首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine that controls inflammatory processes, and inflammation is known to play an important role in the pathogenesis of atrial fibrillation (AF). The present study sought to investigate whether MIF expression is responsible for the changes in L-type Ca2+ currents (ICa,L) seen in AF. Whole-cell voltage-clamp recordings and biochemical assays were used to study the regulation and expression of ICa,L in human atrial myocytes and in HL-1 cells. Basal ICa,L was reduced in AF compared to sinus rhythm (SR) controls, mRNA and protein levels of the pore-forming α1C subunit of L-type Ca2+ channel (LCC α1C) were also decreased, while MIF expression levels were increased in AF. Levels of Src and activated Src (p-Src Y416) were higher in AF than in SR. Treatment of atrial myocytes from a patient with SR with human recombinant MIF (rMIF) (40 nM, 1 h) was found to depress ICa,L amplitudes, while mouse rMIF (20 or 40 nM, 24 h) suppressed peak ICa,L in HL-1 cells by  69% and  83% in a concentration-dependent manner. Mouse rMIF impaired the time-dependent recovery from inactivation of ICa,L and down-regulated LCC α1C subunit levels. The depression of ICa,L and decrease of LCC protein levels induced by rMIF were prevented by the Src inhibitors genistein and PP1. These results implicate MIF in the electrical remodeling that accompanies AF, probably by decreasing ICa,L amplitudes through impairment of channel function, down-regulation of LCC α1C subunit levels, and the activation of c-Src kinases in atrial myocytes.  相似文献   

2.
Summary In the heart mitochondria exert two roles essential for cell survival: ATP synthesis and maintainance of Ca2+ homeostasis. These two processes are driven by the same energy source: the H+ electrochemical gradient (H) which is generated by electron transport along the inner mitochondrial membrane.Under aerobic physiological condition mitochondria do not contribute to the beat to beat regulation of cytosolic Ca2+, although Ca2+ transient in mitochondrial matrix has been described. Increases in mitochondrial Ca2+ of molars concentration stimulate the Krebs cycle and NADH redox potential and, therefore, ATP synthesis.Under pathological conditions, however, mitochondrial Ca2+ transport and overload might cause a series of vicious cycles leading to irreversible cell damage.Mitochondrial Ca2+ accumulation causes profound alterations in permeability of the inner membrane to solutes, leading to severe mitochondrial swelling. In addition Ca2+ transport takes precedence over ATP synthesis and inhibits utilization of H for energy production.These processes are important to understand the sequence of the molecular events occurring during myocardial reperfusion after prolonged ischaemia which lead to irreversible cell damage. During ischaemia an alteration of intracellular Ca2+ homeostasis occurs and mitochondria are able to buffer cytosolic Ca2+, suggesting that they retain the Ca2+ transporting capacity. Accordingly, once isolated, even after prolonged ischaemia, the majority of the mitochondria is able to use oxygen for ATP phosphorylation.When isolated after reperfusion, mitochondria are structurally altered, contain large quantities of Ca2+, produce excess of oxygen free radicals, their membrane pores are stimulated and the oxidative phosphorylation capacity is irreversibly disrupted. Most likely, reperfusion provides oxygen to reactivate mitochondrial respiration but also causes large influx of Ca2+ in the cytosol as result of sarcolemmal damage. Mitochondrial Ca2+ transport is therefore stimulated at maximal rates and, as consequence, the equilibrium between ATP synthesis and Ca2+ influx is shifted towards Ca2+ influx with loss of the ability of ATP synthesis.  相似文献   

3.

BACKGROUND:

Previous research reported that transgenic rats overexpressing the sarco(endo)plasmic reticulum Ca2+-ATPase SERCA2a exhibit improved contractile function of the myocardium. Furthermore, impaired Ca2+ uptake and reduced relaxation rates in rats with diabetic cardiomyopathy were partially rescued by transgenic expression of SERCA2a in the heart.

OBJECTIVE:

To explore whether enhanced Ca2+ cycling in the cardiomyocytes of SERCA2a transgenic rats is associated with changes in L-type Ca2+ (ICa-L) currents.

METHODS:

The patch-clamp technique was used to measure whole-cell currents in cardiomyocytes from transgenic rats overexpressing SERCA2a and from wild-type (nontransgenic) animals.

RESULTS:

The amplitudes of ICa-L currents at depolarizing pulses ranging from −45 mV to 0 mV (350 ms duration, 1 Hz) were significantly higher in cardiomyocytes of SERCA2a transgenic rats than in nontransgenic rats (1985±48 pA [n=32] versus 1612±55 pA [n=28], respectively). The inactivation kinetics of ICa-L showed subtle differences with increased tau fast and tau slow decay constants in cardiomyocytes of SERCA2a transgenic animals. Beta-adrenergic stimulation with 50 nM isoproterenol reduced tau fast and tau slow decay constants in cardiomyocytes of transgenic rats to values that were not significantly different from those in normal cardiomyocytes. Furthermore, isoproterenol enhanced ICa-L currents 3.2-fold and 2.3-fold in cardiomyocytes with and without the SERCA2a transgene, respectively, and this effect was abolished by buffering intracellular Ca2+ with BAPTA.

CONCLUSIONS:

These findings indicate that enhanced Ca2+ cycling in the hearts of SERCA2a transgenic rats, both under normal conditions and during beta-adrenergic stimulation, involves changes in ICa-L currents. Modified ICa-L kinetics may contribute, to some extent, to the improved contractile function of the myocardium of transgenic rats.  相似文献   

4.
The passive transport of calcium and cobalt and their interference were studied in human red cells using 45Ca and 57Co as tracers. In ATP-depleted cells, with the ATP concentration reduced to about 1 μM, the progress curve for 45Ca uptake at 1 mM rapidly levels off with time, consistent with a residual Ca-pump activity building up at increasing [CaT]c to reach at [CaT]c about 5 μmol (l cells)− 1 a maximal pump rate that nearly countermands the passive Ca influx, resulting in a linear net uptake at a low level. In ATP-depleted cells treated with vanadate, supposed to cause Ca-pump arrest, a residual pump activity is still present at high [CaT]c. Moreover, vanadate markedly increases the passive Ca2+ influx. The residual Ca-pump activity in ATP-depleted cells is fuelled by breakdown of the large 2,3-DPG pool, rate-limited by the sustainable ATP-turnover at about 40–50 μmol (l cells)− 1 h− 1. The apparent Ca2+ affinity of the Ca-pump appears to be markedly reduced compared to fed cells. The 2,3-DPG breakdown can be prevented by inhibition of the 2,3-DPG phosphatase by tetrathionate, and under these conditions the 45Ca uptake is markedly increased and linear with time, with the unidirectional Ca influx at 1 mM Ca2+ estimated at 50–60 μmol (l cells)− 1 h− 1. The Ca influx increases with the extracellular Ca2+ concentration with a saturating component, with K½(Ca) about 0.3 mM, plus a non-saturating component. From 45Ca-loaded, ATP-depleted cells the residual Ca-pump can also be detected as a vanadate- and tetrathionate-sensitive efflux. The 45Ca efflux is markedly accelerated by external Ca2+, both in control cells and in the presence of vanadate or tetrathionate, suggesting efflux by carrier-mediated Ca/Ca exchange.The 57Co uptake is similar in fed cells and in ATP-depleted cells (exposed to iodoacetamide), consistent with the notion that Co2+ is not transported by the Ca-pump. The transporter is thus neither SH-group nor ATP or phosphorylation dependent. The 57Co uptake shows several similarities with the 45Ca uptake in ATP-depleted cells supplemented with tetrathionate. The uptake is linear with time, and increases with the cobalt concentration with a saturating component, with Jmax about 16 μmol (l cells)− 1 h− 1 and K½(Co) about 0.1 mM, plus a non-saturating component. The 57Co and 45Ca uptake shows mutual inhibition, and at least the stochastic Ca2+ influx is inhibited by Co2+. The 57Co and 45Ca uptake are both insensitive to the 1,4-dihydropyridine Ca-channel blocker nifedipine, even at 100 μM. The 57Co uptake is increased at high negative membrane potentials, indicating that the uptake is at least partially electrogenic. The 57Co influx amounts to about half the 45Ca influx in ATP-depleted cells. It is speculated that the basal Ca2+ and Co2+ uptake could be mediated by a common transporter, probably with a channel-like and a carrier-mediated component, and that 57Co could be useful as a tracer for at least the channel-like Ca2+ entry pathway in red cells, since it is not itself transported by the Ca-pump and, moreover, is effectively buffered in the cytosol by binding to hemoglobin, without interfering with Ca2+ buffering. The molecular identity of the putative common transporter(s) remains to be defined.  相似文献   

5.
6.
Regulation of ion-transport in the Na+/Ca2+ exchanger (NCX) occurs via its cytoplasmic Ca2+-binding domains, CBD1 and CBD2. Here, we present a mechanism for NCX activation and inactivation based on data obtained using NMR, isothermal titration calorimetry (ITC) and small-angle X-ray scattering (SAXS). We initially determined the structure of the Ca2+-free form of CBD2-AD and the structure of CBD2-BD that represent the two major splice variant classes in NCX1. Although the apo-form of CBD2-AD displays partially disordered Ca2+-binding sites, those of CBD2-BD are entirely unstructured even in an excess of Ca2+. Striking differences in the electrostatic potential between the Ca2+-bound and -free forms strongly suggest that Ca2+-binding sites in CBD1 and CBD2 form electrostatic switches analogous to C2-domains. SAXS analysis of a construct containing CBD1 and CBD2 reveals a conformational change mediated by Ca2+-binding to CBD1. We propose that the electrostatic switch in CBD1 and the associated conformational change are necessary for exchanger activation. The response of the CBD1 switch to intracellular Ca2+ is influenced by the closely located cassette exons. We further propose that Ca2+-binding to CBD2 induces a second electrostatic switch, required to alleviate Na+-dependent inactivation of Na+/Ca2+ exchange. In contrast to CBD1, the electrostatic switch in CBD2 is isoform- and splice variant-specific and allows for tailored exchange activities.  相似文献   

7.
The site-specific phospholamban phosphorylation was studied with respect to the interplay of cAMP- and Ca2+signaling in neonatal rat cardiomyocytes. To elucidate the signal pathway(s) for the activation of Ca2+/calmodulin-dependent protein kinase (CaMKII) we studied Thr17 phosphorylation of phospholamban in dependence of Ca2+channel activation by S(-)-Bay K8644 and in dependence of the depletion of the sarcoplasmic reticulum Ca2+stores by ryanodine or thapsigargin in the absence or presence of β -adrenergic stimulation. The isoproterenol (0.1 μ )-induced Thr17 phosphorylation was potentiated 2.5-fold in presence of 1 μ S(-)-Bay K8644. Interestingly, S(-)-Bay K8644 alone was also able to induce Thr17 phosphorylation in a dose- and time-dependent fashion. Ryanodine (1.0 μ ) reduced both the isoproterenol (0.1μ ) and S(-)-Bay K8644-(1 μ ) mediated Thr17 phosphorylation by about 90%. Thapsigargin (1 μ ) diminished the S(-)-Bay K8644 and isoproterenol-associated Thr17 phosphorylation by 53.5±6.3% and 92.5±11.1%, respectively. Ser16 phosphorylation was not affected under these conditions. KN-93 reduced the Thr17 phosphorylation by S(-)-Bay K8644 and isoproterenol to levels of 1.1±0.3% and 8.6±2.1%, respectively. However, the effect of KN-93 was attenuated (47.8±3.6%) in isoproterenol prestimulated cells. Protein phosphatase inhibition by okadaic acid increased exclusively the Ser16 phosphorylation. In summary, our results reflect a cross-talk between β -adrenoceptor stimulation and intracellular Ca2+at the level of CaMKII-mediated phospholamban phosphorylation in neonatal rat cardiomyocytes. We report conditions which exclusively produce Thr17 or Ser16 phosphorylation. We postulate that Ca2+transport systems of the sarcoplasmic reticulum are critical determinants for the activation of CaMKII that catalyzes phosphorylation of phospholamban.  相似文献   

8.
In flowering plants, pollen tubes are guided into ovules by multiple attractants from female gametophytes to release paired sperm cells for double fertilization. It has been well-established that Ca2+ gradients in the pollen tube tips are essential for pollen tube guidance and that plasma membrane Ca2+ channels in pollen tube tips are core components that regulate Ca2+ gradients by mediating and regulating external Ca2+ influx. Therefore, Ca2+ channels are the core components for pollen tube guidance. However, there is still no genetic evidence for the identification of the putative Ca2+ channels essential for pollen tube guidance. Here, we report that the point mutations R491Q or R578K in cyclic nucleotide-gated channel 18 (CNGC18) resulted in abnormal Ca2+ gradients and strong pollen tube guidance defects by impairing the activation of CNGC18 in Arabidopsis. The pollen tube guidance defects of cngc18-17 (R491Q) and of the transfer DNA (T-DNA) insertion mutant cngc18-1 (+/−) were completely rescued by CNGC18. Furthermore, domain-swapping experiments showed that CNGC18’s transmembrane domains are indispensable for pollen tube guidance. Additionally, we found that, among eight Ca2+ channels (including six CNGCs and two glutamate receptor-like channels), CNGC18 was the only one essential for pollen tube guidance. Thus, CNGC18 is the long-sought essential Ca2+ channel for pollen tube guidance in Arabidopsis.Pollen tubes deliver paired sperm cells into ovules for double fertilization, and signaling communication between pollen tubes and female reproductive tissues is required to ensure the delivery of sperm cells into the ovules (1). Pollen tube guidance is governed by both female sporophytic and gametophytic tissues (2, 3) and can be separated into two categories: preovular guidance and ovular guidance (1). For preovular guidance, diverse signaling molecules from female sporophytic tissues have been identified, including the transmitting tissue-specific (TTS) glycoprotein in tobacco (4), γ-amino butyric acid (GABA) in Arabidopsis (5), and chemocyanin and the lipid transfer protein SCA in Lilium longiflorum (6, 7). For ovular pollen tube guidance, female gametophytes secrete small peptides as attractants, including LUREs in Torenia fournieri (8) and Arabidopsis (9) and ZmEA1 in maize (10, 11). Synergid cells, central cells, egg cells, and egg apparatus are all involved in pollen tube guidance, probably by secreting different attractants (915). Additionally, nitric oxide (NO) and phytosulfokine peptides have also been implicated in both preovular and ovular pollen tube guidance (1618). Thus, pollen tubes could be guided by diverse attractants in a single plant species.Ca2+ gradients at pollen tube tips are essential for both tip growth and pollen tube guidance (1927). Spatial modification of the Ca2+ gradients leads to the reorientation of pollen tube growth in vitro (28, 29). The Ca2+ gradients were significantly increased in pollen tubes attracted to the micropyles by synergid cells in vivo, compared with those not attracted by ovules (30). Therefore, the Ca2+ gradients in pollen tube tips are essential for pollen tube guidance. The Ca2+ gradients result from external Ca2+ influx, which is mainly mediated by plasma membrane Ca2+ channels in pollen tube tips. Thus, the Ca2+ channels are the key components for regulating the Ca2+ gradients and are consequently essential for pollen tube guidance. Using electrophysiological techniques, inward Ca2+ currents were observed in both pollen grain and pollen tube protoplasts (3136), supporting the presence of plasma membrane Ca2+ channels in pollen tube tips. Recently, a number of candidate Ca2+ channels were identified in pollen tubes, including six cyclic nucleotide-gated channels (CNGCs) and two glutamate receptor-like channels (GLRs) in Arabidopsis (3740). Three of these eight channels, namely CNGC18, GLR1.2, and GLR3.7, were characterized as Ca2+-permeable channels (40, 41) whereas the ion selectivity of the other five CNGCs has not been characterized. We hypothesized that the Ca2+ channel essential for pollen tube guidance could be among these eight channels.In this research, we first characterized the remaining five CNGCs as Ca2+ channels. We further found that CNGC18, out of the eight Ca2+ channels, was the only one essential for pollen tube guidance in Arabidopsis and that its transmembrane domains were indispensable for pollen tube guidance.  相似文献   

9.
Their sessile lifestyle means that plants have to be exquisitely sensitive to their environment, integrating many signals to appropriate developmental and physiological responses. Stimuli ranging from wounding and pathogen attack to the distribution of water and nutrients in the soil are frequently presented in a localized manner but responses are often elicited throughout the plant. Such systemic signaling is thought to operate through the redistribution of a host of chemical regulators including peptides, RNAs, ions, metabolites, and hormones. However, there are hints of a much more rapid communication network that has been proposed to involve signals ranging from action and system potentials to reactive oxygen species. We now show that plants also possess a rapid stress signaling system based on Ca2+ waves that propagate through the plant at rates of up to ∼400 µm/s. In the case of local salt stress to the Arabidopsis thaliana root, Ca2+ wave propagation is channeled through the cortex and endodermal cell layers and this movement is dependent on the vacuolar ion channel TPC1. We also provide evidence that the Ca2+ wave/TPC1 system likely elicits systemic molecular responses in target organs and may contribute to whole-plant stress tolerance. These results suggest that, although plants do not have a nervous system, they do possess a sensory network that uses ion fluxes moving through defined cell types to rapidly transmit information between distant sites within the organism.Plants are constantly tailoring their responses to current environmental conditions via a complex array of chemical regulators that integrate developmental and physiological programs across the plant body. Environmental stimuli are often highly localized in nature, but the subsequent plant response is often elicited throughout the entire organism. For example, soil is a highly heterogeneous environment and the root encounters stimuli that are presented in a patchy manner. Thus, factors including dry or waterlogged regions of the soil, variations in the osmotic environment, and stresses such as elevated levels of salt are all likely to be encountered locally by individual root tips, but the information may have to be acted on by the plant as a whole.In animals, long-range signaling to integrate activities across the organism occurs through rapid ionic/membrane potential-driven signaling through the nervous system in addition to operating via long-distance chemical signaling. Plants have also been proposed to possess a rapid, systemic communication network, potentially mediated through signals ranging from changes in membrane potential/ion fluxes (13) and levels of reactive oxygen species (ROS) (4, 5) to altered hydraulics in the vasculature (6). Even so, the molecular mechanisms behind rapid, systemic signaling in plants and whether such signals indeed carry regulatory information remains largely unknown. Suggestions that Ca2+ channels play a role in signals that occlude sieve tube elements (7), or that mediate systemic electrical signaling (2) in response to remote wounding, highlight Ca2+-dependent signaling events as a strong candidate for mediating some of these long-range responses. Similarly, cooling of roots elicits Ca2+ increases in the shoot within minutes (8), suggesting systemic signals can elicit Ca2+-dependent responses at distal sites within the plant. However, despite extensive characterization of Ca2+ signals (reviewed in ref. 9), their roles in a possible plant-wide communication network remain poorly understood. Therefore, to visualize how Ca2+ might act in local and systemic signaling, we generated Arabidopsis plants expressing the highly sensitive, GFP-based, cytoplasmic Ca2+ sensor YCNano-65 (10). We observed that a range of abiotic stresses including H2O2, touch, NaCl, and cold shock triggered Ca2+ increases at the point of application. However, NaCl also elicited a Ca2+ increase that moved away from the point of stress application. Propagation of this Ca2+ increase was associated with subsequent systemic changes in gene expression. We also report that this salt stress-induced long-distance Ca2+ wave is dependent on the activity of the ion channel protein Two Pore Channel 1 (TPC1), which also appears to contribute to whole-plant stress tolerance.  相似文献   

10.
Whether intracellular Ca2+ regulates sinoatrial node cell (SANC) action potential (AP) firing rate on a beat-to-beat basis is controversial. To directly test the hypothesis of beat-to-beat intracellular Ca2+ regulation of the rate and rhythm of SANC we loaded single isolated SANC with a caged Ca2+ buffer, NP-EGTA, and simultaneously recorded membrane potential and intracellular Ca2+. Prior to introduction of the caged Ca2+ buffer, spontaneous local Ca2+ releases (LCRs) during diastolic depolarization were tightly coupled to rhythmic APs (r2 = 0.9). The buffer markedly prolonged the decay time (T50) and moderately reduced the amplitude of the AP-induced Ca2+ transient and partially depleted the SR load, suppressed spontaneous diastolic LCRs and uncoupled them from AP generation, and caused AP firing to become markedly slower and dysrhythmic. When Ca2+ was acutely released from the caged compound by flash photolysis, intracellular Ca2+ dynamics were acutely restored and rhythmic APs resumed immediately at a normal rate. After a few rhythmic cycles, however, these effects of the flash waned as interference with Ca2+ dynamics by the caged buffer was reestablished. Our results directly support the hypothesis that intracellular Ca2+ regulates normal SANC automaticity on a beat-to-beat basis.  相似文献   

11.
Cardiac myocyte overexpression of CaMKIIδC leads to cardiac hypertrophy and heart failure (HF) possibly caused by altered myocyte Ca2+ handling. A central defect might be the marked CaMKII-induced increase in diastolic sarcoplasmic reticulum (SR) Ca2+ leak which decreases SR Ca2+ load and Ca2+ transient amplitude. We hypothesized that inhibition of CaMKII near the SR membrane would decrease the leak, improve Ca2+ handling and prevent the development of contractile dysfunction and HF. To test this hypothesis we crossbred CaMKIIδC overexpressing mice (CaMK) with mice expressing the CaMKII-inhibitor AIP targeted to the SR via a modified phospholamban (PLB)-transmembrane-domain (SR-AIP). There was a selective decrease in the amount of activated CaMKII in the microsomal (SR/membrane) fraction prepared from these double-transgenic mice (CaMK/SR-AIP) mice. In ventricular cardiomyocytes from CaMK/SR-AIP mice, SR Ca2+ leak, assessed both as diastolic Ca2+ shift into SR upon tetracaine in intact myocytes or integrated Ca2+ spark release in permeabilized myocytes, was significantly reduced. The reduced leak was accompanied by enhanced SR Ca2+ load and twitch amplitude in double-transgenic mice (vs. CaMK), without changes in SERCA expression or NCX function. However, despite the improved myocyte Ca2+ handling, cardiac hypertrophy and remodeling was accelerated in CaMK/SR-AIP and cardiac function worsened. We conclude that while inhibition of SR localized CaMKII in CaMK mice improves Ca2+ handling, it does not necessarily rescue the HF phenotype. This implies that a non-SR CaMKIIδC exerts SR-independent effects that contribute to hypertrophy and HF, and this CaMKII pathway may be exacerbated by the global enhancement of Ca transients.  相似文献   

12.
This study was designed to examine the effect of infrasound exposure (5 Hz at 130 dB) on whole-cell L-type Ca2+ currents (WLCC) in rat ventricular myocytes and the underlying mechanism(s) involved. Thirty-two adult Sprague-Dawley rats were randomly assigned to infrasound exposure and control groups. [Ca2+]i, WLCC, mRNA expression of the a1c subunit of L-type Ca2+ channels (LCC), and SERCA2 protein were examined on day 1, 7, and 14 after initiation of infrasound exposure. Fluo-3/AM fluorescence and the laser scanning confocal microscope techniques were used to measure [Ca2+]i in freshly isolated ventricular myocytes. The Ca2+ fluorescence intensity (FI), denoting [Ca2+]i in cardiomyocytes, was significantly elevated in a time-dependent manner in the exposure groups. There was a significant increase in WLCC in the 1-day group and a further significant increase in the 7- and 14-day groups. LCC mRNA expression measured by RT-PCR revealed a significant rise in the 1-day group and a significant additional rise in the 7- and 14-day groups compared with control group. SERCA2 expression was significantly upregulated in the 1-day group followed by an overt decrease in the 7- and 14-day groups. Prolonged exposure of infrasound altered WLCC in rat cardiomyocytes by shifting the steady-state inactivation curves to the right (more depolarized direction) without altering the slope and biophysical properties of I Ca,L. Taken together, our data suggest that changes in [Ca2+]I levels as well as expression of LCC and SERCA2 may contribute to the infrasound exposure-elicited cardiac response. Zhaohui Pei and Zhiqiang Zhuang contributed equally to this work.  相似文献   

13.
Increases in cytosolic Ca2+ concentration regulate diverse cellular activities and are usually evoked by opening of Ca2+ channels in intracellular Ca2+ stores and the plasma membrane (PM). For the many signals that evoke formation of inositol 1,4,5-trisphosphate (IP3), IP3 receptors coordinate the contributions of these two Ca2+ sources by mediating Ca2+ release from the endoplasmic reticulum (ER). Loss of Ca2+ from the ER then activates store-operated Ca2+ entry (SOCE) by causing dimers of STIM1 to cluster and unfurl cytosolic domains that interact with the PM Ca2+ channel, Orai1, causing its pore to open. The relative concentrations of STIM1 and Orai1 are important, but most analyses of their interactions use overexpressed proteins that perturb the stoichiometry. We tagged endogenous STIM1 with EGFP using CRISPR/Cas9. SOCE evoked by loss of ER Ca2+ was unaffected by the tag. Step-photobleaching analysis of cells with empty Ca2+ stores revealed an average of 14.5 STIM1 molecules within each sub-PM punctum. The fluorescence intensity distributions of immunostained Orai1 puncta were minimally affected by store depletion, and similar for Orai1 colocalized with STIM1 puncta or remote from them. We conclude that each native SOCE complex is likely to include only a few STIM1 dimers associated with a single Orai1 channel. Our results, demonstrating that STIM1 does not assemble clusters of interacting Orai channels, suggest mechanisms for digital regulation of SOCE by local depletion of the ER.

In generating the cytosolic Ca2+ signals that regulate cellular activities, cells call upon two sources of Ca2+: the extracellular space, accessed through Ca2+ channels in the plasma membrane (PM), and Ca2+ sequestered within intracellular stores, primarily within the endoplasmic reticulum (ER). In animal cells, the many receptors that stimulate formation of inositol 1,4,5-trisphosphate (IP3) provide coordinated access to both Ca2+ sources (1). IP3 stimulates the opening of IP3 receptors (IP3R), which are large Ca2+-permeable channels expressed mostly within ER membranes. IP3 thereby triggers Ca2+ release from the ER (2, 3). The link to extracellular Ca2+ is provided by store-operated Ca2+ entry (SOCE), which is activated by loss of Ca2+ from the ER. The reduction in ER free-Ca2+ concentration causes Ca2+ to dissociate from the luminal Ca2+-binding sites of stromal interaction molecule 1 (STIM1), a dimeric protein embedded in ER membranes. This loss of Ca2+ causes STIM1 to unfurl cytosolic domains that interact with the PM Ca2+ channel, Orai1, causing its pore to open and Ca2+ to flow into the cell through the SOCE pathway (Fig. 1A) (4, 5). Available evidence suggests that STIM1 must bind to the C-terminal tail of each of the six subunits of an Orai1 channel for optimal activity, with lesser occupancies reducing activity and modifying channel properties (610). The interactions between STIM1 and Orai1 occur at membrane contact sites (MCS), where the two membranes are organized to provide a gap of about 10–30 nm, across which the two proteins directly interact (1113). Orai channels are unusual in having no structural semblance to other ion channels and in having their opening controlled by direct interactions between proteins in different membranes (Fig. 1A). Competing models suggest that dimeric STIM1 binds either to a pair of C-terminal tails within a single channel (6 STIM1 molecules per hexameric Orai1 channel) (Fig. 1 B, a), or that each dimer interacts with only a single C-terminal tail leaving the remaining STIM1 subunit free to cross-link with a different Orai1 channel (12 STIM1 molecules around a single Orai1 channel) (Fig. 1 B, b) (see references in ref. 14). The latter arrangement has been proposed to allow assembly of close-packed Orai1 clusters (Fig. 1 B, c) and to explain the variable stoichiometry of Orai1 to STIM1 at MCS (14).Open in a separate windowFig. 1.SOCE is unaffected by tagging of endogenous STIM1. (A) SOCE is activated when loss of Ca2+ from the ER, usually mediated by IP3Rs, causes Ca2+ to dissociate from the EF hands of dimeric STIM1. This causes STIM1 to unfurl its cytosolic domain, unmasking the C-terminal polybasic tail (PBT) and CRAC (Ca2+-release-activated channel)-activation domain (CAD) Association of the PBT with PM phosphoinositides causes STIM1 to accumulate at MCS, where the CAD captures the C-terminal tail of Orai1. Binding of STIM1 to each of the six subunits of Orai1 opens the Ca2+ channel, allowing SOCE to occur (9). (B) Orai1 is a hexamer, comprising three pairs of dimers (33). Dimeric STIM1 may activate Orai1 by binding as three dimers (B, a), or as six dimers (B, b) with the residual STIM1 subunit free to interact with another Orai1 channel (B, c) (14). (C) Structure of the edited STIM1-EGFP. (D) TIRF images of STIM1-EGFP HeLa cells treated with STIM1 or nonsilencing (NS) shRNA before emptying of Ca2+ stores. (Scale bar, 10 µm.) (E) Summary results (individual values, mean ± SD, n = 3 independent experiments, each with ∼30 cells analyzed) show whole-cell fluorescence intensities from TIRF images of STIM1-EGFP HeLa cells treated with the indicated shRNA. Results from WT cells are also shown (n = 4). ****P < 0.0001, ANOVA with Bonferroni test, relative to WT cells. (F) In-gel fluorescence of lysates from WT or STIM1-EGFP HeLa cells (protein loadings in μg). The STIM1-EGFP band (arrow) and molecular mass markers (kDa) are shown. Similar results were obtained in four independent analyses. (G) WB for STIM1 and β-actin for WT and STIM1-EGFP HeLa cells. Protein loadings (μg) and molecular mass markers (kDa) are shown. Arrows show positions of native and EGFP-tagged STIM1. (H) Summary results (individual values, mean ± SD, n = 9) show expression of STIM1-EGFP relative to all STIM1 in STIM1-EGFP HeLa cells (red), and total STIM1 expression in WT and edited cells (black). (I) Effects of histamine in Ca2+-free HBS on the peak increase in [Ca2+]c (Δ[Ca2+]c) in populations of WT and STIM1-EGFP HeLa cells. Mean ± SEM from four experiments, each with six determinations. (J) Effects of CPA in Ca2+-free HBS on the peak increase in [Ca2+]c (Δ[Ca2+]c) in populations of WT and STIM1-EGFP HeLa cells. Mean ± SEM from four experiments, each with six determinations. (K) Populations of cells were treated (5 min) with CPA in Ca2+-free HBS to evoke graded depletion of ER Ca2+ stores before addition of extracellular Ca2+ (final free [Ca2+] ∼10 mM). Results (mean ± SEM, n = 6, each with six determinations) show the amplitude of the SOCE in WT and STIM1-EGFP HeLa cells. See also SI Appendix, Figs. S1 and S2.Opening of most ion channels is regulated by changes in membrane potential or by binding of soluble stimuli, where the relationship between stimulus intensity and response is readily amenable to experimental analysis. The unusual behavior of SOCE, where direct interactions between proteins embedded in different membranes control channel opening (Fig. 1A), makes it more difficult to define stimulus–response relationships and highlights the need to understand the amounts of STIM1 and Orai1 within the MCS where the interactions occur. When STIM1 or Orai1 are overexpressed their behaviors are perturbed, yet most analyses of their interactions have involved overexpression of the proteins. These difficulties motivated the present study, which was designed to determine the number of native STIM1 molecules associated with each SOCE signaling complex.  相似文献   

14.
Cardiac glycosides, which inhibit the plasma membrane Na+ pump, are one of the four categories of drug recommended for routine use to treat heart failure, yet their therapeutic window is limited by toxic effects. Elevated cytoplasmic Na+ ([Na+]i) compromises mitochondrial energetics and redox balance by blunting mitochondrial Ca2+ ([Ca2+]m) accumulation, and this impairment can be prevented by enhancing [Ca2+]m. Here, we investigate whether this effect underlies the toxicity and arrhythmogenic effects of cardiac glycosides and if these effects can be prevented by suppressing mitochondrial Ca2+ efflux, via inhibition of the mitochondrial Na+/Ca2+ exchanger (mNCE). In isolated cardiomyocytes, ouabain elevated [Na+]i in a dose-dependent way, blunted [Ca2+]m accumulation, decreased the NADH/NAD + redox potential, and increased reactive oxygen species (ROS). Concomitant treatment with the mNCE inhibitor CGP-37157 ameliorated these effects. CGP-37157 also attenuated ouabain-induced cellular Ca2+ overload and prevented delayed afterdepolarizations (DADs). In isolated perfused hearts, ouabain's positive effects on contractility and respiration were markedly potentiated by CGP-37157, as were those mediated by β-adrenergic stimulation. Furthermore, CGP-37157 inhibited the arrhythmogenic effects of ouabain in both isolated perfused hearts and in vivo. The findings reveal the mechanism behind cardiac glycoside toxicity and show that improving mitochondrial Ca2+ retention by mNCE inhibition can mitigate these effects, particularly with respect to the suppression of Ca2+-triggered arrhythmias, while enhancing positive inotropic actions. These results suggest a novel strategy for the treatment of heart failure.  相似文献   

15.
Exocytosis and endocytosis are tightly coupled. In addition to initiating exocytosis, Ca2+ plays critical roles in exocytosis–endocytosis coupling in neurons and nonneuronal cells. Both positive and negative roles of Ca2+ in endocytosis have been reported; however, Ca2+ inhibition in endocytosis remains debatable with unknown mechanisms. Here, we show that synaptotagmin-1 (Syt1), the primary Ca2+ sensor initiating exocytosis, plays bidirectional and opposite roles in exocytosis–endocytosis coupling by promoting slow, small-sized clathrin-mediated endocytosis but inhibiting fast, large-sized bulk endocytosis. Ca2+-binding ability is required for Syt1 to regulate both types of endocytic pathways, the disruption of which leads to inefficient vesicle recycling under mild stimulation and excessive membrane retrieval following intense stimulation. Ca2+-dependent membrane tubulation may explain the opposite endocytic roles of Syt1 and provides a general membrane-remodeling working model for endocytosis determination. Thus, Syt1 is a primary bidirectional Ca2+ sensor facilitating clathrin-mediated endocytosis but clamping bulk endocytosis, probably by manipulating membrane curvature to ensure both efficient and precise coupling of endocytosis to exocytosis.

Endocytosis and subsequent vesicle recycling are spatiotemporally coupled to exocytosis, which is critical for neurons and endocrinal cells to maintain the integrity of plasma membrane architecture, intracellular homeostasis, and sustained neurotransmission (13). In addition to triggering vesicular exocytosis, neural activity/Ca2+ also play an executive role in the coupling of endocytosis to exocytosis (1, 2, 46). Following a pioneering study 40 y ago (7), extensive studies have been conducted and showed that Ca2+ triggers and facilitates vesicle endocytosis in neurons and nonneuronal secretory cells (1, 811). Accumulating evidence also shows that intracellular Ca2+ may inhibit endocytosis (1215), which has been challenged greatly due to the apparently lower occurrences in few preparations and the missing underlining mechanisms, making the endocytic role of Ca2+ a four-decades–long dispute (1, 2, 4, 6).Machineries and regulators involved in exocytosis–endocytosis coupling have been extensively studied for over 30 y. The soluble N-ethylmaleimide–sensitive factor attachment protein receptors (SNAREs) and synaptophysin play critical dual roles in exocytosis and endocytosis during neurotransmission (2, 3, 16, 17). Calmodulin and synaptotagmin-1 (Syt1) are currently known primary Ca2+ sensors facilitating endocytosis (1, 9, 16, 18, 19). Ca2+/calmodulin activate calcineurin, which dephosphorylates endocytic proteins (e.g., dynamin, synaptojanin, and amphiphysin) to facilitate clathrin-mediated endocytosis (CME) and clathrin-independent fast endocytosis (1, 2). Syt1 is a dual Ca2+ sensor for both exocytosis and endocytosis (5, 16, 1820). It promotes CME through binding with the endocytic adaptors adaptor protein-2 (AP-2) and stonin-2 (2124). In contrast to the well-established Ca2+ sensors that promote endocytosis, the mechanism of Ca2+-dependent inhibition in endocytosis remains unknown.CME is the classical but slow endocytosis pathway for vesicle retrieval under resting conditions or in response to mild stimulation, while the accumulated Ca2+ also triggers calmodulin/calcineurin-dependent bulk endocytosis, which takes up a large area of plasma membrane to fulfill the urgent requirement for high-speed vesicle exocytosis (13). They cooperate with kiss-and-run and ultrafast endocytosis to ensure both sufficient and precise membrane retrieval following exocytosis (3, 2527). These endocytic pathways are all initiated from membrane invagination and are critically controlled by neural activity. However, how the switch between different endocytic modes is precisely determined remains largely unknown.Here, by combining electrophysiological recordings, confocal live imaging, superresolution stimulated emission depletion (STED) imaging, in vitro liposome manipulation, and electron microscope imaging of individual endocytic vesicles, we define Syt1 as a primary and bidirectional Ca2+ sensor for endocytosis, which promotes CME but inhibits bulk endocytosis, probably by mediating membrane remodeling. The balance between the facilitatory and inhibitory effects of Syt1 on endocytosis offers a fine-tuning mechanism to ensure both efficient and precise coupling of endocytosis to exocytosis. By including a non-Ca2+–binding Syt as the constitutive brake, this work also explains the four-decades–long puzzle about the positive and negative Ca2+ effects on endocytosis.  相似文献   

16.
Aims/Hypothesis To assess the effects of diabetes-induced activation of protein kinase C (PKC) on voltage-dependent and voltage-independent Ca2+ influx pathways in retinal microvascular smooth muscle cells.Methods Cytosolic Ca2+ was estimated in freshly isolated rat retinal arterioles from streptozotocin-induced diabetic and non-diabetic rats using fura-2 microfluorimetry. Voltage-dependent Ca2+ influx was tested by measuring rises in [Ca2+]i with KCl (100 mmol/l) and store-operated Ca2+ influx was assessed by depleting [Ca2+]i stores with Ca2+ free medium containing 5 µmol/l cyclopiazonic acid over 10 min and subsequently measuring the rate of rise in Ca2+ on adding 2 mmol/l or 10 mmol/l Ca2+solution.Results Ca2+ entry through voltage-dependent L-type Ca2+ channels was unaffected by diabetes. In contrast, store-operated Ca2+ influx was attenuated. In microvessels from non-diabetic rats 20 mmol/l D-mannitol had no effect on store-operated Ca2+ influx. Diabetic rats injected daily with insulin had store-operated Ca2+ influx rates similar to non-diabetic control rats. The reduced Ca2+ entry in diabetic microvessels was reversed by 2-h exposure to 100 nmol/l staurosporine, a non-specific PKC antagonist and was mimicked in microvessels from non-diabetic rats by 10-min exposure to the PKC activator phorbol myristate acetate (100 nmol/l). The specific PKC antagonist LY379196 (100 nmol/l) also reversed the poor Ca2+ influx although its action was less efficacious than staurosporine.Conclusion/interpretation These results show that store-operated Ca2+ influx is inhibited in retinal arterioles from rats having sustained increased blood glucose and that PKC seems to play a role in mediating this effect.Abbreviations DAG Diacylglycerol - PKC protein kinase C - [Ca2+]i intracellular calcium concentration - STZ streptozotocin - SPP staurosporine - SR sarcoplasmic reticulum - MVSM microvascular smooth muscle - CPA cyclopiazonic acid - PMA phorbol myristate acetate - VDCC voltage-dependent Ca2+ channels  相似文献   

17.
Increased neuron and astrocyte activity triggers increased brain blood flow, but controversy exists over whether stimulation-induced changes in astrocyte activity are rapid and widespread enough to contribute to brain blood flow control. Here, we provide evidence for stimulus-evoked Ca2+ elevations with rapid onset and short duration in a large proportion of cortical astrocytes in the adult mouse somatosensory cortex. Our improved detection of the fast Ca2+ signals is due to a signal-enhancing analysis of the Ca2+ activity. The rapid stimulation-evoked Ca2+ increases identified in astrocyte somas, processes, and end-feet preceded local vasodilatation. Fast Ca2+ responses in both neurons and astrocytes correlated with synaptic activity, but only the astrocytic responses correlated with the hemodynamic shifts. These data establish that a large proportion of cortical astrocytes have brief Ca2+ responses with a rapid onset in vivo, fast enough to initiate hemodynamic responses or influence synaptic activity.Brain function emerges from signaling in and between neurons and associated astrocytes, which causes fluctuations in cerebral blood flow (CBF) (15). Astrocytes are ideally situated for controlling activity-dependent increases in CBF because they closely associate with synapses and contact blood vessels with their end-feet (1, 6). Whether or not astrocytic Ca2+ responses develop often or rapidly enough to account for vascular signals in vivo is still controversial (710). Ca2+ responses are of interest because intracellular Ca2+ is a key messenger in astrocytic communication and because enzymes that synthesize the vasoactive substances responsible for neurovascular coupling are Ca2+-dependent (1, 4). Neuronal activity releases glutamate at synapses and activates metabotropic glutamate receptors on astrocytes, and this activation can be monitored by imaging cytosolic Ca2+ changes (11). Astrocytic Ca2+ responses are often reported to evolve on a slow (seconds) time scale, which is too slow to account for activity-dependent increases in CBF (8, 10, 12, 13). Furthermore, uncaging of Ca2+ in astrocytes triggers vascular responses in brain slices through specific Ca2+-dependent pathways with a protracted time course (14, 15). More recently, stimulation of single presynaptic neurons in hippocampal slices was shown to evoke fast, brief, local Ca2+ elevations in astrocytic processes that were essential for local synaptic functioning in the adult brain (16, 17). This work prompted us to reexamine the characteristics of fast, brief astrocytic Ca2+ signals in vivo with special regard to neurovascular coupling, i.e., the association between local increases in neural activity and the concomitant rise in local blood flow, which constitutes the physiological basis for functional neuroimaging.Here, we describe how a previously undescribed method of analysis enabled us to provide evidence for fast Ca2+ responses in a main fraction of astrocytes in mouse whisker barrel cortical layers II/III in response to somatosensory stimulation. The astrocytic Ca2+ responses were brief enough to be a direct consequence of synaptic excitation and correlated with stimulation-induced hemodynamic responses. Fast Ca2+ responses in astrocyte end-feet preceded the onset of dilatation in adjacent vessels by hundreds of milliseconds. This finding might suggest that communication at the gliovascular interface contributes considerably to neurovascular coupling.  相似文献   

18.
The Ca2+-dependent facilitation (CDF) of L-type Ca2+ channels, a major mechanism for force-frequency relationship of cardiac contraction, is mediated by Ca2+/CaM-dependent kinase II (CaMKII). Recently, CaMKII was shown to be activated by methionine oxidation. We investigated whether oxidation-dependent CaMKII activation is involved in the regulation of L-type Ca2+ currents (ICa,L) by H2O2 and whether Ca2+ is required in this process. Using patch clamp, ICa,L was measured in rat ventricular myocytes. H2O2 induced an increase in ICa,L amplitude and slowed inactivation of ICa,L. This oxidation-dependent facilitation (ODF) of ICa,L was abolished by a CaMKII blocker KN-93, but not by its inactive analog KN-92, indicating that CaMKII is involved in ODF. ODF was not affected by replacement of external Ca2+ with Ba2+ or presence of EGTA in the internal solutions. However, ODF was abolished by adding BAPTA to the internal solution or by depleting sarcoplasmic reticulum (SR) Ca2+ stores using caffeine and thapsigargin. Alkaline phosphatase, β-iminoadenosine 5′-triphosphate (AMP-PNP), an autophosphorylation inhibitor autocamtide-2-related inhibitory peptide (AIP), or a catalytic domain blocker (CaM-KIINtide) did not affect ODF. In conclusion, oxidation-dependent facilitation of L-type Ca2+ channels is mediated by oxidation-dependent CaMKII activation, in which local Ca2+ increases induced by SR Ca2+ release is required.  相似文献   

19.
Arabidopsis thaliana two-pore channel AtTPC1 is a voltage-gated, Ca2+-modulated, nonselective cation channel that is localized in the vacuolar membrane and responsible for generating slow vacuolar (SV) current. Under depolarizing membrane potential, cytosolic Ca2+ activates AtTPC1 by binding at the EF-hand domain, whereas luminal Ca2+ inhibits the channel by stabilizing the voltage-sensing domain II (VSDII) in the resting state. Here, we present 2.8 to 3.3 Å cryoelectron microscopy (cryo-EM) structures of AtTPC1 in two conformations, one in closed conformation with unbound EF-hand domain and resting VSDII and the other in a partially open conformation with Ca2+-bound EF-hand domain and activated VSDII. Structural comparison between the two different conformations allows us to elucidate the structural mechanisms of voltage gating, cytosolic Ca2+ activation, and their coupling in AtTPC1. This study also provides structural insight into the general voltage-gating mechanism among voltage-gated ion channels.

Voltage-gated ion channels (VGICs), such as voltage-gated potassium channel (Kv), sodium channel (Nav), and calcium channel (Cav), are activated by depolarization of membrane potential and play essential roles in electrical signal transduction (13). VGICs sense the membrane potential by voltage-sensing domains (VSDs), which consist of four transmembrane helices S1 to S4. In most VGICs, VSDs are stabilized in the resting state by hyperpolarizing (negative) membrane potential, and the channel gate stays closed. At depolarizing (relatively positive) membrane potential, VSDs are activated, and their depolarization-induced conformational changes are coupled to the S5–S6 pore domain, resulting in the opening of the channel gate.While dozens of VGIC structures have been determined over the past two decades, only very few VSDs in these structures were captured in the resting state. That is because VGICs for structural studies in vitro are solubilized in detergent micelle or lipid nanodisc, making it difficult to recapitulate the resting state under hyperpolarizing (negative) membrane potential. The structure of plant two-pore channel (TPC) from Arabidopsis thaliana (AtTPC1) was among the first to capture a resting-state VSD (4, 5). In addition, mutagenesis combined with cross-linking, ion bridge, or toxin binding have been used to trap the structures of VGICs in resting state in several recent studies, including structures of the bacterial sodium channel NavAb (6), the eukaryotic sodium channel chimera Nav1.7-NavPaS (7), and the hyperpolarization-activated cyclic nucleotide-gated ion channel HCN (8). To fully understand the similarities and differences of the voltage-gating mechanism among different VGICs, it will be essential to visualize the structures of various VGICs in both activated and resting state. To this end, we are using AtTPC1 as a model to elucidate the structural mechanism of voltage gating.TPCs belong to the VGIC superfamily and are ubiquitously expressed in animals and plants (9, 10). While animal TPCs (TPC1 and TPC2) are endolysosomal sodium channels, the plant TPC (TPC1) is a nonselective cation channel responsible for generating the slow vacuole (SV) current (11, 12). TPCs function as homodimer with each subunit comprising two homologous Shaker-like 6-transmembrane segment domains (6-TM I and 6-TM II) (9, 10, 13), thereby equivalent to a classical VGIC with four VSDs and one pore domain.Plant TPC is involved in many important physiological processes, such as germination and stomatal opening (12), jasmonate biosynthesis (14, 15), modulation of Ca2+ waves induced by salinity stress (16), and plant–pathogen interaction (17). AtTPC1, the most well-studied plant TPC from A. thaliana, is activated by the membrane depolarization and cytosolic Ca2+ but inhibited by vacuolar Ca2+ (18, 19). Previously, we determined the crystal structure of AtTPC1 in closed state (Protein Data Bank [PDB]: 5E1J, AtTPC15E1J) (4). We demonstrated that between the two VSDs within each AtTPC1 subunit, only the second one (VSDII) senses the membrane potential and adopts a resting state in the structure whereas the first one (VSDI) lacks several key features essential for voltage sensing and therefore does not contribute to the voltage-dependent gating. Ca2+ activation occurs at the EF-hand domain containing two EF-hand motifs. However, Ca2+ binding at EF hand 1 appears to play a structural role and does not contribute to Ca2+ activation; Ca2+ binding at EF hand 2 is central for Ca2+ activation and it adopts an unbound state in the structure (4, 19). We also identified the luminal divalent inhibition site in AtTPC1 where Ca2+ or Ba2+ binding can stabilize the voltage-sensing VSDII in a resting state. Based on our structural and electrophysiological analysis, we proposed that the conformational changes triggered by the binding of Ca2+ to cytosolic EF-hand domain are coupled with the pair pore-lining inner helices from the 6-TM I (IS6), whereas the conformational changes of VSDII activated by membrane potential are coupled with the pair of inner helices from the 6-TM II (IIS6) (4). In order to understand the structural basis underlying multistimuli gating of AtTPC1, here we determined AtTPC1 structures in both closed and partially open conformation under different Ca2+ conditions, revealing the structural mechanism of voltage gating and Ca2+ modulation of AtTPC1.  相似文献   

20.
Alcohol-related acute pancreatitis can be mediated by a combination of alcohol and fatty acids (fatty acid ethyl esters) and is initiated by a sustained elevation of the Ca2+ concentration inside pancreatic acinar cells ([Ca2+]i), due to excessive release of Ca2+ stored inside the cells followed by Ca2+ entry from the interstitial fluid. The sustained [Ca2+]i elevation activates intracellular digestive proenzymes resulting in necrosis and inflammation. We tested the hypothesis that pharmacological blockade of store-operated or Ca2+ release-activated Ca2+ channels (CRAC) would prevent sustained elevation of [Ca2+]i and therefore protease activation and necrosis. In isolated mouse pancreatic acinar cells, CRAC channels were activated by blocking Ca2+ ATPase pumps in the endoplasmic reticulum with thapsigargin in the absence of external Ca2+. Ca2+ entry then occurred upon admission of Ca2+ to the extracellular solution. The CRAC channel blocker developed by GlaxoSmithKline, GSK-7975A, inhibited store-operated Ca2+ entry in a concentration-dependent manner within the range of 1 to 50 μM (IC50 = 3.4 μM), but had little or no effect on the physiological Ca2+ spiking evoked by acetylcholine or cholecystokinin. Palmitoleic acid ethyl ester (100 μM), an important mediator of alcohol-related pancreatitis, evoked a sustained elevation of [Ca2+]i, which was markedly reduced by CRAC blockade. Importantly, the palmitoleic acid ethyl ester-induced trypsin and protease activity as well as necrosis were almost abolished by blocking CRAC channels. There is currently no specific treatment of pancreatitis, but our data show that pharmacological CRAC blockade is highly effective against toxic [Ca2+]i elevation, necrosis, and trypsin/protease activity and therefore has potential to effectively treat pancreatitis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号