首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A blood-stage vaccine based on Plasmodium falciparum merozoite surface protein 3 (MSP3) was tested for efficacy in a primate model. Aotus nancymai monkeys were vaccinated with yeast-expressed MSP3 before a lethal challenge with Plasmodium falciparum parasites. Five of 7 control monkeys had acute infections and required treatment to control parasitemia. Only 1 of 7 monkeys vaccinated with MSP3 required this treatment. The efficacy of the MSP3 vaccination appeared to be comparable to that of MSP1(42), a leading asexual vaccine candidate, in response to which 2 monkeys experienced acute infections. In the MSP3-vaccinated group, protection correlated with prechallenge titers of antibody to MSP3. In the MSP1 and control groups, protection correlated with antibody to MSP3 raised by challenge infection.  相似文献   

2.
3.
BACKGROUND: After continuous exposure to malarial infections in regions of Africa where malaria is hyperendemic, children attain clinical immunity. This immunity results, in part, from the acquisition of antibodies against a large repertoire of variant antigens expressed on the surface of infected erythrocytes, such as the Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1). We determined whether a subunit vaccine to a portion of PfEMP1 could induce protection in nonhuman primates. METHODS: We immunized Aotus nancymai monkeys with PfEMP1 recombinant (r) cysteine-rich interdomain region 1 alpha (CIDR1 alpha ) and infected them twice with P. falciparum Vietnam Oak Knoll strain, the most virulent strain of P. falciparum in Aotus monkeys--each infection expressed a different PfEMP1. Anti-PfEMP1 antibodies were analyzed by enzyme-linked immunosorbent assay against rCIDR1 alpha and by flow cytometry against infected erythrocytes. RESULTS: Immunization with rCIDR1 alpha was not protective, despite delayed patency during the first infection, but it protected monkeys against severe anemia during reinfection. Protection against anemia is associated with a more rapid increase in antibodies to PfEMP1. CONCLUSION: The findings of reduced severe disease in rCIDR1 alpha -vaccinated Aotus monkeys provide experimental support for a PfEMP1-based vaccine to protect African children against severe malarial disease. Such vaccination may function by priming for the accelerated acquisition of immunity to new PfEMP1 variants.  相似文献   

4.
5.
We have previously found that the acquired protection against malaria implicates a mechanism of defense that relies on the cooperation between cytophilic antibodies and monocytes. Accordingly, an assay of antibody-dependent cellular inhibition (ADCI) of parasite growth was used as a means of selecting for molecules capable of inducing protective immunity to malaria. This allowed us to identify in the sera of clinically protected subjects an antibody specificity that promotes parasite killing mediated by monocytes. This antibody is directed to a novel merozoite surface protein (MSP-3) of a molecular mass of 48 kD. Purified IgG from protected subjects are effective in ADCI and those directed against MSP-3 are predominantly cytophilic. In contrast, in nonprotected individuals, whose antibodies are not effective in ADCI, anti-MSP-3 antibodies are mostly noncytophilic. A region in MSP-3 targetted by antibodies effective in the ADCI assay was identified and its sequence was determined; it contains an epitope not defined by a repetitive structure and does not appear to be polymorphic. Antibodies raised in mice against a peptide containing this epitope, as well as human antibodies immunopurified on this peptide, elicit a strong inhibition of Plasmodium falciparum growth in ADCI assay, whereas control antibodies, directed to peptides from other molecules, do not. The correlation between isotypes of antibodies produced against the 48- kD epitopes, clinical protection, and the ability of specific anti-MSP- 3 antibodies to block the parasite schizogony in the ADCI assay suggests that this molecule is involved in eliciting protective mechanisms.  相似文献   

6.
The current spread of multidrug-resistant malaria demands rapid vaccine development against the major pathogen Plasmodium falciparum. The high quantities of protein required for a worldwide vaccination campaign select recombinant DNA technology as a practical approach for large-scale antigen production. We describe the vaccination of Aotus monkeys with two recombinant blood-stage antigens (recombinant p41 and 190N) that were considered as vaccine candidates because parasite-derived antigen preparations could protect susceptible monkeys from an otherwise lethal malaria infection. In contrast to the natural antigen, recombinant p41 protein (P. falciparum aldolase) could not protect monkeys, although all animals seroconverted. 190N antigen, a recombinant protein containing conserved sequences of the major merozoite surface antigen p190, protected two of five monkeys from critical levels of infection with the highly virulent FVO isolate of P. falciparum. However, the B- and T-cell responses to 190N antigen were similar in protected and unprotected animals so that other unknown factors may contribute to protection. Higher purity or lack of protective epitopes or different structure of protective epitopes in the recombinant proteins might explain the better performance of parasite-derived antigens in vaccination trials. The partial protection obtained with 190N antigen suggests that this molecule could contribute to a vaccine mixture against P. falciparum.  相似文献   

7.
8.
Two strains of transgenic mice have been generated that secrete into their milk a malaria vaccine candidate, the 42-kDa C-terminal portion of Plasmodium falciparum merozoite surface protein 1 (MSP1(42)). One strain secretes an MSP1(42) with an amino acid sequence homologous to that of the FVO parasite line, the other an MSP1(42) where two putative N-linked glycosylation sites in the FVO sequence have been removed. Both forms of MSP1(42) were purified from whole milk to greater than 91% homogeneity at high yields. Both proteins are recognized by a panel of monoclonal antibodies and have identical N termini, but are clearly distinguishable by some biochemical properties. These two antigens were each emulsified with Freund's adjuvant and used to vaccinate Aotus nancymai monkeys, before challenge with the homologous P. falciparum FVO parasite line. Vaccination with a positive control molecule, a glycosylated form of MSP1(42) produced in the baculovirus expression system, successfully protected five of six monkeys. By contrast, vaccination with the glycosylated version of milk-derived MSP1(42) conferred no protection compared with an adjuvant control. Vaccination with the nonglycosylated, milk-derived MSP1(42) successfully protected the monkeys, with 4/5 animals able to control an otherwise lethal infection with P. falciparum compared with 1/7 control animals. Analysis of the different vaccines used suggested that the differing nature of the glycosylation patterns may have played a critical role in determining efficacy. This study demonstrates the potential for producing efficacious malarial vaccines in transgenic animals.  相似文献   

9.
After initial successful evaluation of the circumsporozoite-based vaccine RTS,S/SBAS2, developed by SmithKline Beecham Biologicals with the Walter Reed Army Institute of Research, protective efficacy of several regimens against Plasmodium falciparum challenge was determined. A controlled phase 1/2a study evaluated 1 or 2 standard doses of RTS,S/SBAS2 in 2 groups whose members received open-label therapy and 3 immunizations in blinded groups who received standard, one-half, or one-fifth doses. RTS,S/SBAS2 was safe and immunogenic in all groups. Of the 41 vaccinees and 23 control subjects who underwent sporozoite challenge, malaria developed in 7 of 10 who received 1 dose, in 7 of 14 who received 2 doses, in 3 of 6 who received 3 standard doses, in 3 of 7 who received 3 one-half doses, in 3 of 4 who received 3 one-fifth doses, and in 22 of 23 control subjects. Overall protective efficacy of RTS,S/SBAS2 was 41% (95% confidence interval, 22%-56%; P=.0006). This and previous studies have shown that 2 or 3 doses of RTS,S/SBAS2 protect against challenge with P. falciparum sporozoites.  相似文献   

10.
A protocol was developed for the testing of blood stage vaccines against Plasmodium falciparum using Peruvian Aotus vociferans and the Indochina I/CDC strain of the parasite. Three different fused polypeptide vaccines containing elements of the ring-infected erythrocyte surface antigen molecule combined with Freund's complete and Freund's incomplete adjuvants were tested to determine their ability to protect against overwhelming infection following challenge with this highly virulent strain of P. falciparum, and to invoke antibody responses as measured by a standard indirect immunofluorescence technique. Nine of 14 immunized animals exhibited some protection. Presented are the test procedures developed for the conduct of such trials with New World monkeys and the analysis of results that led to the identification of variables selected for study in future trials.  相似文献   

11.
Malaria has been a major selective force on the human population, and several erythrocyte polymorphisms have evolved that confer resistance to severe malaria. Plasmodium falciparum rosetting, a parasite virulence phenotype associated with severe malaria, is reduced in blood group O erythrocytes compared with groups A, B, and AB, but the contribution of the ABO blood group system to protection against severe malaria has received little attention. We hypothesized that blood group O may confer resistance to severe falciparum malaria through the mechanism of reduced rosetting. In a matched case-control study of 567 Malian children, we found that group O was present in only 21% of severe malaria cases compared with 44-45% of uncomplicated malaria controls and healthy controls. Group O was associated with a 66% reduction in the odds of developing severe malaria compared with the non-O blood groups (odds ratio 0.34, 95% confidence interval 0.19-0.61, P < 0.0005, severe cases versus uncomplicated malaria controls). In the same sample set, P. falciparum rosetting was reduced in parasite isolates from group O children compared with isolates from the non-O blood groups (P = 0.003, Kruskal-Wallis test). Statistical analysis indicated a significant interaction between host ABO blood group and parasite rosette frequency that supports the hypothesis that the protective effect of group O operates through the mechanism of reduced P. falciparum rosetting. This work provides insights into malaria pathogenesis and suggests that the selective pressure imposed by malaria may contribute to the variable global distribution of ABO blood groups in the human population.  相似文献   

12.
In patients with uncomplicated Plasmodium falciparum infection cytokine-mediated serum protein levels of C-reactive protein (CRP), coeruloplasmin (COE), beta 2-microglobulin (B2M), alpha 1-acid glycoprotein (AAG), alpha 1-antitrypsin (AAT), haptoglobin (HPT), prealbumin (PRE), retinol binding protein (RBP), albumin (ALB) and transferrin (TRF) were measured in an endemic area of the Amazonian rain forest. Semi-immune (SI) and nonimmune (NI) patients were investigated. In both patient groups the serum concentrations of CRP, COE and B2M were elevated on admission. In addition AAG and AAT concentrations were increased in NI patients compared to control subjects. Significantly lower serum concentrations of HPT, PRE, RBP, ALB and TRF were seen in both patient groups during the acute phase of the disease, and were more pronounced in NI patients. After a 28-day follow-up, AAT and B2M were normal in SI patients but HPT, AAT and B2M were still significantly altered in NI patients.  相似文献   

13.
14.
We evaluated repeated blood-stage infections with Plasmodium falciparum in eight Aotus lemurinus lemurinus monkeys. Over the course of seven infections with 10(4) P. falciparum (the Vietnam Oak Knoll [FVO] strain), the pre-patent period lengthened from 8.2 to 30.8 days; the peak parasitemia decreased from 4.5 x 10(5) to 0 parasites/microl (Challenges 6 and 7), and the requirement for treatment decreased from 100% to 0% (Challenges 3 to 7). Five weeks after the seventh FVO challenge, the eight immune and three na?ve monkeys received 10(4) parasitized erythrocytes infected with P. falciparum (CAMP strain). The three control animals experienced uncontrolled parasitemias reaching between 4.8 and 7.7 x 10(5) parasites/microl (pre-patency = 6.3 days) and all required drug treatment; six of the eight immune monkeys became parasitemic (pre-patency = 8.8 days), but self-cured. Two of three of the monkeys having the greatest reductions in hematocrit (50-60%) also had the highest parasitemias (approximately 10(4) parasites/microl) before self-curing. Repeated homologous infections induced sterile immunity to homologous challenge; during heterologous challenge the monkeys developed clinically relevant, but not life-threatening, parasitemias and anemia.  相似文献   

15.
16.
Immunity to Plasmodium falciparum in African children has been correlated with antibodies to the P. falciparum erythrocyte membrane protein 1 (PfEMP1) variant gene family expressed on the surface of infected red cells. We immunized Aotus monkeys with a subregion of the Malayan Camp variant antigen (MCvar1) that mediates adhesion to the host receptor CD36 on the endothelial surface and present data that PfEMP1 is an important target for vaccine development. The immunization induced a high level of protection against the homologous strain. Protection correlated with the titer of agglutinating antibodies and occurred despite the expression of variant copies of the gene during recurrent waves of parasitemia. A second challenge with a different P. falciparum strain, to which there was no agglutinating activity, showed no protection but boosted the immune response to this region during the infection. The level of protection and the evidence of boosting during infection encourage further exploration of this concept for malaria vaccine development.  相似文献   

17.
Although the ABO blood group of the human host has been reported to influence malarial infection, there have been few clinical observations on this effect. A hospital-based, comparative study was therefore performed to investigate the relationship between blood-group type and severe disease i nPlasmodium falciparum malaria. Overall, 243 cases of malaria (163 uncomplicated and 80 severe) and 65 patients with severe, non-malarial infections were studied. In terms of ABO-blood-group composition, the patients with severe malaria were significantly different from the patients with the uncomplicated disease (P<0.001) and also from a population control described previously (P<0.0001). The patients with uncomplicated malaria or severe but non-malarial disease were, however, similar to the population control. The cases of severe malaria were significantly less likely to be of blood group O (P=0.0003), and significantly more likely to be of group AB (P<0.0001), than the patients with nonsevere malaria. It appears that individuals who are of blood-group O are relatively resistant to the severe disease caused by P. falciparum infection.  相似文献   

18.
A vaccine trial was conducted to determine the efficacy of a multicomponent candidate vaccine, FALVAC-1, against Plasmodium falciparum in Aotus nancymai monkeys. After two immunizations, animals were challenged intravenously with parasites of the Vietnam Oak Knoll (FVO) strain of P. falciparum. The primary outcome was to determine the protective response of the monkeys to immunization with the FALVAC-1 antigen produced in baculovirus when combined with different adjuvants (alum, QS-21, ASO2a, CRL1005/oil, and CRL1005/saline) as compared with FALVAC-1 with FCA/FIA and antigen alone. When compared with the monkeys immunized with FALVAC-1 alone, FALVAC-1 with FCA/FIA reduced the mean parasite count (to Day 11), reduced the mean accumulated parasitemia (through Day 11), and extended the number of days to treatment. None of the other 5 antigen-adjuvant combinations were able to provide discernable levels of protection based on log(parasitemia) and log(cumulative parasitemia) to Day 11.  相似文献   

19.
Aotus monkeys received 4 doses of Plasmodium falciparum EBA-175 region II vaccine as plasmid DNA (Dv-Dv) or recombinant protein in adjuvant (Pv-Pv) or as 3 doses of DNA and 1 dose of protein (Dv-Pv). After 3 doses, antibody titers were approximately 10(4) in DNA-immunized monkeys and 10(6) in protein-immunized monkeys. A fourth dose did not significantly boost antibody responses in the Dv-Dv only or Pv-Pv only groups, but titers were boosted to approximately 10(6) in monkeys in the Dv-Pv group. Four weeks after the last immunization, the animals were challenged with 10(4) P. falciparum-parasitized erythrocytes. Peak levels of parasitemia were lower in the 16 monkeys that received region II-containing plasmids or proteins than in the 16 controls (geometric mean: 194,178 and 410,110 parasites/microL, respectively; P=.013, Student's t test). Three of 4 monkeys in the Dv-Pv group did not require treatment. These data demonstrate that immunization with EBA-175 region II induces a significant antiparasite effect in vivo.  相似文献   

20.
p6udies of susceptibility to the FCB-1 strain of Plasmodium falciparum from Colombia were conducted in three different groups of Aotus monkeys. The results indicated that Aotus trivirgatus griseimembra from the north of the Magdalena Valley were the most susceptible host. A. t. griseimembra from the central Magdalena Valley appeared to be less susceptible to infection, while Aotus monkeys from the eastern Andes were even more resistant to infection. Serum electrophoretic studies were not useful as indicators of resistance or susceptibility to infection. However, the presence of 58 chromosomes in monkeys from the east Andes, a karyotype not previously reported, may be an indicator for the resistance of these animals to the FCB-1 strain. Based on these results, it is possible to assume that Aotus monkeys from the eastern Andes region of Colombia may represent a new species of Aotus; further studies are needed to clarify its taxonomic status.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号