首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The utilization of hyper-thermal neutrons, which have an energy spectrum with a Maxwellian distribution at a higher temperature than room temperature (300 K), was studied in order to improve the thermal neutron flux distribution at depth in a living body for neutron capture therapy. Simulation calculations were carried out using a Monte Carlo code 'MCNP-V3' in order to investigate the characteristics of hyper-thermal neutrons, i.e. (i) depth dependence of the neutron energy spectrum, and (ii) depth distribution of the reaction rate in a water phantom for materials with 1/v neutron absorption. It is confirmed that hyper-thermal neutron irradiation can improve the thermal neutron flux distribution in the deeper areas in a living body compared with thermal neutron irradiation. When hyper-thermal neutrons with a 3000 K Maxwellian distribution are incident on a body, the reaction rates of 1/v materials such as 14N, 10B etc are about twice that observed for incident thermal neutrons at 300 K, at a depth of 5 cm. The limit of the treatable depth for tumours having 30 ppm 10B is expected to be about 1.5 cm greater by utilizing hyper-thermal neutrons at 3000 K compared with the incidence of thermal neutrons at 300 K.  相似文献   

2.
Physical studies on (i) replacement of heavy water for body water (deuteration), and (ii) formation of a void in human body (void formation) were performed as control techniques for dose distribution in a human head under neutron capture therapy. Simulation calculations were performed for a human-head-size cylindrical phantom using a two-dimensional transport calculation code for mono-energetic incidences of higher-energy epi-thermal neutrons (1.2-10 keV), lower-energy epi-thermal neutrons (3.1-23 eV) and thermal neutrons (1 meV to 0.5 eV). The deuteration was confirmed to be effective both in thermal neutron incidence and in epi-thermal neutron incidence from the viewpoints of improvement of the thermal neutron flux distribution and elimination of the secondary gamma rays. For the void formation, a void was assumed to be 4 cm in diameter and 3 cm in depth at the surface part in this study. It was confirmed that the treatable depth was improved almost 2 cm for any incident neutron energy in the case of the 10 cm irradiation field diameter. It was made clear that the improvement effect was larger in isotropic incidence than in parallel incidence, in the case that an irradiation field size was delimited fitting into a void diameter.  相似文献   

3.
Boron neutron capture therapy (BNCT) without craniotomy for malignant brain tumours was started using an epi-thermal neutron beam at the Kyoto University Reactor in June 2002. We have tried some techniques to overcome the treatable-depth limit in BNCT. One of the effective techniques is void formation utilizing a tumour-removed cavity. The tumorous part is removed by craniotomy about 1 week before a BNCT treatment in our protocol. Just before the BNCT irradiation, the cerebro-spinal fluid (CSF) in the tumour-removed cavity is drained out, air is infused to the cavity and then the void is made. This void improves the neutron penetration, and the thermal neutron flux at depth increases. The phantom experiments and survey simulations modelling the CSF drainage and air infusion of the tumour-removed cavity were performed for the size and shape of the void. The advantage of the CSF drainage and air infusion is confirmed for the improvement in the depth-dose distribution. From the parametric surveys, it was confirmed that the cavity volume had good correlation with the improvement effect, and the larger effect was expected as the cavity volume was larger.  相似文献   

4.
Sakurai Y  Kobayashi T 《Medical physics》2002,29(10):2328-2337
At the Heavy Water Neutron Irradiation Facility of the Kyoto University Research Reactor, the mix irradiation of thermal and epi-thermal neutrons, and the solo irradiation of epi-thermal neutrons are available additionally to the thermal neutron irradiation, and then the neutron capture therapy (NCT) at this facility became more flexible, after the update in 1996. The estimation of the depth dose distributions in NCT clinical irradiation, were performed for the standard irradiation modes of thermal, mixed and epi-thermal neutrons, from the both sides of experiment and calculation. On the assumption that the 10B concentration in tumor part was 40 ppm and the ratio of tumor to normal tissue was 3.5, the advantage depth were estimated to 5.4, 6.0, and 8.0, for the respective standard irradiation modes. It was confirmed that the various irradiation conditions can be selected according to the target-volume conditions, such as size, depth, etc. Besides, in the viewpoint of the radiation shielding for patient, it was confirmed that the whole-body exposure is effectively reduced by the new clinical collimators, compared with the old one.  相似文献   

5.
The feasibility of neutron capture therapy (NCT) using an accelerator-based neutron source of the 7Li(p,n) reaction produced by 2.5 MeV protons was investigated by comparing the neutron beam tailored by both the Hiroshima University radiological research accelerator (HIRRAC) and the heavy water neutron irradiation facility in the Kyoto University reactor (KUR-HWNIF) from the viewpoint of the contamination dose ratios of the fast neutrons and the gamma rays. These contamination ratios to the boron dose were estimated in a water phantom of 20 cm diameter and 20 cm length to simulate a human head, with experiments by the same techniques for NCT in KUR-HWNIF and/or the simulation calculations by the Monte Carlo N-particle transport code system version 4B (MCNP-4B). It was found that the 7Li(p,n) neutrons produced by 2.5 MeV protons combined with 20, 25 or 30 cm thick D20 moderators of 20 cm diameter could make irradiation fields for NCT with depth-dose characteristics similar to those from the epithermal neutron beam at the KUR-HWNIF.  相似文献   

6.
Sakurai Y  Kobayashi T 《Medical physics》2002,29(10):2338-2350
The updating construction of the Heavy Water Neutron Irradiation Facility of the Kyoto University Research Reactor has been performed from November 1995 to March 1996 mainly for the improvement in neutron capture therapy. On the performance, the neutron irradiation modes with the variable energy spectra from almost pure thermal to epi-thermal neutrons became available by the control of the heavy-water thickness in the spectrum shifter and by the open-and-close of the cadmium and boral thermal neutron filters. The depth distributions of thermal, epi-thermal and fast neutron fluxes were measured by activation method using gold and indium, and the depth distributions of gamma-ray absorbed dose rate were measured using thermo-luminescent dosimeter of beryllium oxide for the several irradiation modes. From these measured data, the controllability of the depth dose distribution using the spectrum shifter and the thermal neutron filters was confirmed.  相似文献   

7.
Since boron neutron capture therapy (BNCT) with epithermal neutron beams started at the Kyoto University Reactor (KUR) in June 2002, nearly 200 BNCT treatments have been carried out. The epithermal neutron irradiation significantly improves the dose distribution, compared with the previous irradiation mainly using thermal neutrons. However, the treatable depth limit still remains. One effective technique to improve the limit is the central shield method. Simulations were performed for the incident neutron energies and the annular components of the neutron source. It was clear that thermal neutron flux distribution could be improved by decreasing the lower energy neutron component and the inner annular component of the incident beam. It was found that a central shield of 4-6 cm diameter and 10 mm thickness is effective for the 12 cm diameter irradiation field. In BNCT at KUR, the depth dose distribution can be much improved by the central shield method, resulting in a relative increase of the dose at 8 cm depth by about 30%. In addition to the depth dose distribution, the depth dose profile is also improved. As the dose rate in the central area is reduced by the additional shielding, the necessary irradiation time, however, increases by about 30% compared to normal treatment.  相似文献   

8.
The HANARO neutron irradiation facility for various applications in the boron neutron capture therapy (BNCT) field was developed, and its characteristics were investigated. In order to obtain the sufficient thermal neutron flux with a low level of contamination by fast neutrons and gamma rays, a radiation filtering method was adopted. The radiation filter was designed by using a silicon single crystal, cooled by liquid nitrogen, and a bismuth crystal. The installation of the main components of the irradiation facility and the irradiation room was finished. Neutron beam characteristics were measured by using bare and cadmium-covered gold foils and wires. The in-phantom neutron flux distribution was measured for flux mapping inside the phantom. The gamma-ray dose was determined by using TLD-700 thermoluminescence dosimeters. The thermal and fast neutron fluxes and the gamma-ray dose were calculated by using the MCNP code, and they were compared with experimental data. The thermal neutron flux and Cd ratio available at this facility were confirmed to be 1.49 x 10(9) n cm(-2) s(-1) and 152, respectively. The maximum neutron flux inside the phantom was measured to be 2.79 x 10(9) n cm(-2) s(-1) at a depth of 3 mm in the phantom. The two-dimensional in-phantom neutron flux distribution was determined, and significant neutron irradiation was observed within 20 mm from the phantom surface. The gamma-ray dose rate for the free beam condition was expected to be about 80 cGy h(-1). These experimental results were reasonably well supported by calculation using the facility design code. This HANARO thermal neutron facility can be used not only for clinical trials, but also for various pre-clinical studies in the BNCT field.  相似文献   

9.
A modified neutron production target assembly has been developed to provide improved performance of the proton-cyclotron-based neutron radiotherapy facility at the University of Washington for applications involving neutron capture enhanced fast-neutron therapy. The new target produces a neutron beam that yields essentially the same fast-neutron physical depth-dose distribution as is produced by the current UW clinical system, but that also has an increased fraction of BNCT enhancement relative to the total therapeutic dose. The modified target is composed of a 5-millimeter layer of beryllium, followed by a 2.5-millimeter layer of tungsten, with a water-cooled copper backing. Measurements of the free-field neutron spectrum of the beam produced by the new target were performed using activation foils with a direct spectral unfolding technique. Water phantom measurements were performed using a tissue-equivalent ion chamber to characterize the fast-neutron depth-dose curve and sodium activation in soda-lime glass beads to characterize the thermal-neutron flux (and thus the expected neutron capture dose enhancement) as a function of depth. The results of the various measurements were quite consistent with expectations based on the design calculations for the modified target. The spectrum of the neutron beam produced by the new target features an enhanced low-energy flux component relative to the spectrum of the beam produced by the standard UW target. However, it has essentially the same high-energy neutron flux, with a reduced flux component in the mid-range of the energy spectrum. As a result, the measured physical depth-dose curve in a large water phantom has the same shape compared to the case of the standard UW clinical beam, but approximately twice the level of BNCT enhancement per unit background neutron dose at depths of clinical interest. In-vivo clinical testing of BNCT-enhanced fast-neutron therapy for canine lung tumors using the new beam was recently initiated.  相似文献   

10.
GEANT4 is a Monte Carlo code originally implemented for high-energy physics applications and is well known for particle transport at high energies. The capacity of GEANT4 to simulate neutron transport in the thermal energy region is not equally well known. The aim of this article is to compare MCNP, a code commonly used in low energy neutron transport calculations and GEANT4 with experimental results and select the suitable code for gadolinium neutron capture applications. To account for the thermal neutron scattering from chemically bound atoms [S(alpha,beta)] in biological materials a comparison of thermal neutron fluence in tissue-like poly(methylmethacrylate) phantom is made with MCNP4B, GEANT4 6.0 patch1, and measurements from the neutron capture therapy (NCT) facility at the Studsvik, Sweden. The fluence measurements agreed with MCNP calculated results considering S(alpha,beta). The location of the thermal neutron peak calculated with MCNP without S(alpha,beta) and GEANT4 is shifted by about 0.5 cm towards a shallower depth and is 25%-30% lower in amplitude. Dose distribution from the gadolinium neutron capture reaction is then simulated by MCNP and compared with measured data. The simulations made by MCNP agree well with experimental results. As long as thermal neutron scattering from chemically bound atoms are not included in GEANT4 it is not suitable for NCT applications.  相似文献   

11.
As clinical trials of Neutron Capture Therapy (NCT) are initiated in the U.S. and other countries, new treatment planning codes are being developed to calculate detailed dose distributions in patient-specific models. The thorough evaluation and comparison of treatment planning codes is a critical step toward the eventual standardization of dosimetry, which, in turn, is an essential element for the rational comparison of clinical results from different institutions. In this paper we report development of a reference suite of computational test problems for NCT dosimetry and discuss common issues encountered in these calculations to facilitate quantitative evaluations and comparisons of NCT treatment planning codes. Specifically, detailed depth-kerma rate curves were calculated using the Monte Carlo radiation transport code MCNP4B for four different representations of the modified Snyder head phantom, an analytic, multishell, ellipsoidal model, and voxel representations of this model with cubic voxel sizes of 16, 8, and 4 mm. Monoenergetic and monodirectional beams of 0.0253 eV, 1, 2, 10, 100, and 1000 keV neutrons, and 0.2, 0.5, 1, 2, 5, and 10 MeV photons were individually simulated to calculate kerma rates to a statistical uncertainty of <1% (1 std. dev.) in the center of the head model. In addition, a "generic" epithermal neutron beam with a broad neutron spectrum, similar to epithermal beams currently used or proposed for NCT clinical trials, was computed for all models. The thermal neutron, fast neutron, and photon kerma rates calculated with the 4 and 8 mm voxel models were within 2% and 4%, respectively, of those calculated for the analytical model. The 16 mm voxel model produced unacceptably large discrepancies for all dose components. The effects from different kerma data sets and tissue compositions were evaluated. Updating the kerma data from ICRU 46 to ICRU 63 data produced less than 2% difference in kerma rate profiles. The depth-dose profile data, Monte Carlo code input, kerma factors, and model construction files are available electronically to aid in verifying new and existing NCT treatment planning codes.  相似文献   

12.
The aim of this study was to determine the in-phantom thermal neutron distribution derived from neutron beams for intraoperative boron neutron capture therapy (IOBNCT). Gold activation wires arranged in a cylindrical water phantom with (void-in-phantom) or without (standard phantom) a cylinder styrene form placed inside were irradiated by using the epithermal beam (ENB) and the mixed thermal-epithermal beam (TNB-1) at the Japan Research Reactor No 4. With ENB, we observed a flattened distribution of thermal neutron flux and a significantly enhanced thermal flux delivery at a depth compared with the results of using TNB-1. The thermal neutron distribution derived from both the ENB and TNB-1 was significantly improved in the void-in-phantom, and a double high dose area was formed lateral to the void. The flattened distribution in the circumference of the void was observed with the combination of ENB and the void-in-phantom. The measurement data suggest that the ENB may provide a clinical advantage in the form of an enhanced and flattened dose delivery to the marginal tissue of a post-operative cavity in which a residual and/or microscopically infiltrating tumour often occurs. The combination of the epithermal neutron beam and IOBNCT will improve the clinical results of BNCT for brain tumours.  相似文献   

13.
Theoretically, partial deuteration of body water should allow significantly increased neutron penetration in tissue. To evaluate the possible usefulness of partially deuterated water in neutron capture therapy (NCT), neutron flux density distributions were measured in a 23 x 16.5 cm (length x diameter) cylinder for incident thermal and epithermal neutron beams, at 20 and 40 at. % deuteration of water. Relative to neutron flux densities in nondeuterated water, flux densities increased significantly with increasing depth and increasing levels of deuteration. For example, at a depth of 6 cm, flux density was increased approximately 20% to 50% for 20 to 40 at. % deuteration. In a clinical situation, this would increase tumor dose by approximately 30%. Further benefits include the reduced hydrogen neutron capture and the chemical radioprotective effects of partial deuteration for photon radiation.  相似文献   

14.
Bortolussi S  Altieri S 《Medical physics》2007,34(12):4700-4705
The selective uptake of boron by tumors compared to that by healthy tissue makes boron neutron capture therapy (BNCT) an extremely advantageous technique for the treatment of tumors that affect a whole vital organ. An example is represented by colon adenocarcinoma metastases invading the liver, often resulting in a fatal outcome, even if surgical resection of the primary tumor is successful. BNCT can be performed by irradiating the explanted organ in a suitable neutron field. In the thermal column of the Triga Mark II reactor at Pavia University, a facility was created for this purpose and used for the irradiation of explanted human livers. The neutron field distribution inside the organ was studied both experimentally and by means of the Monte Carlo N-particle transport code (MCNP). The liver was modeled as a spherical segment in MCNP and a hepatic-equivalent solution was used as an experimental phantom. In the as-built facility, the ratio between maximum and minimum flux values inside the phantom ((phi(max)/phi(min)) was 3.8; this value can be lowered to 2.3 by rotating the liver during the irradiation. In this study, the authors proposed a new facility configuration to achieve a uniform thermal neutron flux distribution in the liver. They showed that a phi(max)/phi(min) ratio of 1.4 could be obtained without the need for organ rotation. Flux distributions and dose volume histograms were reported for different graphite configurations.  相似文献   

15.
Dose delivery in boron neutron capture therapy (BNCT) is complex because several components contribute to the dose absorbed in tissue. This dose is largely determined by local boron concentration, thermal neutron distribution and patient positioning. In vivo measurements of these factors would considerably improve quality control and safety. During therapy, a y-ray telescope measures the y-rays emitted following neutron capture by hydrogen and boron in a small volume of the head of a patient. Scans of hydrogen y-ray emissions could be used to verify the actual distribution of thermal neutrons during neutron irradiation. The method was first tested on different phantoms. These measurements showed good agreement with calculations based on thermal neutron distributions derived from a treatment planning program and from Monte Carlo N-particle (MCNP) simulations. Next, the feasibility of telescope scans during patient irradiation therapy was demonstrated. Measurements were reproducible between irradiation fractions. In theory, this method can be used to verify the positioning of the patient in vivo and the delivery of thermal neutrons in tissue. However, differences between measurements and calculations based on a routine treatment planning program were observed. These differences could be used to refine the treatment planning. Further developments will be necessary for this method to become a standard quality control system.  相似文献   

16.
The potential efficacy of boron neutron capture therapy (BNCT) for malignant glioma is a significant function of epithermal-neutron beam biophysical characteristics as well as boron compound biodistribution characteristics. Monte Carlo analyses were performed to evaluate the relative significance of these factors on theoretical tumor control using a standard model. The existing, well-characterized epithermal-neutron sources at the Brookhaven Medical Research Reactor (BMRR), the Petten High Flux Reactor (HFR), and the Finnish Research Reactor (FiR-1) were compared. Results for a realistic accelerator design by the E. O. Lawrence Berkeley National Laboratory (LBL) are also compared. Also the characteristics of the compound p-Boronophenylaline Fructose (BPA-F) and a hypothetical next-generation compound were used in a comparison of the BMRR and a hypothetical improved reactor. All components of dose induced by an external epithermal-neutron beam fall off quite rapidly with depth in tissue. Delivery of dose to greater depths is limited by the healthy-tissue tolerance and a reduction in the hydrogen-recoil and incident gamma dose allow for longer irradiation and greater dose at a depth. Dose at depth can also be increased with a beam that has higher neutron energy (without too high a recoil dose) and a more forward peaked angular distribution. Of the existing facilities, the FiR-1 beam has the better quality (lower hydrogen-recoil and incident gamma dose) and a penetrating neutron spectrum and was found to deliver a higher value of Tumor Control Probability (TCP) than other existing beams at shallow depth. The greater forwardness and penetration of the HFR the FiR-1 at greater depths. The hypothetical reactor and accelerator beams outperform at both shallow and greater depths. In all cases, the hypothetical compound provides a significant improvement in efficacy but it is shown that the full benefit of improved compound is not realized until the neutron beam is fully optimized.  相似文献   

17.
Boron neutron capture therapy (BNCT) of brain tumours was investigated using thermal neutrons generated by a middle-power research reactor such as the TRIGA-II. The spatial distributions of neutrons and gamma rays were measured using a head phantom at different collimator apertures. Total depth-dose distributions were deduced from these results and were evaluated. We also obtained an optimum condition in terms of the collimator aperture, the 10B concentration in the tumour and the ratio of 10B concentration in the tumour to that in normal tissue. We found that, under this condition, BNCT using thermal neutrons from the TRIGA-II could be successfully used to treat a deep tumour.  相似文献   

18.
Epithermal neutron beams are under development in a number of locations in the U.S. and abroad. The increased penetration in tissue provided by these neurons should circumvent problems associated with the rapid attenuation of thermal neutron beams encountered in previous clinical trials of neutron capture therapy (NCT). Physical and radiobiological experiments with two "intermediate energy" or "epithermal" beams have been reported. A comparison is made here between the 24-keV iron-filtered beam at Harwell, England, and the broad-spectrum Al2 O3 moderated beam at the Brookhaven Medical Research Reactor (BMRR). In addition, parameters which are relevant for NCT, and which are best suited for evaluation and comparison of beams, are discussed. Particular attention is paid to the mean neutron energy which can be tolerated without significant reduction of therapeutic gain (TG), where TG is the ratio of tumor dose to maximum normal tissue dose. It is suggested that the simplest and most meaningful parameters for comparison of beam intensity and purity are the epithermal neutron fluence rate, and the fast neutron dose per epithermal neutron (4.2 X 10(-11) rad/neutron for the broad-spectrum beam and 29 X 10(-11) rad/neutron for the 24-keV beam). While the Al2O3 beam is close to optimal, the 24-keV beam produces a significant fast neutron dose which results in a lower TG.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
An epithermal neutron beam has been designed and tested at the Georgia Institute of Technology's 5-MW Research Reactor. The prototype facility consists of aluminum and sulfur disks in a tangential beam port for fast neutron filtration. A cadmium sheet at the port exit removes the thermal neutrons from the transmitted beam, leaving an intensely epithermal neutron beam spanning five energy decades, each contributing to the flux demanded by boron neutron capture therapy. The thermal neutron flux generated by the incident epithermal neutrons in a polyethylene head phantom peaks at a depth of 3 cm and remains above the incident thermal flux to a 7-cm depth. The beam thus provides the penetration required for treating deep-seated gliomas. Photon contamination in the prototype facility is high, and a number of basic modifications are proposed for reducing it to safer levels.  相似文献   

20.
Potential improvement in neutron capture therapy (NCT) by utilizing both 157Gd and 10B is assessed considering two parameters calculated in transport models in MCNP4B, the dose to quiescent cells and the therapeutic ratio. Improved sterilization of quiescent or more generally non-uptaking cells is demonstrated with the addition of 157Gd to conventional 10B loading. The improved dose delivery to non-uptaking cells from concurrent administration of 157Gd and 10B is weighed against a second index, degradation in the therapeutic ratio resulting from the longer interaction lengths of the 157Gd capture products. Optimal concentrations of 157Gd are determined considering varying assumptions for boron uptake levels and selectivity. By analysing the dosimetry results of varying 157Gd concentrations applied concurrently with BPA-delivered boron in NCT, this work seeks to determine a balance between the high tumour-specific dose provided by BPA and the high dose to quiescent cells provided by potential gadolinium agents. Depending upon the assumptions for drug specificity, tumour size and fraction of quiescent cells, NCT with low levels of 157Gd (125 microg g(-1)) supplementing 10B loadings was shown to be superior to treatments applying 10B alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号