首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ObjectivesThe purpose of this study was to determine the optical properties, color and contrast ratio (CR) of commercially available resin composites marketed for the restoration of whitened teeth.MethodsTwenty-six resin composites designed for restoration of whitened teeth and four shade B1 (control) were evaluated. Five resin composite disks (d = 12 mm, h = 1.54 mm) were fabricated for each shade of composite and were stored in water at 37 °C for at least 24 h. A colorimeter was used to measure specimen color over both white and black backgrounds. CIELAB and CIExyY color spaces were used. The CIELAB color notation system provides values for L*a*b*. The CIExyY system provides lightness and chromaticity values, where Y represents lightness and xy chromaticity. The contrast ratio (CR) was assessed using, CIE xyY, of the specimens against black (Yb) and white (Yw) backgrounds, with CR = Yb/Yw. The data for L*, a*, b* and CR were analyzed by one-way ANOVA, Tukey's test, and the correlation L* and CR was analyzed by Pearson correlation test (α = 0.05).ResultsSignificantly different L*, a*, b* values and CR were observed. Premise XL2 had the highest L* and CR values and Vit-l-escence PS had the lowest. Vit-l-escence PS had the highest a* value and Point 4XL2 had the lowest, Premise XL1 had the highest b* value and Supreme WB the lowest. The L* and CR correlation was positive and statistically significant.ConclusionsComposites designated for whitened teeth have different levels of color and contrast ratio. Awareness of the optical properties of the composites allows the operator to choose the appropriate materials to mimic the remaining tooth structure.  相似文献   

2.
《Dental materials》2019,35(8):1194-1203
ObjectiveTo investigate the surface micro-hardness (VHN) and fracture toughness (KIC) of resin-composites, with and without incorporated short fibers, after solvent storage.MethodsThree resin-composites incorporating fibers, additional to particle reinforcement, were examined: everX™, NovoPro Fill™ and NovoPro Flow™. Four composites were used as controls, with only particle reinforcement: Filtek bulk Fill™, Filtek bulk one™, Filtek XTE™, and Filtek Flow XTE™. For hardness measurement, materials were cured in 2 mm thick molds for 20 s by a LED source of average irradiance 1.2 W/cm2. Specimens (n = 6/group) were stored dry for 1 h and then in either water or 75% ethanol/water for 1 h, 1 day and 30 days at 37 ± 1 °C. Vickers hardness was measured under a load of 300 g for 15 s. For fracture toughness (KIC) measurements, single-edge-notched specimens (n = 6/group) were prepared: (32 × 6 × 3 mm) for 3-point bending and stored for 1 and 7 days in water at 37 °C. Fractured surfaces of fiber-reinforced composite were examined by scanning electron microscopy (SEM). VHN data were analyzed using three-way ANOVA, one-way ANOVA and the Tukey post hoc test (p  0.05). KIC data were analyzed by two-way ANOVA and one-way ANOVA and the Tukey post hoc test (p  0.05). An independent t-test was used to detect differences (α = 0.05) in KIC between stored groups for each material.ResultsVHN decreased for all composites with storage time in both solvents, but more appreciably in 75% ethanol/water (an average of 20%). KIC ranged from 2.14 (everX Posterior) to 0.96 NovoPro Flow) MPa. m0.5. The longer storage period (7 days) had no significant effect on this property relative to 1 day storage.SignificanceReinforcement with short fibers, and possibly matrix compositional differences, significantly enhanced the fracture toughness of EVX. However, for nano-fiber containing composites, there were no evident beneficial effects upon either their fracture toughness or hardness compared to a range of control composites. Water storage for 7 days of all these resin-composites produced no significant change in their KIC values, relative to 1 day storage.  相似文献   

3.
ObjectivesThe aim of this study was to determine the concentrations of the photosensitizer (camphoroquinone, CQ) and coinitiator (ethyl-4-dimethylaminobenzoate, EDMAB) that resulted in maximum conversion but generated minimum contraction stress in experimental composites.MethodsExperimental composites were prepared with an identical resin formulation [TEGDMA:UDMA:bis-GMA of 30.25:33.65:33.65]. Five groups of resin were prepared at varied CQ concentrations (0.1, 0.2, 0.4, 0.8 and 1.6 wt% of the resin). Five subgroups of resin were prepared at each level of CQ concentration, by adding EDMAB at 0.05, 0.1, 0.2, 0.4 and 0.8 wt% of the resin, resulting in 25 experimental resins. Finally, strontium glass (~3 μm) and silica (0.04 μm) were added at 71.5 and 12.6 wt% of the composite, respectively. Samples (n = 3) were then evaluated for Knoop hardness (KHN), degree of conversion (DC), depth of cure (DoC) and contraction stress (CS).ResultsThere was an optimal CQ and EDMAB concentration that resulted in maximum DC and KHN, beyond which increased concentration resulted in a decline in those properties. KHN testing identified two regions of maxima with best overlaps occurring at CQ:EDMAB ratio of 1.44:0.42 and 1.05:1.65 mol%. DC evaluation showed one region of maximum, the best overlap occurring at CQ:EDMAB ratio of 2.40:0.83 mol%. DoC was 4 mm. Overall, maximum CS was attained before the system reached the maximum possible conversion and hardness.Significance(1) Selection of optimal photoinitiator/amine concentration is critical to materials’ formulation, for excessive amounts can compromise materials’ properties. (2) There was no sufficient evidence to suggest that contraction stress can be reduced by lowering CQ/EDMAB concentration without compromising DC and KHN.  相似文献   

4.
ObjectivesTo determine the influence of titanium dioxide (TiO2) nanoparticle addition on the opalescence, color, translucency and fluorescence of experimental resin composites.MethodsA light curing resin matrix was made by mixing 60 wt.% Bis-GMA and 40 wt.% TEGDMA. Silane coated glass filler (mean particle size: 1.55 μm) was added in the ratio of 50 wt.% of the resin composites. A fluorescent whitening agent was also added (0.05 wt.%). TiO2 nanoparticles (<40 nm) were added with the concentrations of 0, 0.1, 0.25 and 0.5 wt.%. Reflected and transmitted colors of 1 and 2 mm thick specimens were measured relative to the illuminant D65 with reflection spectrophotometers. Opalescence parameter (OP), color difference (ΔE*ab), translucency parameter (TP), fluorescence parameter (FL), and fluorescence and opalescence spectra were calculated.ResultsFor the 1 mm thick specimens measured with 3 mm × 8 mm rectangular aperture, when the concentration of TiO2 increased from 0% to 0.5%, OP increased from 2.4 to 18.0, TP decreased from 35.4 to 13.1, and fluorescence spectra remained unchanged. Color difference between these specimens was in the range of 3.4–6.6 ΔE*ab units. OP values were significantly influenced by the thickness of the specimens and the configuration of the spectrophotometers (p < 0.05).SignificanceAddition of TiO2 nanoparticles significantly increased the opalescence of resin composites while leaving the fluorescence spectra unchanged; however, it significantly decreased the translucency and also changed the color (p < 0.05). Resin composites with 0.1–0.25% TiO2 nanoparticle would simulate the opalescence of human enamel.  相似文献   

5.
PurposeThis study aimed to evaluate the effect of different storage periods in artificial saliva and thermal cycling on Knoop hardness of 8 commercial brands of resin denture teeth.MethodsEigth different brands of resin denture teeth were evaluated (Artplus group, Biolux group, Biotone IPN group, Myerson group, SR Orthosit group, Trilux group, Trubyte Biotone group, and Vipi Dent Plus group). Twenty-four teeth of each brand had their occlusal surfaces ground flat and were embedded in autopolymerized acrylic resin. After polishing, the teeth were submitted to different conditions: (1) immersion in distilled water at 37 ± 2 °C for 48 ± 2 h (control); (2) storage in artificial saliva at 37 ± 2 °C for 15, 30 and 60 days, and (3) thermal cycling between 5 and 55 °C with 30-s dwell times for 5000 cycles. Knoop hardness test was performed after each condition. Data were analyzed with two-way ANOVA and Tukey's test (α = .05).ResultsIn general, SR Orthosit group presented the highest statistically significant Knoop hardness value while Myerson group exhibited the smallest statistically significant mean (P < .05) in the control period, after thermal cycling, and after all storage periods. The Knoop hardness means obtained before thermal cycling procedure (20.34 ± 4.45 KHN) were statistically higher than those reached after thermal cycling (19.77 ± 4.13 KHN). All brands of resin denture teeth were significantly softened after storage period in artificial saliva.ConclusionStorage in saliva and thermal cycling significantly reduced the Knoop hardness of the resin denture teeth. SR Orthosit denture teeth showed the highest Knoop hardness values regardless the condition tested.  相似文献   

6.
ObjectivesThis study investigated the wavelength-dependent photosensitivity of eleven resin composites (Admira A2, Heliomolar A2, Herculite XRV A2, Pyramid Dentin A2, Solitaire 2 A2, Z250 A2, Ælite LS A2, Vit-l-escence A2, Tetric Ceram Bleach XL, Tetric Ceram A2, Pyramid Enamel Neutral).MethodsResin composites 1.6 mm thick were exposed to narrow bandwidths of light at the following peak wavelengths: 394, 400, 405, 410, 415, 420, 430, 436, 442, 450, 455, 458, 467, 470, 480, 486, 493, 500, 505, and 515 ± 5 nm. A spectroradiometer was used to ensure that the same irradiance (mW/cm2) and total energy density (J/cm2) was delivered through each filter. For each resin composite, three specimens were exposed through each filter. The Knoop micro-hardness at the top and bottom of the composites was then measured. The wavelength-dependent photosensitivity of each resin composite was analyzed by plotting the mean hardness achieved at each wavelength.ResultsThe composites responded variably when they received light through the narrow bandpass filters. Six resin composites had a single peak of wavelength-dependent photosensitivity at ~470 nm. Four resin composites had two peaks of wavelength-dependent photosensitivity at ~470 and ~405 nm. One resin composite had a single peak of wavelength-dependent photosensitivity at ~405 nm and was only sensitive to light below 436 nm.SignificanceUsing light delivered through narrow bandpass filters is a convenient method to determine the wavelength-dependent photosensitivity of resins and can be used to predict the performance of dental curing lights.  相似文献   

7.
《Dental materials》2019,35(9):e220-e233
ObjectivesThis study aimed to develop silver nanoparticle (AgNP)-doped Ti6Al4V alloy surfaces and investigate their antibacterial properties against representative periopathogens and potential cytotoxicity on osteoblastic cells.MethodsAgNPs of different size distributions (5 and 30 nm) were incorporated onto the Ti6Al4V surfaces by electrochemical deposition, using colloid silver dispersions with increasing AgNP concentrations (100, 200 and 300 ppm). The time-course silver release from the specimen surfaces to cell culture media was assessed by Atomic Absorption Spectroscopy (AAS). Cell attachment, viability and proliferation were investigated by SEM, live/dead staining MTT and BrdU assays. The antibacterial effects were assessed against P. gingivalis and P. intermedia by serial dilution spotting assays.ResultsA time- and concentration-dependent silver release from the experimental surfaces was observed. Overall, cell viability and attachment on the AgNP-doped surfaces, suggested adequate cytocompatibility at all concentrations. A transient cytotoxic effect was detected at 24 h for the 5 nm-sized groups that fully recovered at later time-points, while no cytotoxicity was observed for the 30 nm-sized groups. A statistically significant, concentration-dependent decrease in cell proliferation rates was induced at 48 h in all AgNP groups, followed by recovery at 72 h in the groups coated with 5 nm-sized AgNPs. A statistically significant, concentration-dependent antibacterial effect up to 30% was confirmed against both periopathogens.SignificanceThis study sheds light to the optimal size-related concentrations of AgNP-doped Ti6Al4V surfaces to achieve antibacterial effects, without subsequent cytotoxicity. These results significantly contribute to the development of antibacterial surfaces for application in oral implantology.  相似文献   

8.
ObjectivesThis study measured the degree of conversion (DC), sorption, solubility and microhardness of methacrylate (Filtek Z250 and Filtek Z350XT) and silorane-based composites (Filtek P90).MethodsDC was measured using near infrared spectroscopy immediately and 24 h after the photoactivation. Sorption and solubility measurements were performed after 24 h, 4 weeks and 12 weeks of storage in water. Knoop microhardness was measured after 24 h and after thermal cycling. The data were statistically analyzed using ANOVA followed by Tukey's, Tamhane or paired t-tests (α = 0.05).ResultsThe DC for P90 (37.22 ± 1.46) was significantly lower than the Z250 (71.44 ± 1.66) and Z350 (71.76 ± 2.84). Water sorption was highest in the Z250 and lowest in the P90. All the tested composites exhibited similar values after 24 h of immersion, and no significant differences were observed. No significant differences were observed between the solubilities of the P90 composite (12 weeks) and the Z250 or Z350 composites (4 weeks). KHN values were less elevated for the P90 composite and similar for the Z250 and Z350 composites. An effect of thermal cycling on KHN values was observed for all the composites (p < 0.001).ConclusionsSilorane produced the lowest DC and KHN values and exhibited lower water sorption and solubility compared to methacrylate-based composites. These differences suggest that silorane composites exhibit better hydrolytic stability after 3 months of water immersion compared to conventional methacrylate-based composites.Clinical significanceSilorane had higher hydrolytic stability after 3 months of water immersion than the methacrylate-based resins, despite the lower values of DC and KHN recorded.  相似文献   

9.
ObjectivesTo assess the effect of irradiation time and distance of the light tip on the micro-mechanical properties and polymerisation kinetics of two bulk-fill resin-based composites at simulated clinically relevant filling depth.MethodsMicro-mechanical properties (Vickers hardness (HV), depth of cure (DOC) and indentation modulus (E)) and polymerisation kinetics (real-time increase of degree of cure (DC)) of two bulk-fill resin-based composites (Tetric EvoCeram® Bulk Fill, Ivoclar Vivadent and x-tra base, Voco) were assessed at varying depth (0.1–6 mm in 100 μm steps for E and HV and 0.1, 2, 4 and 6 mm for DC), irradiation time (10, 20 or 40 s, Elipar Freelight2) and distances from the light tip (0 and 7 mm). Curing unit's irradiance was monitored in 1 mm steps at distances up to 10 mm away from the light tip on a laboratory-grade spectrometer.ResultsMultivariate analysis (α = 0.05), Student's t-test and Pearson correlation analysis were considered. The influence of material on the measured mechanical properties was significant (η2 = 0.080 for E and 0.256 for HV), while the parameters irradiation time, distance from the light tip and depth emphasise a stronger influence on Tetric EvoCeram® Bulk Fill. The polymerisation kinetics could be described by an exponential sum function, distinguishing between the gel and the glass phase. The above mentioned parameters strongly influenced the start of polymerisation (gel phase), and were of less importance for the glass phase.ConclusionsBoth materials enable at least 4 mm thick increments to be cured in one step under clinically relevant curing conditions.Clinical significanceThe susceptibility to variation in irradiance was material dependent, thus properties measured under clinically simulated curing conditions might vary to a different extent from those measured under ideal curing conditions.  相似文献   

10.
ObjectiveThe purpose of this study was to evaluate a nano-filled dental composite, with varying cure irradiation-time, in terms of the spatial distribution of dynamic-mechanical properties determined at nanometre scale and the resultant distinction between filler, matrix and inter-phase regions.Materials and methodsSpecimen groups (n = 5) of the composite Filtek Supreme XT were cured in 2 mm deep molds for 5, 10, 20 and 40 s, and stored for 24 h in distilled water at 37 °C. Properties were measured at 2 mm depth, on the lower specimen surfaces. Nano-dynamic-mechanical parameters (complex, storage and loss modulus, tan δ) were determined at an array of 65,000 locations in a 5 μm × 5 μm area. Micro-mechanical properties (hardness, modulus of elasticity, creep and elastic/plastic deformation) were also measured and additionally the real-time degree of cure, by ATR-FTIR, for 10 min after photo-initiation and after storage.ResultsThe spatial distribution of nano-dynamic-mechanical properties varied significantly enabling four distinguishable matrix, filler-cluster and inter-phase regions to be identified. Proceeding from matrix to filler-cluster locations, complex-moduli increased linearly and loss-factors decreased linearly, consistent with visco-elastic composite theory. Curing time strongly affected all measured properties at 2 mm depth. The organic matrix was shown to be inhomogeneous for all curing times. By increasing cure-time, the proportion of less well polymerized area decreased from 37.7 to 1.1%, resulting in a more homogeneous organic matrix.SignificanceThe experimentally observed graduated transition, in complex modulus and related dynamic-mechanical properties, across the matrix – inter-phases – filler-cluster regions is conducive to low internal stresses, in contrast to the abrupt modulus transitions anticipated or observed in many other particulate composite structures. The identification of these phase-regions provides a realistic basis for accurate nano- and micro-mechanical computational modelling.  相似文献   

11.
《Dental materials》2020,36(8):1071-1085
ObjectivesTo develop dental composites incorporating fluorapatite (FA) crystals as a secondary filler and to characterise degree of conversion, key mechanical properties and fluoride release.MethodsFA rod-like crystals and bundles were hydrothermally synthesised and characterised by scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDS), X-ray diffraction (XRD) and 19F MAS-NMR. Composites were formulated containing BisGMA/TEGDMA/BisEMA and barium-aluminium-silicate glass (0FA). FA crystals were incorporated at 10 (10FA), 20 (20FA), 30 (30FA) and 40 wt% (40FA) maintaining a filler content of 80 wt% (63–67 vol%). Degree of conversion (DC), flexural strength (FS), flexural modulus (FM), fracture toughness (K1C), Vickers hardness (HV) and 2-body wear were measured. Fluoride release was measured in neutral and acidic buffers.ResultsXRD and 19F MAS-NMR confirmed that only FA was formed, whilst SEM revealed the presence of single rods and bundles of nano-rods. DC ranged between 56–60% (p > 0.05). FA composites showed lower FM and lower FS (p < 0.05), but comparable wear resistance and HV (p > 0.05) to 0FA. 30FA and 40FA showed similar K1C to 0FA (p > 0.05), with SEM showing evidence of toughening mechanisms, whereas 10FA and 20FA showed lower K1C (p < 0.05). FA containing composites released fluoride that was proportional to the amount of FA incorporated (p < 0.05) but only under acidic conditions.SignificanceThe addition of FA to the experimental composites reduced strength and stiffness but not the DC, hardness or wear rate. 30FA and 40FA had a higher K1C compared to other FA groups. Fluoride release occurred under an accelerated acidic regime, suggesting potential as a bioactive ‘smart’ composite.  相似文献   

12.
ObjectivesThe purpose of this study was to evaluate the effect of the amount of 3-methacryloxypropyl-trimethoxysilane (γ-MPS) coupling agent on some physical–mechanical properties of an experimental resin composite for understanding the optimum amount of silanization.MethodsSilica nanoparticles (Aerosil OX 50) used as filler were silanized with 5 different amounts of γ-MPS 1.0, 2.5, 5.0, 7.5 and 10 wt% relative to silica. The silanizated silica nanoparticles were identified by FT-IR spectroscopy and thermogravimetric analysis (TGA). Then the silanized nanoparticles (60 wt%) were mixed with a Bis-GMA/TEGDMA (50/50 wt/wt) matrix. Degree of conversion of light cured composites was determined by FT-IR analysis. The static flexural strength and flexural modulus were measured using a three-point bending set up. The dynamic thermomechanical properties were determined by DMA analyzer. Sorption, solubility and volumetric change were determined after storage of composites in water or ethanol/water solution. Thermogravimetric analysis was performed in air and in nitrogen atmosphere from 50 to 800 °C.ResultsAt lower silane amounts used (1.0, 2.5 wt%) the silane molecules must have a parallel orientation relative to the silica surface. At higher silane amounts (>2.5 wt%) silane molecules form a layer around the filler particles which now have to occupy a random, parallel and perpendicularly orientation relative to the silica surface. No significant statistic difference was found to exist between the flexural strength and flexural modulus values of composites with different silane contents. Dynamic elastic modulus E′ showed a maximum value for the composite contained 5 wt% silane. The composites with the higher amounts of silane showed the lower values for the tan δ at the Tg revealing that these composites have better interfacial adhesion between filler and matrix.SignificanceThe amount of silane used for the silanization of silica particles affect the orientation of the silane molecules relative to the silica surface. This seems to affect the dynamic mechanical properties of composites.  相似文献   

13.
ObjectivesTo analyze the microhardness of four dual-cure resin cements used for cementing fiber-reinforced posts under the following conditions: after 7 days of storage in water, after additional 24 h of immersion in 75% ethanol, and after 3 months of storage in water. Hardness measurements were taken at the cervical, middle and apical thirds along the cement line.MethodsRoot canals of 40 bovine incisors were prepared for post space. Fibrekor® glass fiber-reinforced posts (Jeneric/Pentron) of 1 mm in diameter were cemented using Panavia F 2.0 (Kuraray), Variolink (Ivoclar-Vivadent), Rely X Unicem (3M ESPE) or Duolink (Bisco) (N = 10). After 7 days of water storage at 37 °C, half the sample (N = 5) was longitudinally sectioned and the initial microhardness measured along the cement line from cervical to apex. These same samples were further immersed in 75% ethanol for 24 h and reassessed. The remaining half (N = 5) was kept unsectioned in deionized water at 37 °C for 3 months, followed by sectioning and measuring. Data were analyzed by a series of two-way ANOVA and Tukey tests at α = 5%.ResultsStatistically significant differences were identified among the cements, thirds and conditions. Significant interactions were also observed between cements and thirds and between cements and conditions. Panavia F exhibited significantly higher initial microhardness than the other three cements, which showed no statistical difference among themselves. Variolink and Duolink showed significantly higher microhardness values in the cervical third, without significant difference among the thirds for the other cements. Immersion in ethanol significantly reduced the hardness values for all cements, regardless of the thirds. Storage in water for 3 months had no influence on the hardness of most of the cements, with the exception of Unicem that showed a significant increase in the hardness values after this period.SignificanceResults showed heterogeneity in the microhardness of the cements inside the canal. All cements presented some degree of softening after ethanol treatment, which suggests instability of the polymer. The quality of curing of resin cements in the root canal environment seems unpredictable and highly material dependent.  相似文献   

14.
PurposeCandida-associated denture stomatitis is the most prevalent form of oral candidosis affecting 65% of denture wearers. Failure of therapy and recurrence of infection are not uncommon and the continuous use of antifungal agents may affect the surface properties of the denture material and may contribute to Candida adhesion. This study aimed to investigate surface properties of poly(methyl methacrylate) PMMA denture material before and after exposure to antifungal agents and its relation to in vitro adhesion of Candida albicans.MethodsFour groups of acrylic specimens (20 mm × 20 mm × 2.5 mm) were prepared (25 specimens in each group). Specimens were immersed in nystatin (group 1), fluconazole (group 2), distilled water (group 3) and group 4 was not exposed. Specimens were tested for surface roughness, contact angle, surface hardness and in vitro Candida adherence to PMMA.ResultsThe results showed that nystatin had no statistically significant effect on surface hardness (P > 0.05), but had a statistically significant effect on surface roughness, contact angle, and Candida adhesion to PMMA (P < 0.05). On the other hand, fluconazole had no statistically significant effect on surface hardness or roughness (P > 0.05), but had a statistically significant effect on contact angle, and Candida adhesion to PMMA (P < 0.05). Distilled water had no statistically significant effect on surface hardness, roughness, contact angle, or Candida adhesion to PMMA (P > 0.05).ConclusionsExposure of PMMA to nystatin may induce changes in roughness, wettability while exposure to fluconazole may affect surface free energy and therefore may increase Candida adhesion to it.  相似文献   

15.
《Dental materials》2021,37(9):1325-1336
ObjectiveTo fabricate and characterize dental composites with calcium type pre-reacted glass-ionomer (PRG-Ca) fillers.MethodsPRG-Ca fillers were prepared by the reaction of calcium fluoroaluminosilicate glass with polyacrylic acid. Seven dental composites were produced from the same organic matrix (70/30 wt% Bis-GMA/TEGDMA), with partial replacement of barium borosilicate (BaBSi) fillers (60 wt%) by PRG-Ca fillers (wt%): E0 (0) – control, E1 (10), E2 (20), E3 (30), E4 (40), E5 (50) and E6 (60). Enamel remineralization was evaluated in caries-like enamel lesions induced by S. mutans biofilm using micro-CT. The following properties were characterized: degree of conversion (DC%), roughness (Ra), Knoop hardness (KHN), flexural strength (FS), flexural modulus (FM), water sorption (Wsp), water solubility (Wsl), and translucency (TP). Data were analyzed to one-way ANOVA and Tukey’s HSD test (α = 0.05).ResultsAll composites with PRG-Ca induced enamel remineralization. E0 and E1 presented similar and highest DC% than E2 = E3 = E4 = E5 = E6. Ra and KHN were not influenced by PRG-Ca fillers (p < 0.05). The higher the content of PRG-Ca, the lower FS, FM and TP (p < 0.05). Wsp increased linearly with the content of PRG-Ca fillers (p < 0.05). E6 presented the highest Wsl (p < 0.05), while the Wsl of the other composites were not different from each other (p > 0.05).SignificanceIncorporation of 10–40 wt.% of PRG-Ca fillers endowed remineralizing potential to dental composites without jeopardizing the overall behavior of their physicochemical properties. Dental composites with PRG-Ca fillers seems to be a good alternative for reinforcing the enamel against caries development.  相似文献   

16.
Q. Li  H. Yu  Y.N. Wang 《Dental materials》2009,25(2):158-165
ObjectivesTo evaluate the optical influence of core build-up composites on the resultant color of ceramic–composite combinations, and analyze the color difference of ceramic–composite combinations to Vita Lumin shade guide with the same nominal shade.MethodsThirty ceramic specimens, with a standardized thickness, were made from three all-ceramic materials (Empress2, In-Ceram, Vita Mark 2). Nominal shades A1 and A3 of the Vita Lumin shade guide were selected. Fifty disc-shaped composite specimens were fabricated using ten colors of core build-up composites. The combinations of ceramic and resin specimens were used to simulate the all-ceramic restorations. The colors of the combinations and A1/A3 shade tabs were measured with a spectrophotometer. The results were converted to CIE L*a*b* and CIE L*C*H* values, then color differences (ΔE) and translucency parameters (TP) were calculated for each combination and ceramic material. Mean ΔE values were analyzed with three-way ANOVA and Turkey's multiple comparison tests were used to evaluate the within-group effect of the shades of the composites. The corrections between the ΔEs and TPs were evaluated using a linear analysis.ResultsColor differences were significantly influenced by the composite shade, ceramic system, and ceramic shade (P < 0.001). Mean color differences were 7.023, 8.290, and 6.347 for In-Ceram, Empress2 and Mark2 system, respectively. ΔE values were significantly associated with the TP values.SignificanceThe color of underlying core composite has a significantly influence on the resultant color of an all-ceramic restoration. The use of the Vita Lumin shade guide does not accurately achieve the intended color duplication.  相似文献   

17.
《Dental materials》2020,36(10):e309-e315
PurposeTo determine the curing potential and color stability of resin-based luting materials for aesthetic restorations.Material and MethodsFour resin-based luting agents were tested: traditional dual-activated resin cement (RelyX ARC, ARC), amine-free dual-activated resin cement (RelyX Ultimate, ULT), light-activated resin cement (RelyX Veneer, VEN), and pre-heated restorative resin composite (Filtek Supreme, PHC). Degree of C = C conversion was determined by infrared spectroscopy (n = 3) with direct light exposure or with interposition of 1.5-mm-thick ceramic (e.max Press HT) between the luting material and light. The curing potential considered the ratio between these two scenarios. Color difference (n = 6) was determined by CIELAB (ΔEab) and CIEDE2000 (ΔE00) methods, by spectrophotometer measurements made 24 h after photoactivation and 90 days after storage in water. Data was submitted to ANOVA and Tukey’s test (α = 0.05).ResultsThe luting agents affected both conversion and color stability. With ceramic, ARC produced the highest conversion among the tested groups (75 ± 1%) and the pre-heated composite (PHC) the lowest one (51 ± 3%), but the curing potential was similar for all materials. ULT produced lower ΔEab than ARC. PHC presented the lowest color difference when considered both CIELAB and CIE2000 methods (ΔEab 2.1 ± 0.4; ΔE00 1.6 ± 0.2).SignificanceAll luting strategies presented high curing potential. Amine-free dual-activated material was able to reduce color difference than that formulated with the amine component. Pre-heated composite produced the least color variation after storage.  相似文献   

18.
ObjectivesA randomized, double-blind, placebo-controlled clinical trial was conducted to evaluate efficacy and safety of 6% hydrogen peroxide whitening strip used twice daily over an extended, 6-week period.MethodsAfter informed consent, 40 eligible adults were randomly assigned to 6% hydrogen peroxide whitening strips (Crest Whitestrips, The Procter & Gamble Company, USA) or placebo strips without peroxide. Treatment was twice daily for 30 min, and response was evaluated biweekly after initial (Week 2) and extended (Weeks 4 and 6) use. Tooth color was measured under standardized lighting conditions using digital image analysis, and safety was assessed from clinical examination and interview. Whitening was measured using data derived from digital images taken at baseline compared to post-treatment, with outcomes reported using the CIELAB color notation system. Analysis of variance and covariance were used to assess initial response, and repeated measures regression analysis was used to model color change during sustained use.ResultsForty subjects (25–58 years old) started the study. At baseline, L* ranged from 68.0 to 76.8, a* ranged from 8.0 to 11.8, and b* ranged from 16.4 to 23.1. Groups differed significantly (p < 0.001) on all color parameters at Week 2 and thereafter, favoring the 6% hydrogen peroxide strips. Week 2 adjusted means ± SE were ?2.1 ± 0.2 for Δb* and 1.9 ± 0.2 for ΔL* for the peroxide group compared to ?0.3 ± 0.2 for Δb* and 0.4 ± 0.2 for the placebo group. With sustained use (Weeks 2–6), the slope for the peroxide strip was estimated as ?0.3 for Δb* and +0.2 for ΔL* per week, with both slopes differing significantly from zero (p < 0.0001), while slopes for the placebo strip were not significant (p = 0.22) and nearly zero. Treatment was generally well tolerated, with adverse events confined to symptoms only.ConclusionsTwice-daily use of 6% hydrogen peroxide whitening strips resulted in teeth becoming lighter and less yellow versus baseline and placebo during initial 2-week use, with no evidence of placebo response during sustained (Weeks 2–6) use.  相似文献   

19.
ObjectiveTo assess the mechanical properties of discrete filler particles representative of several inorganic fillers in modern dental resin-based composites (RBCs) and to assess the validity of a novel micromanipulation technique.MethodRBCs with microhybrid (Filtek? Z250), ‘nanohybrid’ (Grandio) and ‘nanofilled’ (Filtek? Supreme), filler particle morphologies were investigated. Filler particles were provided by the manufacturer or separated from the unpolymerized resin using a dissolution technique. Filler particles (n = 30) were subjected to compression using a micromanipulation technique between a descending glass probe and a glass slide. The number of distinct fractures particles underwent was determined from force/displacement and stress/deformation curves and the force at fracture and pseudo-modulus of stress was calculated.ResultsAgglomerated fillers (‘nanoclusters’) exhibited up to four distinct fractures, while spheroidal and irregular particles underwent either a single fracture or did not fracture following micromanipulation. Z-tests highlighted failure of nanoclusters to be significant compared with spheroidal and irregular particles (P < 0.05). The mean force at first fracture of the nanoclusters was greater (1702 ± 909 μN) than spheroidal and irregular particles (1389 ± 1342 and 1356 ± 1093 μN, respectively). Likewise, the initial pseudo-modulus of stress of nanoclusters (797 ± 555 MPa) was also greater than spheroidal (587 ± 439 MPa) or irregular (552 ± 275 MPa) fillers.SignificanceThe validity of employing the micromanipulation technique to determine the mechanical properties of filler particulates was established. The ‘nanoclusters’ exhibited a greater tendency to multiple fractures compared with conventional fillers and possessed a comparatively higher variability of pseudo-modulus and load prior to and at fracture, which may modify the damage tolerance of the overall RBC system.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号