首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitochondrial dysfunction secondary to mitochondrial and nuclear DNA mutations has been associated with energy deficiency in multiple organ systems and a variety of severe, often fatal, clinical syndromes. Although the production of energy is indeed the primary function of mitochondria, attention has also been directed toward their role producing reactive oxygen and nitrogen species and the subsequent widespread deleterious effects of these intermediates. The generation of toxic reactive intermediates has been implicated in a number of relatively common disorders, including neurodegenerative diseases, diabetes, and cancer. Understanding the role mitochondrial dysfunction plays in the pathogenesis of common disorders has provided unique insights into a number of diseases and offers hope for potential new therapies.  相似文献   

2.
Mitochondria and degenerative disorders   总被引:20,自引:0,他引:20  
In mammalian cells, mitochondria provide energy from aerobic metabolism. They play an important regulatory role in apoptosis, produce and detoxify free radicals, and serve as a cellular calcium buffer. Neurodegenerative disorders involving mitochondria can be divided into those caused by oxidative phosphorylation (OXPHOS) abnormalities either due to mitochondrial DNA (mtDNA) abnormalities, e.g., chronic external ophthalmoplegia, or due to nuclear mutations of OXPHOS proteins, e.g., complex I and II associated with Leigh syndrome. There are diseases caused by nuclear genes encoding non-OXPHOS mitochondrial proteins, such as frataxin in Friedreich ataxia (which is likely to play an important role in mitochondrial-cytosolic iron cycling), paraplegin (possibly a mitochondrial ATP-dependent zinc metalloprotease of the AAA-ATPases in hereditary spastic paraparesis), and possibly Wilson disease protein (an abnormal copper transporting ATP-dependent P-type ATPase associated with Wilson disease). Huntingon disease is an example of diseases with OXPHOS defects associated with mutations of nuclear genes encoding non-mitochondrial proteins such as huntingtin. There are also disorders with evidence of mitochondrial involvement that cannot as yet be assigned. These include Parkinson disease (where a complex I defect is described and free radicals are generated from dopamine metabolism), amyotrophic lateral sclerosis, and Alzheimer disease, where there is evidence to suggest mitochondrial involvement perhaps secondary to other abnormalities.  相似文献   

3.
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder that affects the aging population. A progressive loss of motor neurons in the spinal cord and brain leads to muscle paralysis and death. As in other common neurodegenerative diseases, aging-related mitochondrial dysfunction is increasingly being considered among the pathogenic factors. Mitochondria are critical for cell survival: they provide energy to the cell, buffer intracellular calcium, and regulate apoptotic cell death. Whether mitochondrial abnormalities are a trigger or a consequence of the neurodegenerative process and the mechanisms whereby mitochondrial dysfunction contributes to disease are not clear yet. Calcium homeostasis is a major function of mitochondria in neurons, and there is ample evidence that intracellular calcium is dysregulated in ALS. The impact of mitochondrial dysfunction on intracellular calcium homeostasis and its role in motor neuron demise are intriguing issues that warrants in depth discussion. Clearly, unraveling the causal relationship between mitochondrial dysfunction, calcium dysregulation, and neuronal death is critical for the understanding of ALS pathogenesis. In this review, we will outline the current knowledge of various aspects of mitochondrial dysfunction in ALS, with a special emphasis on the role of these abnormalities on intracellular calcium handling.  相似文献   

4.
A critical role of mitochondrial dysfunction and oxidative damage has been implicated in etiopathology of many neurodegenerative disorders, as well as in normal aging. Alzheimer's and Parkinson's diseases are common devastating late-onset neurodegenerative disorders, associated with mitochondrial DNA variations, which are suggested to affect mitochondrial functions. This paper reviews the current knowledge on the inherited and somatic mtDNA variations in both conditions.  相似文献   

5.
Although the etiology for many neurodegenerative diseases is unknown, the common findings of mitochondrial defects and oxidative damage posit these events as contributing factors. The temporal conundrum of whether mitochondrial defects lead to enhanced reactive oxygen species generation, or conversely, if oxidative stress is the underlying cause of the mitochondrial defects remains enigmatic. This review focuses on evidence to show that either event can lead to the evolution of the other with subsequent neuronal cell loss. Glutathione is a major antioxidant system used by cells and mitochondria for protection and is altered in a number of neurodegenerative and neuropathological conditions. This review also addresses the multiple roles for glutathione during mitochondrial inhibition or oxidative stress. Protein aggregation and inclusions are hallmarks of a number of neurodegenerative diseases. Recent evidence that links protein aggregation to oxidative stress and mitochondrial dysfunction will also be examined. Lastly, current therapies that target mitochondrial dysfunction or oxidative stress are discussed.  相似文献   

6.
线粒体病的基因治疗   总被引:1,自引:0,他引:1  
线粒体病是一组因线粒体DNA缺失或突变而致氧化磷酸化及能量供应异常的疾病,目前该类疾病的治疗主要是支持治疗。然而由于线粒体结构和功能的特殊性,该疗效并不确切。因此,线粒体病的基因治疗显得越来越迫切和重要。目前,基因治疗的策略包括降低突变型mtDNA/野生型mtDNA的比例、错位表达、输入其他同源性基因以及利用限制性内切酶修复突变型mtDNA等。  相似文献   

7.
Neurons are highly energy demanding cells dependent on the mitochondrial oxidative phosphorylation system. Mitochondria generate energy via respiratory complexes that constitute the electron transport chain. Adenosine triphosphate depletion or glucose starvation act as a trigger for the activation of adenosine monophosphate-activated protein kinase (AMPK). AMPK is an evolutionarily conserved protein that plays an important role in cell survival and organismal longevity through modulation of energy homeostasis and autophagy. Several studies suggest that AMPK activation may improve energy metabolism and protein clearance in the brains of patients with vascular injury or neurodegenerative disease. Mild mitochondrial dysfunction leads to activated AMPK signaling, but severe endoplasmic reticulum stress and mitochondrial dysfunction may lead to a shift from autophagy towards apoptosis and perturbed AMPK signaling. Hence, controlling mitochondrial dynamics and autophagic flux via AMPK activation might be a useful therapeutic strategy in neurodegenerative diseases to reinstate energy homeostasis and degrade misfolded proteins. In this review article, we discuss briefly the role of AMPK signaling in energy homeostasis, the structure of AMPK, activation mechanisms of AMPK, regulation of AMPK, the role of AMPK in autophagy, the role of AMPK in neurodegenerative diseases, and finally the role of autophagic flux in prion diseases.  相似文献   

8.
《Mutation Research/DNAging》1992,275(3-6):133-143
The mitochondrial respiratory chain and oxidative phosphorylation system are responsible for the production of ATP by aerobic metabolism. Defects of the respiratory chain are increasingly recognised as important causes of human disease, and neurodegenerative disorders in particular. This article will seek to review the clinical and biochemical effects of respiratory chain defects, and summarise what is known about the molecular mechanisms that underlie them. Increasing age is also associated with a decline in mitochondrial function. The biochemical correlates of this dysfunction and the possible molecular defects that may cause it will also be reviewed.  相似文献   

9.
Mitochondrial DNA (mtDNA) defects are a relatively common cause of inherited disease and have been implicated in both ageing and cancer. MtDNA encodes essential subunits of the mitochondrial respiratory chain and defects result in impaired oxidative phosphorylation (OXPHOS). Similar OXPHOS defects have been shown to be present in a number of neurodegenerative conditions, including Parkinson's disease, as well as in normal ageing human tissues. Additionally, a number of tumours have been shown to contain mtDNA mutations and an altered metabolic phenotype. In this review we outline the unique characteristics of mitochondrial genetics before detailing important pathological features of mtDNA diseases, focusing on adult neurological disease as well as the role of mtDNA mutations in neurodegenerative diseases, ageing and cancer.  相似文献   

10.
Abstract Significance: Among different forms of oxidative stress, lipid peroxidation comprises the interaction of free radicals with polyunsaturated fatty acids, which in turn leads to the formation of highly reactive electrophilic aldehydes. Among these, the most abundant aldehydes are 4-hydroxy-2-nonenal (HNE) and malondialdehyde, while acrolein is the most reactive. HNE is considered a robust marker of oxidative stress and a toxic compound for several cell types. Proteins are particularly susceptible to modification caused by HNE, and adduct formation plays a critical role in multiple cellular processes. Recent Advances: With the outstanding progress of proteomics, the identification of putative biomarkers for neurodegenerative disorders has been the main focus of several studies and will continue to be a difficult task. Critical Issues: The present review focuses on the role of lipid peroxidation, particularly of HNE-induced protein modification, in neurodegenerative diseases. By comparing results obtained in different neurodegenerative diseases, it may be possible to identify both similarities and specific differences in addition to better characterize selective neurodegenerative phenomena associated with protein dysfunction. Results obtained in our laboratory and others support the common deregulation of energy metabolism and mitochondrial function in neurodegeneration. Future Directions: Research towards a better understanding of the molecular mechanisms involved in neurodegeneration together with identification of specific targets of oxidative damage is urgently required. Redox proteomics will contribute to broaden the knowledge in regard to potential biomarkers for disease diagnosis and may also provide insight into damaged metabolic networks and potential targets for modulation of disease progression. Antioxid. Redox Signal. 17, 1590-1609.  相似文献   

11.
Protein aggregation is a shared feature of many human neurodegenerative diseases and appears to be an inevitable consequence of excessive accumulation of misfolded proteins. Recent studies suggest that accumulation of fibrillar alpha-synuclein aggregates is associated with Parkinson's disease and other Lewy body diseases. Furthermore, the missense mutations in alpha-synuclein that are responsible for some early-onset familial types of the disease promote the aggregation process of this protein. Therefore, the mechanism underlying the cellular alpha-synuclein aggregation is of great importance in understanding the pathogenic process of these diseases. This review summarizes recent advances in our understanding of the mechanisms underlying alpha-synuclein aggregation and how the mitochondrial dysfunction plays a role in this process. Protein misfolding and aggregation in vivo can be suppressed and promoted by several factors, such as molecular chaperones, protein degradation systems, and free radicals. Many of these factors are under the control of normal mitochondrial function, prompting the speculation that mitochondrial dysfunction might cause the accumulation of protein aggregates. Recent studies indeed show that mitochondrial defects can lead to the aggregation of alpha-synuclein. In addition, potentially toxic effects of alpha-synuclein have been linked to the aggregated forms rather than the monomers, both in vitro and in cultured cells. Therefore, it is postulated that aggregation of alpha-synuclein might be one of many possible links that connect mitochondrial dysfunction to neurodegeneration.  相似文献   

12.
13.
《Neuroscience research》2011,69(4):261-275
Anxiety disorders, depression, and alcohol use disorder are common neuropsychiatric diseases that often occur together. Oxidative stress has been suggested to contribute to their etiology. Oxidative stress is a consequence of either increased generation of reactive oxygen species or impaired enzymatic or non-enzymatic defense against it. When excessive it leads to damage of all major classes of macromolecules, and therefore affects several fundamentally important cellular functions. Consequences that are especially detrimental to the proper functioning of the brain include mitochondrial dysfunction, altered neuronal signaling, and inhibition of neurogenesis. Each of these can further contribute to increased oxidative stress, leading to additional burden to the brain. In this review, we will provide an overview of recent work on oxidative stress markers in human patients with anxiety, depressive, or alcohol use disorders, and in relevant animal models. In addition, putative oxidative stress-related mechanisms important for neuropsychiatric diseases are discussed. Despite the considerable interest this field has obtained, the detailed mechanisms that link oxidative stress to the pathogenesis of neuropsychiatric diseases remain largely unknown. Since this pathway may be amenable to pharmacological intervention, further studies are warranted.  相似文献   

14.
线粒体功能障碍与心血管疾病   总被引:1,自引:0,他引:1       下载免费PDF全文
 线粒体是真核细胞能量产生的重要细胞器,并在细胞钙稳态、信号传导和细胞凋亡调节中也发挥着举足轻重的作用。导致线粒体功能障碍的可能原因有氧化应激、Ca2+紊乱、线粒体生物合成减少以及线粒体DNA突变等,这些因素也与心血管疾病的发生发展密切相关。认识和研究线粒体功能障碍及其在心血管疾病中的重要作用,对阐明心血管疾病的发病机制、开拓其临床防治和药物研发新思路都具有重要意义。  相似文献   

15.
With the increasing average life span of humans and with decreasing cognitive function in elderly individuals, age-related cognitive disorders including dementia have become a major health problem in society. Aging-related mitochondrial dysfunction underlies many common neurodegenerative disorders diseases, including Alzheimer's disease (AD). AD is characterized by two major histopathological hallmarks, initially intracellular and with the progression of the disease extracellular accumulation of oligomeric and fibrillar beta-amyloid (Abeta) peptides and intracellular neurofibrillary tangles (NFT) composed of hyperphosphorylated tau protein. In this review, the authors focus on the latest findings in AD animal models indicating that these histopathological alterations induce deficits in the function of the complexes of the respiratory chain and therefore consecutively result in mitochondrial dysfunction. This parameter is intrinsically tied to oxidative stress. Both are early events in aging and especially in the pathogenesis of aging-related severe neurodegeneration. Ginkgo biloba extract seems to be of therapeutic benefit in the treatment of mild to moderate dementia of different etiology, although the data are quite heterogeneous. Herein, the authors suggest that mitochondrial protection and subsequent reduction of oxidative stress are important components of the neuroprotective activity of Ginkgo biloba extract.  相似文献   

16.
线粒体能量缺失与神经变性病   总被引:1,自引:0,他引:1  
有关神经系统变性病与线粒体能量代谢缺失的关系 ,近年来已积累了更多的证据。阐明在神经变性时神经元发生的坏死或凋亡和线粒体内能量保存的多少有直接的关联[1] 。神经元的凋亡起因于神经元的轻度的程序性损伤 ,线粒体内仍保留一定量的ATP ,而坏死则起因于神经元受严重损害 ,如兴奋性氨基酸类等消耗了大量的ATP ,以致谷氨酸盐、NM DA等在线粒体膜上保持显著而持续的去极化状态 ,并逐渐导致ATP耗竭。在动物细胞中 ,线粒体是最主要的O2 -来源 ,估计每分钟可生成O2 -2~ 3nmol mg蛋白。在各种神经变性病中线粒体的能量…  相似文献   

17.
Abstract Several studies demonstrated that oxidative damage is a characteristic feature of many neurodegenerative diseases. The accumulation of oxidatively modified proteins may disrupt cellular functions by affecting protein expression, protein turnover, cell signaling, and induction of apoptosis and necrosis, suggesting that protein oxidation could have both physiological and pathological significance. For nearly two decades, our laboratory focused particular attention on studying oxidative damage of proteins and how their chemical modifications induced by reactive oxygen species/reactive nitrogen species correlate with pathology, biochemical alterations, and clinical presentations of Alzheimer's disease. This comprehensive article outlines basic knowledge of oxidative modification of proteins and lipids, followed by the principles of redox proteomics analysis, which also involve recent advances of mass spectrometry technology, and its application to selected age-related neurodegenerative diseases. Redox proteomics results obtained in different diseases and animal models thereof may provide new insights into the main mechanisms involved in the pathogenesis and progression of oxidative-stress-related neurodegenerative disorders. Redox proteomics can be considered a multifaceted approach that has the potential to provide insights into the molecular mechanisms of a disease, to find disease markers, as well as to identify potential targets for drug therapy. Considering the importance of a better understanding of the cause/effect of protein dysfunction in the pathogenesis and progression of neurodegenerative disorders, this article provides an overview of the intrinsic power of the redox proteomics approach together with the most significant results obtained by our laboratory and others during almost 10 years of research on neurodegenerative disorders since we initiated the field of redox proteomics. Antioxid. Redox Signal. 17, 1610-1655.  相似文献   

18.
Mitochondrial cytopathies are genetically, clinically, and biochemically heterogeneous disorders due to defects of oxidative phosphorylation. The heart is highly energy dependent and therefore particularly vulnerable to defects of energy production. Hypertrophic and dilated cardiomyopathy and left ventricular noncompaction are the main cardiac manifestations occurring in mitochondrial cytopathies. Here we report ten patients with mitochondrial cytopathy presenting with dilation of the aorta. This clinical feature has not been previously reported to be associated with mitochondrial disease. The long term consequences of this observation are unknown and follow-up studies are needed to clarify the impact of this finding in the population of subjects with mitochondrial cytopathies. The mechanism(s) involved in the pathogenesis of this complication are unknown and may be potentially implicated also in the pathogenesis of other more common etiologies of aortic aneurysmal disease.  相似文献   

19.
Oxidative stress, including the reactive oxygen or nitrogen species generated in the enzymatical oxidationor auto-oxidation of an excess amount of dopamine, is thought to play an important role in dopaminergic neurotoxicity. Dopamine and its metabolites containing 2 hydroxyl residues exert cytotoxicityin dopaminergic neuronal cells, primarily due to the generation of highly reactive dopamine and DOPA quinones. Dopamine and DOPA quinones may irreversibly alter protein function through the formation of 5-cysteinyl-catechols on the proteins. Furthermore, the quinone formation is closely linked to other representative hypotheses such as mitochondrial dysfunction, inflammation, oxidative stress, and dysfunction of the ubiquitin-proteasome system, in the pathogenesis of neurodegenerative diseases. Therefore, pathogenic effects of the dopamine quinone have recently focused on dopaminergicneuron-specific oxidative stress. In this article, we primarily review recent studies on the pathogenicity of quinone formation, in addition to several neuroprotective approaches against dopaminequinone-induced dysfunction of dopaminergic neurons.  相似文献   

20.
Mitochondrial dysfunction occurs in several late-onset neurodegenerative diseases. Determining its origin and significance may provide insight into the pathogeneses of these disorders. Regarding origin, one hypothesis proposes mitochondrial dysfunction is driven by mitochondrial DNA (mtDNA) aberration. This hypothesis is primarily supported by data from studies of cytoplasmic hybrid (cybrid) cell lines, which facilitate the study of mitochondrial genotype-phenotype relationships. In cybrid cell lines in which mtDNA from persons with certain neurodegenerative diseases is assessed, mitochondrial physiology is altered in ways that are potentially relevant to programmed cell death pathways. Connecting mtDNA-related mitochondrial dysfunction with programmed cell death underscores the crucial if not central role for these organelles in neurodegenerative pathophysiology. This review discusses the cybrid technique and summarizes cybrid data implicating mtDNA-related mitochondrial dysfunction in certain neurodegenerative diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号