首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
造血干细胞(hematopoietic stem cell,HSC)位于骨髓的造血微环境即龛(niche)中,它们与龛内特定的细胞相互作用以调节其自我更新和定向分化。研究发现,骨髓中的成骨细胞和内皮细胞与造血干细胞关系密切,分别构成了HSC龛中的成骨龛和血管龛,其中成骨龛维持静态的HSC微环境,而血管龛调控HSC的增殖、分化和动员等行为。对骨髓HSC龛的研究为将来临床治疗血液系统相关疾病提供了新的思路。  相似文献   

2.
Choi JS  Harley BA 《Biomaterials》2012,33(18):4460-4468
Hematopoietic stem cells (HSCs) are adult stem cells with the capacity to give rise to all blood and immune cells in the body. HSCs are housed in a specialized microenvironment known as the stem cell niche, which provides intrinsic and extrinsic signals to regulate HSC fate: quiescence, self-renewal, differentiation, mobilization, homing, and apoptosis. These niches provide a complex, three dimensional (3D) microenvironment consisting of cells, the extracellular matrix (ECM), and ECM-bound or soluble biomolecules that provides cellular, structural, and molecular signals that regulate HSC fate decisions. In this study, we examined the decoupled effects of substrate elasticity, construct dimensionality, and ligand concentration on the biophysical properties of primary hematopoietic stem and progenitor cells (HSPCs) using homologous series of two and three dimensional microenvironments. Microenvironments were chosen to span the range of biophysical environments presented physiologically within the bone marrow, ranging from soft marrow and adipose tissue (<1 kPa), to surrounding cell membranes (1-3 kPa), to developing osteoid (>30 kPa). We additionally investigated the influence of collagen ligand density on HSPC biophysical parameters and compared these behaviors to those observed in HSPCs grown in culture on stiff glass substrates. This work suggests the potential for substrate stiffness and ligand density to directly affect the biophysical properties of primary hematopoietic stem and progenitor cells at the single cell level and that these parameters may be critical design criteria for the development of artificial HSC niches.  相似文献   

3.
Analysis of the human fetal liver hematopoietic microenvironment   总被引:4,自引:0,他引:4  
In the adult, hematopoietic stem cells (HSCs) are resident in the bone marrow (BM) compartment and are in direct association with the BM stromal microenvironment. However, human adult HSCs are largely quiescent and undergo limited self-renewal. This is in contrast to the higher frequency of cycling HSCs undergoing self-renewal during fetal development when hematopoiesis is transiently localized to the fetal liver (FL), suggesting that FL provides a more conducive microenvironment to support HSCs. Here, we provide phenotypic and molecular characterization of primary human FL stromal cells capable of supporting human repopulating progenitors. Qualitative and quantitative analysis revealed several properties unique to FL stromal cells compared to adult BM-derived stroma that included a greater than 10-fold enhanced proliferative capacity of FL stromal vs adult BM, and a 2-fold increase in the number of N-cadherin- and osteopontin-expressing cells. Supportive of extrinsic influences likely to modulate HSC expansion, global gene expression microarray analysis revealed that FL stroma has higher expression of regulators of the Wnt signaling pathway compared to adult BM stroma, which demonstrated an increased expression of the Notch signaling pathway. Our results suggest that human FL stromal cells provide a unique microenvironment to HSCs compared to adult BM stroma by controlling Wnt signaling of HSCs during human fetal hematopoietic development, while Notch signaling is tightly regulated by the HSC microenvironment in the adult. We propose that the human HSC niche is ontogenically controlled during human development to provide appropriate expansion of fetal HSCs and subsequent maintenance of adult HSCs.  相似文献   

4.
Development of the hematopoietic system is a stage-specific process where the bone marrow eventually becomes the principal source of hematopoiesis in the adult mammalian organism. Sustained hematopoiesis in the bone marrow, however, depends on the self-renewal of the resident hematopoietic stem cells (HSCs). The region where these HSCs are hypothesized to self renew is called the stem cell 'niche.' Recent studies have identified components of the HSC niche in the bone marrow, including cells of the osteoblastic lineage, extracellular matrix molecules and molecular signaling interactions between the stem cells and niche cells. Specific pharmacological targeting of these niche components has led to beneficial HSC effects, demonstrating a new therapeutic approach where stem cell function is altered through targeting of the niche.  相似文献   

5.
Blood formation occurs throughout the life of an individual in a process driven by hematopoietic stem cells (HSCs). The ability of bone marrow (BM) and cord blood (CB) HSC to undergo self-renewal and develop into multiple blood lineages has made these cells an important clinical resource. Transplantation with BM- and CB-derived HSCs is now used extensively for treatment of hematological disorders, malignancies, and immunodeficiencies. An understanding of the embryonic origin of HSC and the factors regulating their generation and expansion in vivo will provide important information for the manipulation of these cells ex vivo. This is critical for the further development of CB transplantation, the potential of which is limited by small numbers of HSC in the donor population. Although the origins of HSCs have become clearer and progress has been made in identifying genes that are critical for the formation and maintenance of HSCs, less is known about the signals that commit specific populations of mesodermal precursors to hematopoietic cell fate. Critical signals acting on these precursor cells are likely to be derived from visceral endoderm in yolk sac and from underlying stroma in the aorta-gonad-mesonephros region. Here we summarize briefly the origin of yolk sac and embryonic HSCs before detailing evidence that bone morphogenic protein-4 (BMP4) has a crucial role in Xenopus and mammalian HSC development. We discuss evidence that BMP4 acts as a hematopoietic growth factor and review its potential to modulate HSC in ex vivo expansion cultures from cord blood.  相似文献   

6.
Identifying the molecular pathways regulating hematopoietic stem cell (HSC) specification, self-renewal, and expansion remains a fundamental goal of both basic and clinical biology. Here, we analyzed the effects of Notch signaling on HSC number during zebrafish development and adulthood, defining a critical pathway for stem cell specification. The Notch signaling mutant mind bomb displays normal embryonic hematopoiesis but fails to specify adult HSCs. Surprisingly, transient Notch activation during embryogenesis via an inducible transgenic system led to a Runx1-dependent expansion of HSCs in the aorta-gonad-mesonephros (AGM) region. In irradiated adults, Notch activity induced runx1 gene expression and increased multilineage hematopoietic precursor cells approximately threefold in the marrow. This increase was followed by the accelerated recovery of all the mature blood cell lineages. These data define the Notch-Runx pathway as critical for the developmental specification of HSC fate and the subsequent homeostasis of HSC number, thus providing a mechanism for amplifying stem cells in vivo.  相似文献   

7.
Hematopoietic stem cells (HSCs) have remained at the forefront of stem cell research for the past 50 years, since the therapeutic potential of bone marrow transplantation was realized. Uniquely, among stem and progenitor cells, research progress has been made in parallel between the laboratory benchtop and hospital bedside during this period. Integral to this work has been the role of the transfusion medicine services in the collection, storage, and processing of HSCs. The next decade promises to bring further developments: with new fields of cellular therapies, stem cell vaccination, and stem cell drug testing opening up. This article summarizes exciting areas of research concerning the behavior and potential clinical applications of HSCs. For the purposes of clarity, we describe in turn the trafficking and transfer of HSCs; ex vivo expansion of HSC units from different sources; and finally, applications of specifically selected subsets of hematopoietic cells and their progeny.  相似文献   

8.
Hematopoietic stem cells (HSCs) are currently utilized in the treatment of blood diseases, but widespread application of HSC therapeutics has been hindered by the limited availability of HSCs. With a better understanding of the HSC microenvironment and the ability to precisely recapitulate its components, we may be able to gain control of HSC behavior. In this work we developed a novel, biomimetic PEG hydrogel material as a substrate for this purpose and tested its potential with an anchorage-independent hematopoietic cell line, 32D clone 3 cells. We immobilized a fibronectin-derived adhesive peptide sequence, RGDS; a cytokine critical in HSC self-renewal, stem cell factor (SCF); and a chemokine important in HSC homing and lodging, stromal derived factor 1α (SDF1α), onto the surfaces of poly(ethylene glycol) (PEG) hydrogels. To evaluate the system’s capabilities, we observed the effects of the biomolecules on 32D cell adhesion and morphology. We demonstrated that the incorporation of RGDS onto the surfaces promotes 32D cell adhesion in a dose-dependent fashion. We also observed an additive response in adhesion on surfaces with RGDS in combination with either SCF or SDF1α. In addition, the average cell area increased and circularity decreased on gel surfaces containing immobilized SCF or SDF1α, indicating enhanced cell spreading. By recapitulating aspects of the HSC microenvironment using a PEG hydrogel scaffold, we have shown the ability to control the adhesion and spreading of the 32D cells and demonstrated the potential of the system for the culture of primary hematopoietic cell populations.  相似文献   

9.
Hematopoiesis is a dynamic and strictly regulated process orchestrated by self-renewing hematopoietic stem cells (HSCs) and the supporting microenvironment. However, the exact mechanisms by which individual human HSCs sustain hematopoietic homeostasis remain to be clarified. To understand how the long-term repopulating cell (LTRC) activity of individual human HSCs and the hematopoietic hierarchy are maintained in the bone marrow (BM) microenvironment, we traced the repopulating dynamics of individual human HSC clones using viral integration site analysis. Our study presents several lines of evidence regarding the in vivo dynamics of human hematopoiesis. First, human LTRCs existed in a rare population of CD34(+)CD38(-) cells that localized to the stem cell niches and maintained their stem cell activities while being in a quiescent state. Second, clonally distinct LTRCs controlled hematopoietic homeostasis and created a stem cell pool hierarchy by asymmetric self-renewal division that produced lineage-restricted short-term repopulating cells and long-lasting LTRCs. Third, we demonstrated that quiescent LTRC clones expanded remarkably to reconstitute the hematopoiesis of the secondary recipient. Finally, we further demonstrated that human mesenchymal stem cells differentiated into key components of the niche and maintained LTRC activity by closely interacting with quiescent human LTRCs, resulting in more LTRCs. Taken together, this study provides a novel insight into repopulation dynamics, turnover, hierarchical structure, and the cell cycle status of human HSCs in the recipient BM microenvironment.  相似文献   

10.
Hematopoietic stem cells (HSCs) are a rare stem cell population found primarily in the bone marrow and responsible for the production of the body's full complement of blood and immune cells. Used clinically to treat a range of hematopoietic disorders, there is a significant need to identify approaches to selectively expand their numbers ex vivo. Here we describe a methacrylamide-functionalized gelatin (GelMA) hydrogel for in vitro culture of primary murine HSCs. Stem cell factor (SCF) is a critical biomolecular component of native HSC niches in vivo and is used in large dosages in cell culture media for HSC expansion in vitro. We report a photochemistry based approach to covalently immobilize SCF within GelMA hydrogels via acrylate-functionalized polyethylene glycol (PEG) tethers. PEG-functionalized SCF retains the native bioactivity of SCF but can be stably incorporated and retained within the GelMA hydrogel over 7 days. Freshly-isolated murine HSCs cultured in GelMA hydrogels containing covalently-immobilized SCF showed reduced proliferation and improved selectivity for maintaining primitive HSCs. Comparatively, soluble SCF within the GelMA hydrogel network induced increased proliferation of differentiating hematopoietic cells. We used a microfluidic templating approach to create GelMA hydrogels containing gradients of immobilized SCF that locally direct HSC response. Together, we report a biomaterial platform to examine the effect of the local presentation of soluble vs. matrix-immobilized biomolecular signals on HSC expansion and lineage specification. This approach may be a critical component of a biomaterial-based artificial bone marrow to provide the correct sequence of niche signals to grow HSCs in the laboratory.  相似文献   

11.
12.
Hematopoietic stem cell (HSC) self-renewal is tightly regulated by a complex crosstalk between many cell-intrinsic regulators and a variety of extrinsic signals from the stem cell niche. In this study, we examined whether the p38 mitogen-activated protein kinase (p38) is one of the intrinsic regulators that can negatively regulate HSC self-renewal in vitro and whether inhibition of p38 activity with a small molecule inhibitor can promote HSC expansion ex vivo. The results from this study showed that sorted mouse bone marrow Lin(-)Sca1(+)c-kit(+) cells (LSK(+) cells) exhibited selective activation of p38 after culture in a serum-free medium supplemented with 100 ng/mL stem cell factor, thrombopoietin, and Flt3 ligand. The activation of p38 was associated with a significant reduction in HSCs and induction of apoptosis and cellular senescence in LSK(+) cells and their progeny. Addition of the specific p38 inhibitor SB203580 (SB, 5 μM) to the culture inhibited the activation of p38 in LSK(+) cells, which led to increase in HSC self-renewal and ex vivo expansion as shown by the cobblestone area forming cell assay, competitive repopulation, and serial transplantation. The increase in HSC expansion is likely attributable to SB-mediated inhibition of HSC apoptosis and senescence and upregulation of HoxB4 and CXCR4. These findings suggest that p38 plays an important role in the regulation of HSC self-renewal in vitro and inhibition of p38 activation with a small molecule inhibitor may represent a novel approach to promote ex vivo expansion of HSCs.  相似文献   

13.
Hematopoietic stem cells (HSCs) have enormous potential for use in transplantation and gene therapy. However, the frequency of repopulating HSCs is often very low; thus, highly effective techniques for cell enrichment and maintenance are required to obtain sufficient cell numbers for therapeutic use and for studies of HSC physiology. Common methods of HSC enrichment use antibodies recognizing HSC surface marker antigens. Because antibodies are known to alter the physiology of other cell types, we investigated the effect of such enrichment strategies on the physiology and lineage commitment of HSCs. We sorted HSCs using a method that does not require antibodies: exclusion of Hoechst 33342 to isolate side population (SP) cells. To elucidate the effect of antibody binding on this HSC population, we compared untreated SP cells with SP cells treated with the Sca-1(+)c-Kit(+)Lin(-) (SKL) antibody cocktail prior to SP sorting. Our findings revealed that HSCs incubated with the antibody cocktail had decreased expression of the stem cell-associated genes c-Kit, Cd34, Tal-1, and Slamf1 relative to untreated SP cells or to cells treated with polyclonal isotype control antibodies. Moreover, SKL antibodies induced cycling in SP cells and diminished their ability to confer long-term hematopoietic engraftment in lethally irradiated mice. Taken together, these data suggest that antibody-based stem cell isolation procedures can have negative effects on HSC physiology.  相似文献   

14.
Crosstalk between hematopoietic stem cells (HSCs) and the cells comprising the niche is critical for maintaining stem cell activities. Yet little evidence supports the concept that HSCs regulate development of the niche. Here, the ability of HSCs to directly regulate endosteal development was examined. Marrow was isolated 48 hours after "stressing" mice with a single acute bleed or from control nonstressed animals. "Stressed" and "nonstressed" HSCs were cocultured with bone marrow stromal cells to map mesenchymal fate. The data suggest that HSCs are able to guide mesenchymal differentiation toward the osteoblastic lineage under basal conditions. HSCs isolated from animals subjected to an acute stress were significantly better at inducing osteoblastic differentiation in vitro and in vivo than those from control animals. Importantly, HSC-derived bone morphogenic protein 2 (BMP-2) and BMP-6 were responsible for these activities. Furthermore, significant differences in the ability of HSCs to generate a BMP response following stress were noted in aged and in osteoporotic animals. Together these data suggest a coupling between HSC functions and bone turnover as in aging and in osteoporosis. For the first time, these results demonstrate that HSCs do not rest passively in their niche. Instead, they directly participate in bone formation and niche activities. Disclosure of potential conflicts of interest is found at the end of this article.  相似文献   

15.
Hematopoietic stem cell (HSC) function is tightly regulated by cytokine signaling. Although phospho-flow cytometry allows us to study signaling in defined populations of cells, there has been tremendous hurdle to carry out this study in rare HSCs due to unrecoverable critical HSC markers, low HSC number, and poor cell recovery rate. Here, we overcame these difficulties and developed a "HSC phospho-flow" method to analyze cytokine signaling in murine HSCs at the single-cell level and compare HSC signaling profile to that of multipotent progenitors (MPPs), a cell type immediately downstream of HSCs, and commonly used Lin(-) cKit(+) cells (LK cells, enriched for myeloid progenitors). We chose to study signaling evoked from three representative cytokines, stem cell factor (SCF) and thrombopoietin (TPO) that are essential for HSC function and granulocyte macrophage-colony-stimulating factor (GM-CSF) that is dispensable for HSCs. HSCs display a distinct TPO and GM-CSF signaling signature from MPPs and LK cells, which highly correlates with receptor surface expression. In contrast, although majority of LK cells express lower levels of cKit than HSCs and MPPs, SCF-evoked ERK1/2 activation in LK cells shows a significantly increased magnitude for a prolonged period. These results suggest that specific cellular context plays a more important role than receptor surface expression in SCF signaling. Our study of HSC signaling at the homeostasis stage paves the way to investigate signaling changes in HSCs under conditions of stress, aging, and hematopoietic diseases.  相似文献   

16.
The Polycomb group (PcG) gene Bmi-1 has recently been implicated in the maintenance of hematopoietic stem cells (HSC) from loss-of-function analysis. Here, we demonstrate that increased expression of Bmi-1 promotes HSC self-renewal. Forced expression of Bmi-1 enhanced symmetrical cell division of HSCs and mediated a higher probability of inheritance of stemness through cell division. Correspondingly, forced expression of Bmi-1, but not the other PcG genes, led to a striking ex vivo expansion of multipotential progenitors and marked augmentation of HSC repopulating capacity in vivo. Loss-of-function analyses revealed that among PcG genes, absence of Bmi-1 is preferentially linked with a profound defect in HSC self-renewal. Our findings define Bmi-1 as a central player in HSC self-renewal and demonstrate that Bmi-1 is a target for therapeutic manipulation of HSCs.  相似文献   

17.
Hematopoietic stem cells (HSCs) are the vital, life-long source of all blood cell types. They are found in stem cell niches, specific anatomic locations that offer all the factors and signals necessary for the maintenance of the stem cell potential of HSCs. Much attention has been paid to the biochemical composition of the niches, but only little is known about the influence of physical parameters, such as ligand nanopatterns, on HSCs. To investigate the impact of nanometer-scale spacing between cell ligands on HSC adhesion, integrin distribution and signal transduction, we employed geometrically defined, nanostructured, bio-functionalized surfaces. HSCs proved to be sensitive to the lateral distance between the presented ligands with regard to adhesion and lipid raft clustering, the latter being a prerequisite for the formation of signaling complexes. Furthermore, an extensive redistribution of stem cell markers, integrins and phosphorylated proteins in HSCs was observed. In conclusion, integrin-mediated adhesion and signaling of HSCs proved to depend on the nanostructured presentation of ligands in their environment. In this work, we show that the nanostructure of the matrix is an important parameter influencing HSC behavior that should be integrated into biomaterial-based approaches aiming at HSC multiplication or differentiation.  相似文献   

18.
Successful clinical outcomes from transplantation of hematopoietic stem cells (HSCs) depend upon efficient HSC homing to bone marrow (BM), subsequent engraftment, and, finally, BM repopulation. Homing of intravenously administered HSCs from peripheral blood (PB) through the circulation to the BM stem cell niches, which is the first critical step that precedes their engraftment, is enforced by chemotactic factors released in the BM microenvironment that chemoattract HSCs. These chemotactic factors include α-chemokine stromal-derived factor 1 (SDF-1), the bioactive phosphosphingolipids sphingosine-1-phosphate (S1P) and ceramid-1-phosphate (C1P), and the extracellular nucleotides ATP and UTP. Stem cells may also respond to a Ca2+ or H+ gradient by employing calcium- or proton-sensing receptors, respectively. In this review, we will present emerging strategies based on ex vivo manipulation of graft HSCs that are aimed at enhancing the responsiveness of HSCs to BM-secreted chemoattractants and/or promoting HSC adhesion and seeding efficiency in the BM microenvironment.  相似文献   

19.
Hematopoietic stem cells (HSCs) continuously replenish all classes of blood cells through a series of lineage restriction steps that results in the progressive loss of differentiation potential to other cell lineages. This review focuses on the recent advances in understanding one of the earliest differentiation steps in HSC maturation, which involves the diversification of the lymphoid and myeloid cell lineages, the two major branches of hematopoietic cells. We discuss progress in the identification and characterization of progenitor populations downstream of HSCs, which has been a key to understanding the sequential biological events that take place along the course of differentiation into a certain hematopoietic cell type. We also discuss the importance of bone marrow microenvironment in lymphoid and myeloid lineage choice.  相似文献   

20.
The adult mammalian hemopoietic system maintains an extraordinarily large, yet well regulated supply of mature blood cells within the circulation throughout life. The system is capable of rapid recovery and compensation following injury, environmental stress or as a result of genetic disease such as the hemoglobinopathies. Despite the vast amount of research conducted there is still an incomplete understanding of hemopoietic regulation. Nevertheless, it is evident from transplantation studies that ongoing blood cell production is absolutely dependent upon hemopoietic stem cells (HSCs). These rare and potent cells have the capacity for extensive proliferation and the ability to differentiate into all blood cell types. An understanding of HSC regulation is fundamental to understanding hemopoiesis. There is now considerable evidence to demonstrate that in vivo, HSCs are located within defined anatomical sites or niches within the bone marrow. Regulation of HSC fate is mediated by both cell-autonomous mechanisms and extrinsic cues resulting from interactions between cells and extracellular components within the niche. This review focuses on the role of hyaluronic acid, a component of the HSC niche and moreover a HSC-associated glycosaminoglycan, in hemopoiesis and specifically HSC regulation. It is now evident that hyaluronic acid not only provides a physical scaffold or support within the marrow to facilitate localization and retention of HSCs to the stem cell niche but moreover, through ligation with its counter-receptors is able to directly affect the cellular functions of HSCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号