritiated amino acids in the nodose ganglion corresponded closely with the distribution of sensory projections demonstrated with HRP, thus confirming the validity of HRP histochemistry as a method for tracing these projections. The histochemical and autoradiographic experiments showed that the vagus nerve enters the medulla from its lateral aspect in multiple fascicles and that it contains three major components—axons of preganglionic parasympathetic neurones, axons of skeletal motoneurons, and central processes of the sensory neurons in the nodose ganglion. Retrogradely labeled neurons were seen in the dorsal motor nucleus of X(dmnX), the nucleus ambiguus (nA), the nucleus retroambigualis (nRA), the nucleus dorsomedialis (ndm) and the spinal nucleus of the accessory nerve (nspA). The axons arising from motoneurons in the nA did not traverse the medulla directly laterally; rather, all of these axons were initially directed dorsomedially toward the dmnX, where they formed a hairpin loop and then accompanied the axons of dmnX neurons to their points of exit. Afferent fibers in the vagus nerve reached most of the subnuclei of the nTS bilaterally, with the more intense labeling being found on the ipsilateral side. Labeling of sensory vagal projections was also found in the area postrema of both sides and around neurons of the dmnX. These direct sensory projections terminating within the dmnX may provide an anatomical substrate for vagally mediated monosynpatic reflexes. Following deefferentiation by infranodose vagotomy 6 weeks prior to HRP injections into the nodose ganglion, a number of neurons in the dmnX were still intensely labeled with the HRP reaction product. The axons of these HRP-labeled perikarya may constitute the bulbar component of the accessory nerve.  相似文献   

11.
Unmyelinated axons of the auditory nerve in cats.   总被引:2,自引:0,他引:2  
This paper describes some central terminations of type II spiral ganglion neurons as labeled by extracellular injections of horseradish peroxidase (HRP) into the auditory nerve of cats. After histological processing with diaminobenzidine, both thick (2-4 microns) and thin (0.5 microns) fibers of the auditory nerve were stained. Whenever traced, thick fibers always originated from type I spiral ganglion neurons and thin fibers always from type II ganglion neurons. Because the labeling of type II axons faded as fibers projected into the cochlear nucleus, this report is limited to regions of the ventral cochlear nucleus near the auditory nerve root. The central axons of type II neurons are unmyelinated, have simple yet variable branching patterns in the cochlear nucleus, and form both en passant and terminal swellings. Under the light microscope, most swellings are located in the neuropil but they are also found in the vicinity of cell bodies, nodes of Ranvier of type I axons, and blood vessels. Eighteen en passant swellings in the neuropil were located by light microscopy and resectioned for electron microscopy; two of these swellings exhibited ultrastructural features characteristic of chemical synapses. The data indicate that inputs from outer hair cells might be able to influence auditory processing in the cochlear nucleus through type II primary neurons.  相似文献   

12.
Rhythmical whisking of the mystacial vibrissae at about 7 Hz during exploration is one of the most conspicuous behavioral patterns in the rat. To identify the final common pathway for vibrissal movement, individual motor branches of the facial nerve, including the posterior auricular, temporal, zygomatic, buccal, marginal mandibular, cervical, stylohyoid, and posterior digastric branches, were cut, either singly or in various combinations. We found that vibrissal movement could be abolished only by transection involving the buccal branch and the upper division of the marginal mandibular branch. To trace back the central origins of the buccal and marginal mandibular, as well as the other branches of the facial nerve, all distal to the stylomastoid foramen, horseradish peroxidase (HRP) was applied to the cut proximal ends of these individual branches. The retrograde HRP labelling in the facial motor nucleus revealed topographical representation of these branches in which the buccal and marginal mandibular branches were represented laterally. The stylohyoid and posterior digastric branches originated from cells in the suprafacial nucleus. Consistent with earlier observations with intramuscular HRP injections, the motoneuronal population devoted to vibrissal movement did not seem to be substantially larger than that for other facial movements. An additional examination was made of the labelled afferent component of the facial motor nerve. We confirmed and extended previous findings that none of the above facial motor nerve branches, except the posterior auricular branch, contained a significant number of afferent fibers originating from the geniculate ganglion, the sensory ganglion of the seventh nerve. In addition, no labelling was seen in the mesencephalic trigeminal nucleus or trigeminal ganglion. These findings, in combination, suggest that, with the exception of the posterior auricular branch, all the facial motor nerve branches, including those involved in vibrissal movement, are almost entirely efferent.  相似文献   

13.
Vagal primary afferent neurons have their cell bodies located in the nodose (inferior) and jugular (superior) vagal ganglia and send terminals into the nucleus tractus solitarii (NTS) which lies in the dorsomedial medulla. The presence of glutamate (Glu)-containing neurons in the rat nodose ganglion was investigated using immunohistochemistry. Glu-immunoreactivity on nodose sections was found in neuronal perikarya and nerve fibers, but not in non-neuronal elements such as Schwann cells and satellite cells. Both immunoreactive and non-immunoreactive ganglion cells were observed. The immunoreactive ganglion cells amounted to about 60% of the nodose population. No specific intraganglionic localization was observed for the non-immunoreactive cells. Immunoreactive perikarya were slightly smaller than the non-immunoreactive ones, but no relationship was found between size and staining intensities of immunoreactive neurons. The present data indicate that immunodetectable Glu is present in a large population of vagal afferent neurons. They therefore add to a growing body of evidence suggesting that Glu may be the main neurotransmitter released by vagal afferent terminals within the nucleus tractus solitarii.  相似文献   

14.
Anterograde and retrograde transport of horseradish peroxidase was used to examine the afferent and efferent projections of the VIIIth cranial nerve in the lamprey Lampetra japonica. Ganglion cells of the VIIIth nerve are classified into three types on the basis of their morphology. The central processes of these ganglion cells enter the medulla in two groups: the anterior group (mostly thick fibers) and the posterior group (mostly thin fibers). Afferent fibers mainly terminate within the ipsilateral ventral and octavomotor nuclei of the octavolateralis area and within the granular and molecular layer of the cerebellum. Some fibers terminate in the contralateral cerebellum, the medial and dorsal nuclei of the octavolateralis area, the descending nucleus of the trigeminal nerve, some cranial motor nuclei, and the lateral octavus nucleus, which has not been described previously. This small nucleus is located beneath the descending nucleus of the trigeminal nerve near the obex. Within the ventral nucleus, thin fibers occupy the dorsal part and thick fibers occupy the ventral part. The basic projection pattern of the primary afferents of the VIIIth nerve in the lampreys was similar to that of gnathostome fishes that have been studied to date. Cell bodies of the efferent vestibular neurons are located between the ipsilateral trigeminal motor nucleus and the facial motor nucleus. The lateral location of these cell bodies differs from that of all other fish species that have been studied.  相似文献   

15.
The sensory and motor connections of the cervical vagus nerves and of its inferior ganglion (nodose ganglion) have been traced in the medulla and upper cervical spinal cord of 16 male Wistar rats by using horseradish peroxidase (HRP) neurohistochemistry. The use of tetramethyl benzidine (TMB) as the substrate for HRP permitted the visualization of transganglionic and retrograde transport in sensory nerve terminals and perikarya, respectively. The vagus nerve in the rat enters the medulla in numerous fascicles with points of entry covering the entire lateral aspect of the medulla extending from level +4 to - 6 mm rostrocaudal to the obex. Fascicles of vagal sensory fibers enter the dorsolateral aspect of the medulla and travel to the tractus solitarius (TS) which was labeled for over 8.8 mm in the medulla. The caudal extent of the TS receiving vagal projections was found in lamina V of the cervical spinal cord (C1 to C2). Sensory terminal fields could be visualized bilaterally in the nucleus of the tractus solitarius (nTS), area postrema (ap) and dorsal motor nucleus of the vagus nerve (dmnX). The ipsilateral projection to the nTS and the dmnX was heavier than that found on the contralateral side. The area postrema was intensely labeled on both sides. Motor fibers from HRP-labeled perikarya in the dmnX travel ventromedially in a distinct fascicle and subsequently subdivide into a number of small fiber bundles that traverse the medullary reticular formation in the form of a fine network of HRP-labeled fibers. As these fibers from the dmnX approach the ventrolateral aspect of the medulla they are joined by axons from the nucleus ambiguus (nA), nucleus retroambigualis (nRA) and the retro facial nucleus (nRF). These latter fibers form hairpin loops in the middle of the reticular formation to accompany the axons from the dmnX exiting from the medulla in a ventrolateral location. HRP-labeled perikarya, in contrast to transganglionically transported HRP in sensory terminals in the nTS, were visualized on one side only, thus indicating that motor control via the vagus nerve is exerted only by motor neurons located ipsilaterally. Sensory information on the other hand, diverges to many nuclear subgroups located on both sides of the medulla.  相似文献   

16.
The intra-axonal transport of horseradish peroxidase (HRP) has been used to trace the nodose ganglion and brain stem projections of a physiologically distinct nerve - the aortic depressor nerve - following electrophysiological identification. Tetramethyl benzidine (TMB) has been used as the substrate for demonstrating the centrally transported HRP15, 16. This sensitive method for horseradish peroxidase histochemistry has permitted the visualization of the central projections of aortic nerve afferents and has also provided information regarding the anatomical localization of cell bodies of these sensory nerve fibers within the nodose ganglion. This study demonstrates the usefulness of using TMB as a substrate for HRP histochemistry in anatomical studies where the detection of anterogradely transported HRP is an essential prerequisite. The uptake of HRP from the cut central ends of sensory nerve fibers and the transport of this enzyme to the sensory ganglion and subsequently into the central processes of these sensory neurons have made possible this study of the central projections of a functionally distinct peripheral nerve. Information has been provided by this study that cell bodies of aortic nerve afferent fibers are localized in the rostrolateral pole of the nodose ganglion. Dense central projections of sensory terminals of aortic afferents have been found in the dorsolateral and medial subdivisions of the nucleus of the tractus solitarius. These central projections of aortic afferents extend for 6 mm rostrocaudally in the medulla with the densest projection being found at the level of the obex. These projections are bilateral at all rostrocaudal levels. This anatomical demonstration of the dorsolateral and medial subdivisions of the nucleus of the tractus solitarius confirms earlier reports based on electrophysiological studies. Of particular interest in this study is the new observation that there exists a dense projection of aortic nerve afferents to the area postrema. The possible physiological implications of a direct input of peripheral chemoreceptor afferents to a region of central chemosensitivity are discussed. The complete absence of any retrogradely labeled cell body in the brain stem from exposure of the aortic nerve to horseradish peroxidase is noteworthy. This indicates that the aortic nerve is purely afferent in function and that reflex control of afferent activity in the aortic nerve is not mediated by brain stem neurons projecting down the same nerve.  相似文献   

17.
The goldfish posterior lateral line nerve consists of a dorsal and a ventral branch, each of which is associated with a ramus of the sensory branch of the VII th nerve (ramus recurrens facialis). The afferent and efferent pathways of these nerves within the central nervous system were studied by using horseradish peroxidase (HRP) histochemistry. The afferent fibers of the ramus recurrens facialis travel in the ventral portion of the VIIth nerve as it enters the brain and project predominantly to the ipsilateral half of the facial lobe. The afferent fibers of either the dorsal or ventral branch of the posterior lateral line nerve split into two bundles as they enter the brain. The caudally projectingfascicle terminates predominantly in thenucleusmedialis. The fibers of the rostrally projecting bundle terminate predominantly in nucleus medialis and nucleus magnocellularis and in the eminentia granularis. The posterior lateral line efferent somata were located in the diencephalon as well as in the medulla oblongata. The medullary efferent neurons formed two distinct groups, a rostral and a caudal nucleus. The cell bodies of the latter were more numerous and larger than those of the former. The axons of the efferent neurons exit from the brain by one of two routes. The first is at the level of the rostral efferent nucleus and the second at the level of the Mauthner cell. Previous reports have described input of posterior lateral line afferent fibers to the Mauthner cell soma and proximal lateral dendrite of the goldfish. This electrophysiological input was bilateral and was interpreted as monosynaptic. The afferent input described in this study was ipsilateral and ended in the vicinity of the distal lateral dendrite. These differences are discussed in the context of the neuronal circuitry that may be present.  相似文献   

18.
The existence of afferent fibers in the cat hypoglossal nerve was studied by transganglionic transport of horseradish peroxidase (HRP). Injections of wheat germ agglutinin-conjugated HRP (WGA-HRP) into the hypoglossal nerve resulted in some retrograde labeling of cell bodies within the superior ganglia of the ipsilateral glossopharyngeal and vagal nerves. A few labeled cell bodies were also present ipsilaterally within the inferior ganglion of the vagal nerve and the spinal ganglion of the C1 segment. Some of the labeled glossopharyngeal and vagal fibers reached the nucleus of the solitary tract by crossing the dorsal portion of the spinal trigeminal tract. Others distributed to the spinal trigeminal nucleus pars interpolaris and to the ventrolateral part of the medial cuneate nucleus by descending through the dorsal portion of the spinal trigeminal tract. In the spinal cord these descending fibers, intermingling with labeled dorsal root fibers, distributed to laminae I, IV-V and VII-VIII of the C1 and C2 segments. Additional HRP experiments revealed that the fibers in laminae VII-VIII originate mainly from dorsal root of the C1 segment.  相似文献   

19.
Physiological and light microscopic evidence suggest that substance P (SP) may be a neurotransmitter contained in first-order sensory baroreceptor afferents; however, ultrastructural support for this hypothesis is lacking. We have traced the central projections of the carotid sinus nerve (CSN) in the cat by utilizing the transganglionic transport of horseradish peroxidase (HRP). The dorsolateral subnucleus of the nucleus tractus solitarius (dlNTS) was processed for the histochemical visualization of transganglionically labeled CSN afferents and for the immunocytochemical visualization of SP by dual labeling light and electron microscopic methods. Either HRP or SP was readily identified in single-labeled unmyelinated axons, myelinated axons, and nerve terminals in the dlNTS. SP immunoreactivity was also identified in unmyelinated axons, myelinated axons, and nerve terminals in the dlNTS, which were simultaneously identified as CSN primary afferents. However, only 15% of CSN terminals in the dlNTS were immunoreactive for SP. Therefore, while the ultrastructural data support the hypothesis that SP immunoreactive first-order neurons are involved in the origination of the baroreceptor reflex, they suggest that only a modest part of the total sensory input conveyed from the carotid sinus baroreceptors to the dlNTS is mediated by SP immunoreactive CSN terminals. Five types of axo–axonic synapses were observed in the dlNTS. SP immunoreactive CSN afferents were very rarely involved in these synapses. Furthermore, SP terminals were never observed to form the presynaptic element in an axo–axonic synapse with a CSN afferent. Therefore, SP does not appear to be involved in the modulation of the baroreceptor reflex in the dlNTS.  相似文献   

20.
In contrast to most other species, ferrets possess a single communicating branch connecting the dorsal and ventral vagal trunks immediately rostral to the diaphragm. This branch is being used in physiological studies of gastrointestinal function and emesis. However, the fibre routes which pass through this branch are not known. In this study, the afferent and efferent pathways within this supradiaphragmatic vagal communicating branch of the ferret were studied through the use of the horseradish peroxidase (HRP) tracing technique. The region of the branch was exposed using a thoracotomy and HRP crystals were applied to one of the following: (A) the ventral end of the communicating branch, (B) the dorsal end of the communicating branch, (C) the distal end of the dorsal vagal trunk rostral to the communicating branch or (D) the distal end of the ventral vagal trunk rostral to the communicating branch. Following a 72 hour survival period, the animals were reanaesthetized and perfused. The superior cervical and nodose ganglia and the brain stem were processed using the tetramethylbenzidine method. Following application of HRP to the cut ventral end of the communicating branch, labelled cell bodies were found in the left and right nodose ganglia and in the left dorsal motor nucleus of the vagus. After HRP application to the cut dorsal end of the communicating branch, labelled cells were found in the left and right nodose ganglia. No HRP containing cell bodies were found following HRP application to the cut distal end of either the dorsal or the ventral vagal trunk. These results indicate that several afferent pathways exist within the branch, although only one consistently labelled efferent pathway was found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号