首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Thymocytes can be divided into four major subpopulations: CD4+CD8+ (double-positive), CD4-CD8- (double-negative), CD4+CD8- (CD4+) and CD4-CD8+ (CD8+) cells. Recent studies have shown that T-cell development in the thymus progresses as: CD4-CD8(-)----CD4+CD8(+)----CD4+ or CD8+ cells. In the present study we investigated these and other subpopulations of thymocytes in autoimmune MRL(-)+/+, MRL-lpr/lpr, C57BL/6-lpr/lpr, BXSB and NZB mice before (1-month old) and after (4-6-months old) the onset of lymphadenopathy and autoimmune disease. All the autoimmune strains at one month of age and other H-2, sex and age-matched controls (C3H, DBA/2, and C57BL/6) demonstrated normal proportions of thymocyte subsets with approximately 75% double-positive cells, 5-7% double-negative cells, 11-15% CD4+ cells and 3-5% CD8+ cells. By 4-6 months of age, MRL(-)+/+ mice demonstrated a moderate increase in double-negative cells (approximately 13%) and a decrease in double-positive cells (approximately 46%). Interestingly, in the presence of the lpr gene, as seen in MRL-lpr/lpr mice, the double-negative cells increased to approximately 47% and the double-positive cells decreased to approximately 16%. In contrast, 4-6-month-old C57BL/6-lpr/lpr mice failed to demonstrate any alterations in the thymocyte subsets thereby suggesting that background genes, in addition to the lpr gene, played a role in the thymocyte differentiation. BXSB male mice with severe lymphadenopathy behaved very similarly to MRL-lpr/lpr mice, inasmuch as their thymus contained approximately 48% double-negative cells and only approximately 8% double-positive cells. In contrast to MRL-lpr/lpr and BXSB strains, NZB mice at 6 or 10 months of age had normal composition of thymocyte subsets. In MRL and BXSB animals, although there was a significant increase in CD4+ cells (approximately 23-33%), due to a consequent increase in CD8+ cells (approximately 11%), the ratio of CD4+:CD8+ cells remained 2-3:1, similar to that seen in normal mice. Furthermore, using the J11d marker expressed by the majority of the double-negative and all double-positive thymocytes but not by mature functional T cells, we confirmed the above findings and demonstrated further that MRL-lpr/lpr mice at 4-6 months of age had an increased percentage of J11d- double-negative cells and a decrease in J11d+ double-negative cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
The mucosal immune system of the gastrointestinal (GI) tract consists of Peyer's patches (PP), which are IgA inductive sites, and more diffuse effector regions which include cells in the intraepithelial lymphocyte (IEL) compartment. Since autoimmune MRL lpr/lpr (MRL/lpr) mice develop a proliferating CD3+, CD4-, CD8- (double negative; DN), B220+ T cell subset in systemic lymphoid tissue, we have initiated studies to determine the distribution of CD3+, DN, B220+ T cells (B220+ T cells or lpr/lpr T cells) in the GI immune system. Specifically, we examined T cell subsets separated according to expression of CD4, CD8, Thy-1, B220, alpha/beta T cell receptor (TcR) and gamma/delta TcR in PP and IEL of MRL/lpr mice at 6, 12 and 21 weeks of age. Increased numbers of CD3+ T cells were noted in both PP and spleen of 12- and 21-week-old mice in which the development of autoimmune disorders were also evident. However, normal numbers of CD3+ IEL T cells were seen in MRL/lpr mice in all three age groups tested. When the presence of T cell lymphadenopathy was examined in both IgA inductive and effector tissues, the PP followed the B220+ T cell pattern seen in the spleen, where approximately 30%-50% of CD3+ T cells in the PP of 12- and 21-week-old MRL/lpr mice expressed the phenotype of lpr/lpr T cells and greater than 90% were alpha/beta TcR+. On the other hand, B220+ T cells had not developed in PP or spleen of 6-week-old MRL/lpr mice. Of interest was the finding that IEL from lpr/lpr homozygous mice did not contain B220+ T cells in any age group tested. In this regard, the IEL of MRL/lpr mice comprised an identical pattern and frequency of CD4-/CD8+, CD4+/CD8-, DN and CD4+/CD8+ (double positive, DP) T cell subsets as their normal counterparts (i.e. MRL +/+, BALB/c and C3H/HeN mice) which consisted of approximately 75%, approximately 7.5%, approximately 7.5% and approximately 10%, respectively. Further, Thy-1, gamma/delta TcR and alpha/beta TcR expression in these four subsets of MRL/lpr IEL were very similar to normal mice. These results suggest that the intestinal IEL compartment is minimally affected by the lpr/lpr mutation which induces T cell abnormalities and indicate that B220+ T cells do not preferentially home to IEL. Further, our results support the concept that IEL T cells develop as a separate T cell lineage from thymus-derived cells.  相似文献   

4.
The MRL-lpr murine model of systemic lupus erythematosus (SLE) has provided many insights into the pathology of human lupus. The model is characterized by an age-dependent expansion of a Thy-1+ alpha beta/CD3+ CD4-, CD8- T-cell subset in the nodes and spleen. In this study, a lpr T-cell specific monoclonal antibody, Ye19.1, was found to bind to a 200 kDa cell surface molecule (termed LTA) which has a phosphotyrosine phosphatase (PTPase) enzymatic function. The significance of this marker in the development of autoimmune pathology in MRL/lpr mice was also demonstrated; treatment of MRL-lpr mice with the Ye19.1 Ab was shown to retard the development of the autoimmune syndrome and to restore the T cell-dependent immune response to ovalbumin.  相似文献   

5.
MRL-lpr/lpr (lpr) mice fall victim to autoimmune disease owing to a lymphoproliferative disorder mainly of double-negative (DN) CD4- CD8- alpha beta T cells expressing a low density of interleukin-2 receptor beta-chain (IL-2R beta). It was previously revealed that the lpr gene is a defective Fas gene, into which an early transposon (ETn) of retrovirus is transfected. As a result of the failure of apoptosis, intermediate T-cell receptor (TCR) cells (i.e. TCRint cells) with DN phenotype abnormally accumulate in the periphery of lpr mice. We investigated herein how these TCRint cells are selected in terms of CD4, CD8 and TCR in lpr mice. When a whole fraction of mononuclear cells (MNC) in various immune organs of lpr mice was injected into scid mice (allogeneic circumstance), CD8+ TCRint cells mainly expanded. They had a high density of IL-2R beta. This was true when bone marrow cells of lpr mice were injected into scid mice. On the other hand, when MNC of the spleen and bone marrow in lpr mice were injected into irradiated (9 Gy) lpr mice (syngeneic circumstance), the major expanding cells were DN TCRint cells expressing a low density of IL-2R beta. A cell-sorting experiment for purified fractions demonstrated that only CD8- cells reconstituted TCRint cells in scid mice. Namely, DN CD4- CD8- cells as well as CD4+ cells which once acquired the mature phenotype, no longer switched their phenotype. These results suggest that the phenotype of TCRint cells is influenced by the surrounding microenvironment.  相似文献   

6.
The role of CD4 molecules in the autoimmune and lymphoproliferative syndrome caused by murine Fas mutations was studied using the novel systemic lupus erythematosus (SLE) model, MRL-Fas(lpr(cg))/Fas(lprcg) (MRL-lpr(cg)) mice, in combination with the novel mutant CD4 gene producing soluble CD4 (sCD4) instead of membrane-bound CD4 (mCD4). For this purpose, various autoimmune manifestations were compared among MRL-lpr(cg) mice homozygous (CD4slprcg), heterozygous (CD4s/mlpr(cg)), and wild-type (CD4mlpr(cg)) for the CD4 mutation. The mortality, glomerulonephritis, proteinuria, and lymphadenopathy were significantly ameliorated in CD4slprcg compared with CD4mlpr(cg) and CD4s/mlpr(cg) mice, both being comparable in these clinical characteristics. In parallel with the clinical improvement, the serum levels of immunoglobulin, anti-DNA antibodies, anti-nuclear antibodies and immune complexes, and the extent of glomerular immune deposition, were significantly lower in the former. The results indicate that mCD4 is important and can not be replaced by sCD4 in full development of SLE-like manifestations, and suggest that CD4+ T cells may aggravate the autoimmune disease by stimulating autoreactive B cells to produce autoantibodies through their helper activity in Fas mutant models. The sCD4 levels in the serum and spleen elevated with the increased accumulation of B220+CD4-CD8- (double-negative (DN)) T cells in CD4slpr(cg) mice. This, together with the significantly milder lymphadenopathy associated with lower DN T cell contents in CD4slpr(cg) than CD4mlpr(cg) mice, implies that some of abnormal DN T cells may be derived from cells of the CD4 lineage.  相似文献   

7.
It is known that lpr mice develop systemic lymphadenopathy and lupus erythematosus-like autoimmune disease that are associated with the accumulation of CD4- CD8- (double-negative; DN) CD3+ B220+ abnormal T cells as well as normal mature CD4+ or CD8+ single-positive (SP) CD3+ T cells. In order to clarify the role of B cells in the lymphoproliferation and autoimmunity of lpr mice, we created B-cell-deficient C57BL/6 (B6) lpr mice (B6lpr/lpr microMT/microMT) by crossing B6lpr/lpr mice with B6 microMT/microMT mice in which the B-cell development was arrested at pre-B stage owing to a targeted disruption of the immunoglobulin mu heavy-chain gene locus. In the B-cell-deficient B6-lpr mice, both lymphadenopathy and splenomegaly were markedly suppressed. Although the accumulation of both CD3+ B220- SP normal T cells and CD3+ B220+ DN abnormal T cells was inhibited in the B-cell-deficient lpr mice, the decrease in numbers of CD3+ B220- SP normal T cells occurred more strikingly than that of the CD3+ B220+ DN abnormal T cells. Glomerulonephritis did not develop in the B-cell-deficient lpr mice over 40 weeks. The present results indicate that the B cells thus play a crucial role in the extensive proliferation of normal CD3+ B220- mature SP T cells rather than the accumulation of abnormal DN T cells.  相似文献   

8.
(2R,5R)-6-heptyne-2,5-diamine (MAP; MDL 72175), a potent irreversible inhibitor of L-ornithine decarboxylase (ODC), possesses immunosuppressive activities in vitro as the result of inhibition of lymphocyte polyamine biosynthesis. The effects of MAP were now studied in vivo in MRL-lpr/lpr female mice, an animal model for human systemic lupus erythematosus (SLE). Administration of MAP (0.2% in drinking water; drug intake: 0.25-0.35 g/kg body weight/day) to female mice for 15 weeks, starting 8 weeks after birth, reduced by 47% the number of spleen cells, retarded development of lymphadenopathy and, at that time, markedly prolonged the survival of the mice. At week 23, MAP reduced plasma IgG concentrations by 50% whereas, in contrast, those of IgM were elevated 1.5-fold. No statistically significant effects of MAP were observed on plasma levels of anti-DNA autoantibodies although serum anti-RNP and anti-Sm titres tended downwards during treatment. Neither glomerular lesions nor proteinuria were improved by MAP administration. Finally chronic administration of MAP for 45 weeks prolonged the median survival time from 29.75 to 35.5 weeks.  相似文献   

9.
Immature CD8-CD4- double-negative (DN) thymocytes differentiate intrathymically into CD8+CD4- and CD8-CD4+ thymocytes and migrate to the periphery. This differentiation proceeds through several intermediate phenotypic changes in the expression of CD8 and CD4. We have recently established the existence of a CD8loCD4lo cell population in murine thymus that can repopulate the irradiated thymus in vivo and differentiate rapidly in vitro to CD8+CD4+ double-positive (DP) cells. The CD8loCD4lo cells score as DN upon direct cytofluorometric analysis, yet are distinct from true DN cells by various criteria. Experimental evidence strongly suggests that they are descendants of true DN in the maturation pathway. In the experiments presented here, we further characterize this CD8loCD4lo thymocyte population. Northern blot and RNA protection analysis reveal that these cells transcribe full length mRNA for the T cell receptor (TcR)alpha chain, unlike the less mature interleukin 2 receptor-positive DN thymocytes. Surface expression of the TcR-associated CD3 molecule occurs on approximately 15% of these cells at low levels characteristic of immature cells. In the course of in vitro differentiation a vast majority (approximately 80%) of these cells convert to CD8+CD4+ and significant numbers of the brightly staining DP convertants (11%-34% on day 1 and 48%-68% on day 2) express immature levels of CD3. Our results indicate that CD8lo, CD4lo cells might be the first thymic subset to rearrange TcR alpha chain genes and express TcR alpha/beta heterodimer on the surface at levels characteristic of immature cells. Furthermore, the surface expression of TcR persists on the in vitro progeny of these thymocytes.  相似文献   

10.
CD1d deficiency exacerbates inflammatory dermatitis in MRL-lpr/lpr mice   总被引:2,自引:0,他引:2  
Mechanisms responsible for the development of autoimmune skin disease in humans and animal models with lupus remain poorly understood. In this study, we have investigated the role of CD1d, an antigen-presenting molecule known to activate natural killer T cells, in the development of inflammatory dermatitis in lupus-susceptible MRL-lpr/lpr mice. In particular, we have established MRL-lpr/lpr mice carrying a germ-line deletion of the CD1d genes. We demonstrate that CD1d-deficient MRL-lpr/lpr mice, as compared with wild-type littermates, have more frequent and more severe skin disease, with increased local infiltration with mast cells, lymphocytes and dendritic cells, including Langerhans cells. CD1d-deficient MRL-lpr/lpr mice had increased prevalence of CD4(+) T cells in the spleen and liver and of TCR alpha beta (+)B220(+) cells in lymph nodes. Furthermore, CD1d deficiency was associated with decreased T cell production of type 2 cytokines and increased or unchanged type 1 cytokines. These findings indicate a regulatory role of CD1d in inflammatory dermatitis. Understanding the mechanisms by which CD1d deficiency results in splenic T cell expansion and cytokine alterations, with increased dermal infiltration of dendritic cells and lymphocytes in MRL-lpr/lpr mice, will have implications for the pathogenesis of inflammatory skin diseases.  相似文献   

11.
Interleukin 2 is a proliferative signal for B cells from autoimmune mice   总被引:1,自引:0,他引:1  
T cells from murine lupus strains manifest complex defects in interleukin 2 (IL 2) production and receptor expression. The capacity of B cells from such mice to utilize IL 2 as a growth factor has not been previously reported and is examined herein. Anti-Thy-1.2 plus complement-treated spleen cells from 6-8-week-old autoimmune MRL-lpr/lpr mice and from age and sex-matched immunologically normal CBA/J mice were cultured with lipopolysaccharide (LPS) for 36 h and analyzed for the expression of IL 2 receptors using the monoclonal antibody 7D4. The percentage of B cells expressing IL 2 receptors was comparable in MRL-lpr/lpr and CBA/J mice. In contrast to those from CBA/J, BALB/c and (BALB/c X NZW)F1 mice, LPS-stimulated B cells from MRL-lpr/lpr and from (NZB X NZW)F1 mice were capable of proliferating in response to IL 2. Fractionation of MRL-lpr/lpr B cells using Percoll gradient density separation demonstrated that the IL 2-responsive population consisted predominantly of large cells. In addition, unfractionated B cells from MRL-lpr/lpr mice were found to be substantially more responsive to IL 2 than those from CBA/J and BALB/c mice following activation with anti-immunoglobulin plus LPS. The hyper-responsiveness to IL 2 may be a consequence of the state of activation of autoimmune B cells and is of potential importance in the pathogenesis of systemic lupus erythematosus.  相似文献   

12.
In the (SWR x NZB)F1 (SNF1) model of lupus nephritis, pathogenic variety of IgG anti-DNA autoantibodies are induced by certain T helper (Th) cells that are either CD4+ or CD4-CD8- (double negative; DN) in phenotype. From the spleens of eight SNF1 mice with lupus nephritis, 149 T cell lines were derived and out of these only 25 lines (approximately 17%) were capable of augmenting the production of pathogenic anti-DNA autoantibodies. Herein, we analyzed the T cell receptor (TcR) V beta genes used by 16 such pathogenic autoantibody-inducing Th cell lines. Twelve of the Th lines were CD4+ and among these five lines expressed V beta 8 (8.2 or 8.3). The V beta 8 gene family is contributed by the NZB parent to the SNF1 mice, since it is absent in the SWR parental strain. Three other CD4+ Th lines expressed V beta 4, another was V beta 2+ and one line with poor autoantibody-inducing capability expressed V beta 1. Four autoantibody-inducing Th lines from the SNF1 mice had a DN phenotype and these lines were also autoreactive, proliferating in response to syngeneic spleen cells. Among these DN Th lines, two expressed V beta 6 and one expressed V beta 8.1 TcR. Both of these are forbidden TcR directed against Mls-1a (Mlsa) autoantigens expressed by the SNF1 mice and such autoreactive T cells should have been deleted during thymic ontogeny. Thus, the DN Th cells of non-lpr SNF1 mice are different from the DN cells or MRL-lpr which lack helper activity and do not express forbidden TcR. The spleens of 6 out of 19 nephritic SNF1 animals tested also showed an expansion of forbidden autoreactive TcR+ cells that were mainly DN. Two of these animals expressed high levels of V beta 6 (anti-Mlsa) and V beta 11 (anti-I-E) TcR+ cells, three others had high levels of V beta 11+ cells alone and one animal had an expanded population of V beta 17a+ (anti-I-E) cells. The I-E-reactive TcR again should have been eliminated in the SNF1 thymus, since they express I-E molecules contributed by the NZB parent. The SWR parents of SNF1, are I-E-; moreover, they lack the V beta 11 gene but they express V beta 17a in peripheral T cells. Whereas the NZB parents are I-E+, they lack a functional V beta 17a gene and they delete mature V beta 11+ T cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Wu WM  Suen JL  Lin BF  Chiang BL 《Immunology》2000,100(1):110-118
Previous study suggested that MRL-lpr/lpr mice treated with tamoxifen (TAM) had less severe proteinuria, reduced serum titre of anti-dsDNA autoantibodies and an increased survival rate. To investigate further the regulatory mechanisms of TAM on MRL-lpr/lpr female mice, a total dose of 200 microg per mice (5.5 mg/kg) was given every 2 weeks subcutaneously, while the control mice were injected with oil only. After being treated with TAM four times, the mice were killed and cellular functions were evaluated. The TAM-treated groups had smaller sized spleen and lymph nodes. Flow cytometric analysis of splenocytes had a significantly lower percentage of cell number of T cells and double negative T cells (CD4- CD8- T cells). There was no difference in cytokine production (interleukin (IL)-2, IL-4, IL-5, IL-10 and interferon-gamma (IFN-gamma)) from splenocytes stimulated with concanavalin A (Con A) or cytokines (IL-6) secreted by peritoneal exudate cells when stimulated with lipopolysaccharide (LPS). However, IL-2 from lymph node cells was significantly higher on TAM-treated mice. Finally, splenocytes or purified T cells stimulated with anti-CD3 antibody plus cross-linking immunoglobulin G (IgG) of the TAM-treated group had higher 3H-incorporation of proliferation assay compared with that of control groups. In vitro study further demonstrated that IL-2-activated proliferation of lymph node double negative (DN) T cells can be inhibited by TAM treatment in a dose-dependent manner. Our finding demonstrated that TAM may potentially influence T cells and modulate the immune function, which offers a novel approach to explore the feasibility of hormone therapy for autoimmune diseases.  相似文献   

14.
During T-cell development the transition in the thymus of CD4-CD8- double negative (DN) progenitor T cells into CD4+CD8+ double positive (DP) cells is dependent on the expression of a T-cell receptor (TCR)-beta-chain protein. In this study purified peripheral CD4+ and CD8+ T lymphocytes from the C.B-17 strain of mice were adoptively transferred into syngeneic, neonatal SCID mice, where donor cells resided at constant numbers in thymus from 2 weeks until 10 weeks post cell transfer. In the recipient thymus the CD8+ donor cells outnumbered the CD4+ cells by a factor of three to five and both subsets contained a large fraction of activated cells. During the late phase of treatment, CD8+ T cells induced high numbers of DP thymocytes in the SCID mice, a process accompanied by the maturation of medullary epithelial cells. Such thymic development in the SCID mouse was inhibited by coresiding CD4+ donor T cells. These results indicate a regulatory role by mature peripheral T cells on medullary epithelial growth and thymocyte development in the treated SCID mice.  相似文献   

15.
T cells play a critical role in both the immunological and clinical manifestations of systemic autoimmune diseases such as systemic lupus erythematosus (SLE). Although in normal mice multiple T cell epitopes have been characterized in several self-proteins, there is little information on the fine specificity of autoreactive T cells in lupus model mice and humans. In SLE-prone mice and humans, the only Th cell epitopes identified at the molecular level in self-antigens concern histones and nucleosomes, and the 70-kD U1-snRNP protein. T cell characterization in certain autoimmune mice such as MRL lpr/lpr and NZB/NZW mice has been largely impaired by their hyporesponsiveness in response to mitogen and minimal IL-2 secretion. In addition, MRL lpr/lpr mice also develop lymphadenopathy characterized by the progressive accumulation of functionally immature CD4(-) CD8(-) T cells. It is therefore important to optimize the methods used to measure T cell proliferation and cytokine production ex vivo in order to identify minimal activation in the presence of appropriate antigen. The protocol described in this article has been used for identifying in young MRL lpr/lpr and NZB/NZW mice a CD4(+) T cell epitope in the murine 70-kD U1-RNP protein.  相似文献   

16.
Recent studies have suggested the existence of two mutually exclusive subpopulations of T helper (Th) cells in the murine immune system, called Th1 which produces interleukin (IL)-2 and interferon (IFN)-gamma but not IL-4 and Th2 which secretes IL-4 and IL-5 but not IL-2. Also, functionally, Th1 cells generally activate the macrophages and mediate delayed-type hypersensitivity whereas Th2 cells provide help efficiently to B cells. In the present study, we investigated the lymphokine secretory properties of two well-characterized autoreactive (self-Ia reactive) T cell clones isolated from normal DBA/2 mice and autoimmune-susceptible MRL-lpr/lpr mice. It was observed that both the autoreactive T cell clones, following activation, produced IL-2, IL-4, and IFN-gamma. They induced hyper-Ia expression and cell proliferation in syngeneic B cells as well as activated the macrophages to exhibit tumoristatic properties. Both clones could also induce T-T network interaction in which syngeneic naive CD4+ T cells responded directly to stimulation with autoreactive T cell clones. The T-T interaction was demonstrable in 1-month-old MRL-lpr/lpr mice prior to the onset of the autoimmune disease but not in 6-month-old mice having lymphadenopathy and autoimmune disease. Unlike Th1 and Th2 cells which upon antigenic stimulation respond to exogenous IL-2 and IL-4, the autoreactive T cell clones responded only to IL-2 but not to IL-4. Our data suggest the existence of a unique subset of immunoregulatory CD4+ Th cells having the lymphokine secretory and functional properties of both the murine Th1 and Th2 subsets.  相似文献   

17.
The expanded T-cell population of MRL/Mp-lpr2lpr mice is abnormal from a variety of standpoints. We have already shown that T-cell receptor expression and modulation are aberrant in the predominant CD4- CD8 (DN) T cell population. To investigate these abnormalities further, we examined CD3 expression and modulation in subpopulations of +/+ and lpr T cells and measured mitogen-induced Ca++ mobilization in DN lpr T cells. We found that expression and modulation of CD3 in CD4hi and CD8hi lpr single positive (SP) T cells are similar to that in +/+ T cells. We have, however, identified additional lpr cell subsets that are CD4lo or CD8lo. Their expression and modulation of CD3 are intermediate, between that of SP and DN lpr T cells. These subpopulations may thus represent a transitional stage between the SP and DN populations. The rapid modulation of CD3 in the DN population does not appear to be merely related to the lack of expression of CD4 or CD8, and may in fact cause (rather than result from) low CD3 expression. In addition, we observed impairment of CA++ mobilization in DN lpr T cells in response to concanavalin A or anti-CD3 antibody. These findings further define the abnormalities of T cells from lpr mice.  相似文献   

18.
Newly generated ('virgin') rat thymocytes of the immature CD4+8+ double positive (DP) subset were treated in suspension culture for 2 days with the stimulatory pair of anti-CD2 monoclonal antibodies OX-54 and OX-55. Approximately 50% of the recovered cells had downregulated CD4 and CD8 and upregulated the T cell antigen receptor (TCR). CD2-stimulated, but not control thymocytes proliferated in response to TCR plus IL-2 stimulation. In vivo, postnatal injection of OX-54/55 led to a dramatic and selective increase in functionally mature CD4-CD8- double negative (DN) alpha/beta--TCR(high) thymocytes and peripheral T cells. These findings show that CD2 stimulation can promote T cell differentiation and suggest that DN TCR(high) thymocytes can be generated from DP thymocytes via alternative pathways of T cell maturation.  相似文献   

19.
We have analyzed the effect of IL2 administered in vivo on both the lymphoproliferation and autoimmune disease progression of MRL/lpr mice. Human IL2 was delivered by infecting MRL/lpr mice with vaccinia virus recombinants at different stages of lpr disease. The results reported here showed that treatment of lpr mice with IL2 mediated: (1) restored normal thymic differentiation illustrated by an expansion of the double positive population accompanied by increased numbers of mature thymocytes; (2) depletion of the peripheral CD3+ CD4- CD8- (DN) T-cell population; (3) normalization in the pattern of TcRV beta gene expression displayed by mature T cells; (4) decreased urine-protein levels and immune complex deposition in the kidney, with a resultant absence of glomerulonephritis; and (5) an increased longevity (from 195 to more than 400 days). We speculate that the dramatic reduction in the abnormally expanded CD3+ DN T-cell population following IL2 therapy might be directly related to the amelioration and/or prevention of autoimmune disease in these mice. Collectively, these results suggest that diseases showing a selective expansion of DN cells should be envisaged as possible targets for the treatment described here.  相似文献   

20.
Autoimmune MRL-lpr/lpr (lpr) mice were previously demonstrated to have an abnormal proliferation of intermediate T-cell receptor (TCR) cells of extrathymic origin in the liver. Despite this situation, thymectomy in lpr mice resulted in amelioration of autoimmune disease. To understand the underlying mechanism, we investigated associated T-cell differentiation in the thymus and other organs of these mice. When the disease was evoked, T cells with extrathymic properties, i.e. intermediate TCR-alpha beta cells expressing double-negative (DN) CD4-8- phenotype and interleukin-2 (IL-2) receptor beta-chain, became prominent not only in the liver, but also in the thymus. Such thymic T cells mainly resided in the medulla. A small-scale localization of such T cells was seen in the thymic medulla even in normal control mice. There was a heterogeneity among intermediate TCR cells in terms of the composition of DN cells and the expression of CD2 and B220 antigens, depending on the organs and the sites in the same organ. Intermediate TCR cells in the liver, thymus and autoimmune target organs (e.g. kidney) contained a high proportion of the active form (CD2+B220-), while intermediate TCR cells accumulating in peripheral organs, the spleen and lymph nodes, were mainly of the inactive form (CD2-B220+). The active form had an ability to proliferate in response to IL-2 and SEB, whereas the inactive form did not. The present results suggest that the proliferation of intermediate TCR cells occur at multiple sites; this may explain the effect of thymectomy, namely, the retarded onset of disease, in lpr mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号