共查询到20条相似文献,搜索用时 62 毫秒
1.
卫生化学检验中测量不确定度问题正越来越受到人们的重视,因为科学发展和检验技术进步对检验数据的准确性和可靠性提出了更高的要求.为此,本文根据JJG1059-1999<测量不确定度评定与表示>[1],对原子吸收光谱法测定酒中铅[2]进行了不确定度评定的探索,现报告如下. 相似文献
2.
原子吸收光谱法测定水中铅的不确定度分析 总被引:2,自引:0,他引:2
样品经添加基体改进剂后 ,注入石墨炉原子化器 ,所含的金属离子在石墨内经原子化高温蒸发解离为原子蒸气 ,待测元素的基态原子吸收来自同种元素空心阴极灯发出的共振线 ,其吸收强度在一定范围内与金属浓度成正比[1] 。1 测量数据通过较准曲线拟合 ,测得添加基体改进剂后试样中Pb的质量浓度。得平均数据。见表 1。表 1 Pb质量浓度测定结果次序吸光度 (A)添加基体改进剂后Pb的质量浓度 (μg/L)1 0 .0 4 81 7.52 0 .0 4 81 7.6均值 0 .0 4 81 7.6注 :原试样中Pb的质量浓度为 1 7 6× (1 0 +1 +0 1 ) /1 0 =1 9 5μg/L。2 建立数学模式P… 相似文献
3.
测量不确定度是指合理地赋予被测量之值的分散性、与测量结果相联系的参数。对于不同的方法,各影响因素对测量结果的影响程度不一样。笔者根据“测量不确定度评定和表示”[1]对工作场所空气中铅及其化合物测定[2]的不确定度进行了评定,从而保证检测结果的有效性和合理性。1测量 相似文献
4.
目的通过分析实验中的各不确定度分量,评定测量结果的不确定度。方法使用GB/T5009.12-2010采用石墨炉原子吸收法测定大米中的铅,参照JJF 1059.1-2012建立数学模型,对每个不确定分量进行评估。结果通过对每个不确定度分量的计算,得出最终扩展不确定度为0.030 mg/kg(包含因子k=2),结果报告为0.70±0.030 mg/kg。结论石墨炉原子吸收法测定大米中铅,对不确定度影响较大的主要为重复性引入的不确定度和拟合曲线引入的不确定度。 相似文献
5.
6.
目的建立酱油中铅原子吸收光谱测定法的结果不确定度评定方法。方法应用GB/TS009.12—2003《食品中铅的测定》测定酱油中铅,计算实验标准差,同时对测试过程系统效应产生的不确定度分量进行评估,从而评定其不确定度。结果6次重复测定酱油中铅含量为(0.35±0.03)mg/kg,k=2,原子吸收光谱法直接测定酱油中铅的不确定度为0.03mg/kg。结论该法过程直观,数理清晰,可在实验室日常工作中原子吸收测定金属元素的不确定度评估中推广。 相似文献
7.
目的 建立酱油中铅原子吸收光谱测定法的结果不确定度评定方法.方法 应用GB/T5009.12-2003《食品中铅的测定》测定酱油中铅,计算实验标准差,同时对测试过程系统效应产生的不确定度分量进行评估,从而评定其不确定度.结果 6次重复测定酱油中铅含量为(0.35±0.03) mg/kg,k=2,原子吸收光谱法直接测定酱... 相似文献
8.
9.
目的 :评估出火焰原子吸收法测定白酒中锰的测定结果的不确定度。方法 :依据 JJF0 5 9— 1999《测量不确定度评定与表示》,对火焰原子吸收法测定白酒中锰含量的结果进行不确定度分析。结果 :影响样品溶液浓度测定结果不确定度的主要来源包括标准溶液浓度不确定、仪器的精密度和吸光值量化误差不确定度、工作曲线方程不确定度、重复测定样品的不确定度 ,并计算出各种不确定度分量将其合成 ,提供了计算各分量的方法及过程。结论 :报告 :X=(0 .2 839± 0 .0 11) m g/ l。 相似文献
10.
通过建立数学模型对火焰原子吸收分光光度法测定滤膜中镉的不确定度进行分析和评估,计算影响测量结果不确定度的各分量值并进行合成,为建立有效的质量控制方法提供依据。ISO/IEC17025以及GB/T15481—2000中均要求检测实验室具有评价测量不确定度的程序,能够对检测项目的不确定度作出正确评估,满足客户及监测工作的要求。测量不确定度在实验室数据比对、 相似文献
11.
12.
目的评定原子吸收光谱法测定牡蛎中铅的测量不确定度。方法根据JF 1059-1999《测量不确定度评定与表示》,分析不确定度主要分量。应用Excel软件,发挥其函数功能。结果分析和识别了分析过程中的不确定度来源,较为全面地评定了测量不确定度。结论识别出测定过程中的关键环节,应在关键环节上严格质量控制,降低测量不确定度。该法对原子荧光光谱法,电感耦合等离子发射光谱法和原子吸收光谱法等测定结果的不确定度评定具有参考作用。 相似文献
13.
14.
15.
火焰法——原子吸收测定蔬菜中铜的测量不确定度分析 总被引:5,自引:0,他引:5
对火焰法——原子吸收测定蔬菜中铜的分析方法的测量不确定度进行了分析,建立了测量过程中各分量的数学模型,并识别了测量过程中不确定度来源,估算了各不确定度分量对总不确定度的影响,确定了测量结果的置信区间,给出蔬菜中铜的含量及其置信区间为1.05±0.39 mg/kg(k=2)。 相似文献
16.
火焰原子吸收分光光度法测定化妆品中铅含量的不确定度评估 总被引:1,自引:0,他引:1
目的评估火焰原子吸收分光光度法测定化妆品中铅的测量不确定度,使实验结果更具客观性和准确性。方法根据测量不确定度的评定理论,通过实际样品测定,分析和计算整个测定过程中不确定度的可能来源。结果采用火焰原子吸收分光光度法测定化妆品中铅含量时,不确定度主要来源于标准工作曲线的拟合及样品预处理溶液的浓度测定和回收率测定过程,而称样量、定容体积、标准溶液的配制、重复性测定等过程引入的误差对不确定度的影响则相对较小,在今后的评估过程中根据实际情况可以忽略。结论火焰原子吸收分光光度法测定化妆品中铅含量的扩展不确定度为7.06%。 相似文献
17.
目的:建立1,2—苯并异噻唑啉—3—酮(BIT)中微量铅的测定方法。方法:采用水浴消解样品,火焰原子吸收光谱法测定铅的含量。结果:方法检出限为0.042μg/ml,变异系数CV=0.74%,回收率为90.2%~99.2%。结论:该方法简单快速,灵敏度高,可作为BIT中微量铅的测定方法。 相似文献
18.
[目的]为减少实验误差,提高检测结果精确度,评定水中铜的不确定度。[方法]分析水中铜不确定度的来源,通过计算得出该法测定水中铜的扩展不确定度。[结果]测量结果表明扩展不确定度U95=0.08 mg/L,适用于每个水样的检测结果。[结论]方法简便,适合于每一个样本的检测结果,可参考用于水中某些检测参数的不确定评定。 相似文献
19.
20.
本文考察了铅在不锈钢原子捕集管表面的捕集和释放条件,在最佳实验条件下,本方法的灵敏度(特征浓度)较常规法提高了114倍,检出限降低了23倍,相对标准偏差为3.78%,此法用于工业污水中痕量铅的测定,结果满意。 相似文献