首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.

Introduction

The purpose of this study was to evaluate the effect of acid etching on the compressive strength of 4 calcium silicate–based cements.

Methods

One gram of each corresponding powder of ProRoot MTA (Dentsply Tulsa Dental, Johnson City, TN), MTA Angelus (Angelus, Londrina, PR, Brazil), and CEM cement (BioniqueDent, Tehran, Iran) and a 0.33-g aliquot of liquid were placed in a plastic mixing capsule that was then mechanically mixed for 30 seconds at 4500 rpm in an amalgamator. For the preparation of Biodentine (Septodont, Saint Maur-des-Fossés, France), the liquid provided was added to the powder within the plastic capsule supplied by the manufacturer and then mechanically mixed for 30 seconds at 4500 rpm using the amalgamator. The resulting slurries were then placed incrementally into 40 cylindrical molds to give a total of 160 specimens that were incubated at 37°C for a week. Twenty specimens of each material were then subjected to the acid etch procedure. The compressive strength of the samples was then calculated in megapascals using a universal testing machine. The results were then subjected to 2-way analysis of variance analysis of variance followed by the Tukey post hoc test.

Results

The application of acid etch significantly reduced (P < .0001) the compressive strength of Angelus MTA and CEM cement; however, it did not reduce the compressive strength of ProRoot MTA or Biodentine. Regardless of the acid etch application, Biodentine showed significantly higher compressive strength values than the other materials (P < .0001), whereas CEM cement had the lowest compressive strength values. There was no significant difference between CEM cement and MTA Angelus. The compressive strength of ProRoot MTA was significantly lower (P < .0001) than Biodentine but significantly higher (P < .0001) than MTA Angelus and CEM cement in both the test and control groups.

Conclusions

When the application of acid etchants is required, Biodentine and ProRoot MTA seem to be better options than MTA Angelus or CEM cement.  相似文献   

2.
ObjectivesTo evaluate the long-term effect of chlorhexidine (CHX) and dimethyl sulfoxide (DMSO) on the sealing ability and biomineralization of two different calcium silicate cements (CSC) in root canal.MethodsSixty human third molar root canals were obturated with ProRoot MTA or Biodentine. Before obturation the canals were irrigated with saline (control), 2% CHX or 5% DMSO. Microleakage was tested after three days and after six months. After additional six months (12 months after root filling) the roots were cut into 2 mm thick dentine discs. The discs were stored in artificial saliva for one year. The bond strength was measured with the push-out method, and the failure mode was evaluated with a stereomicroscope. The most apical disc of each tooth was used for Vickers hardness test.ResultsNo significant differences between the groups was found in initial microleakage. The leakage increased significantly during the 6-month storage in all groups except in Biodentine-CHX group and Biodentine-DMSO group. CHX and DMSO irrigation significantly increased the leakage with ProRoot MTA with time, but there was no statistically significant difference compared to the ProRoot MTA-control group at six months’ time point. CHX significantly reduced the push-out bond strength of ProRoot MTA. With Biodentine irrigation with CHX or DMSO resulted with significantly higher push-out strength compared to the Biodentine control group. Fracture analysis showed statistically significant difference in the distribution of the fractures between the groups, but neither CHX nor DMSO change the fracture pattern statistically significantly. With Vickers hardness test ProRoot MTA with and without DMSO as the final irrigant showed significantly higher dentin hardness than any Biodentine-group.SignificanceConsidering that aging increased the leakage in all groups except with Biodentine-DMSO and the differences in the push-out strength and surface microhardness data, it appears that the time-related biomineralizing effect of MTA and Biodentine does not improve sealing to dentin. CHX significantly reduced ProRoot MTA bond strength and increased pure adhesive failures with both cements.  相似文献   

3.
4.
PurposeThe stress relaxation and compressive strength of resin, resin-modified glass ionomer, glass ionomer, polycarboxylate, and zinc oxide eugenol cements were measured to determine the characteristics of these materials after setting.MethodsA total of 19 luting cements including 12 permanent cements and 7 temporary cements were used. Cylindrical cement specimens (10 mm long and 6 mm in diameter) were obtained by chemical setting or light curing. The specimens were stored for 24–36 h in water at 37 °C and were then used for the stress relaxation and compression tests. The stress relaxation test was carried out using three constant cross-head speeds of 5, 50, and 100 mm/min. Upon reaching the preset dislocation of 0.5 mm, the cross-head movement was stopped, and the load was recorded for 60 s. Fractional stress loss at 1 s was calculated from the relaxation curves. The compressive strength and modulus were measured at a cross-head speed of 1 mm/min. Data were analyzed with the Kruskal–Wallis test and Holm's test.ResultsA zinc oxide eugenol cement [TempBOND NX] exhibited the largest fractional stress loss. A resin cement [ResiCem] showed the largest compressive strength, while a glass ionomer cement [HY-BOND GLASIONOMER CX] showed the largest compressive modulus among all tested cements (p < 0.05).ConclusionThe fractional stress loss could not be classified by the cement type. Two implant cements [Multilink Implant and IP Temp Cement] showed similar properties with permanent resin cements and temporary glass ionomer cements, respectively. Careful consideration of the choice of cement is necessary.  相似文献   

5.
Objectives

To evaluate the potential of conventional glass ionomer cement (GIC), Biodentine™, MTA, and Portland cement to induce mineral density changes in carious dentin compared to zinc oxide eugenol control cement (ZOE).

Materials and methods

Fifty blocks of bovine root dentin were prepared and a biofilm model using ATCC strains of S.mutans, S.sobrinus, and L.casei was used to promote artificial dentin lesions. After demineralization, the blocks were randomly divided into the five cement groups. Half of the surface of each specimen received the tested material and the other half was covered with wax (control). Samples were stored in phosphate buffered saline solution for 30 days and after that were scanned in a micro-CT with standardized parameters. Dentin mineral density changes were calculated using differences in plot profiles of the exposed and control carious dentin. Friedman’s test, followed by Wilcoxon signed-rank test was used with 5% significance.

Results

Mean ΔZ values for the cements were 48.63 ± 19.09 for the control (ZOE), 63.31 ± 32.59 for Biodentine™, 114.63 ± 72.92 for GIC, 109.56 ± 66.28 for MTA, and 106.88 ± 66.02 for Portland cement. All cements showed a statistically significant increase in ΔZ values compared to the control, but Biodentine™ values were statistically significantly lower compared to GIC and the other calcium silicate cements.

Conclusions

Tested materials present potential to induce mineral density changes in carious bovine dentin. MTA, Portland, and GIC showed higher bioactivity potential than Biodentine™.

Clinical relevance

Based on minimally invasive concept, materials with remineralization potential can be used to preserve diseased but still repairable dental tissue.

  相似文献   

6.
Objectives

To assess the viability of multispecies microcosm biofilm after contact with NeoMTA Plus, Biodentine, and MTA Angelus.

Materials and methods

Fifty-four human dentin blocks (4 × 5 × 4 mm) were allocated to Hawley retainers, worn by six volunteers for 72 h. The blocks were then individually incubated in BHI broth for 21 days at 37 °C. At the end of experimental time for biofilm growth, the samples were randomly divided into four groups (n = 12): NeoMTA Plus, Biodentine, MTA Angelus, and negative control. The materials were placed in contact with the blocks. All samples were placed in cell-culture plate wells and incubated in BHI broth for 7 days at 37 °C. One sample from each volunteer (n = 6) was analyzed by SEM to describe the biofilm morphology. CLSM was performed to determine the percentage of viable biofilm biovolume. The data were statistically analyzed by one-way ANOVA and Tukey’s multiple comparison test (α = 5%).

Results

SEM showed biofilm formed by spherical and rod-shaped bacteria surrounded by an extracellular matrix. No material was able to kill all biofilm cells, and all groups had more than 50% of viable bacteria. NeoMTA Plus was significantly different from the negative control group (P < .05).

Conclusions

All tested materials were not effective against multispecies microcosm biofilm.

Clinical relevance

NeoMTA Plus, Biodentine, and MTA Angelus were not effective against multispecies microcosm biofilm. It is essential to understand that these bioceramic cements are indicated for infected clinical situations. Thus, complementary disinfection procedures should be conducted prior to filling with these materials.

  相似文献   

7.

Introduction

On the basis of many clinical observations, some calcium silicate–based cements have a high potential for staining tooth tissue. This feature greatly limits the use of those cements, particularly for anterior teeth. This review aimed to provide a systematic evaluation of published in vitro studies to determine the effect of different calcium silicate–based cements on dental tissue discoloration.

Methods

This literature review was developed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement. The literature search was based on all publications without a year limit. The last search was performed on October 22, 2016. An electronic search was performed on MEDLINE (PubMed), Cochrane, and Scopus. The articles were selected to address the following research question: Which materials based on calcium silicate–based cements have hard tissue staining potential? The necessary information was extracted by 2 authors independently using a standardized form.

Results

The search resulted in 390 titles from all databases. Twenty-three studies met the inclusion criteria. Most of the studies exhibited a moderate risk of bias. The results indicated that some materials showed a strong potential for staining, including gray and white MTA Angelus (Londrina, PR, Brazil), gray and white ProRoot MTA (Dentsply, Tulsa, OK), and Ortho MTA (BioMTA, Seoul, Korea). Individual study results showed that Biodentine (Septodont, Saint Maur des Fosses, France), Retro MTA (BioMTA), Portland cement, EndoSequence Root Repair Material (Brasseler USA, Savannah, GA), Odontocem (Australian Dental Manufacturing, Brisbane, Australia), MM-MTA (Micro Mega, Besancon Cedex, France), and MTA Ledermix (Riemser Pharma GmbH, Greiswald-Insel Riems, Germany) were materials with the smallest staining potential.

Conclusions

This review clearly showed that some calcium silicate–based cements have a high potential for staining hard tissue. On the other hand, some showed only a small change in color, which was nearly invisible to the human eye (ΔE <3.3). However, more long-term clinical studies are needed.  相似文献   

8.
The aim of this study is to characterize the particle size distribution and circularity of various Mineral Trioxide Aggregates (MTA) (ProRoot MTA/ MTA Angelus/Gray and White) and Portland cements with effective size ranges of 1.5-160 microm using a flow particle analyzer (Sysmex FPIA-3000, Kobe, Japan). Cumulative percentage of particles between 6 and 10 microm were, 65, 73, 48, 53, and 70 %, for Gray ProRoot MTA, White ProRoot MTA, Gray MTA Angelus, White MTA Angelus, and Portland cement, respectively. ProRoot MTA contains fewer large particles than MTA Angelus. MTA Angelus contains a higher number of small particles than ProRoot MTA. White MTA contains smaller particles with a narrower range of size distribution than Gray MTA. MTA Angelus particles have relatively low circularity and wide size distribution and are less homogeneous than ProRoot MTA.  相似文献   

9.
IntroductionThis study was designed aiming to determine and compare the amount of arsenic in some brands of mineral trioxide aggregate (MTA) and Portland cement.MethodsIn the present study, arsenic species (As[III], As[V], and dimethylarsinic acid) were separated by high-performance liquid chromatography (HPLC) using a strong anion exchange column and converted into arsines by online HG. The instrumental coupling, HPLC-HG-AFS, was applied to 0.2 g of each cement that was prior digested in a solution of HCl, HNO3, and HBF4. Data were expressed as a part per million, and the preliminary analysis of the raw pooled data revealed a bell-shaped distribution. Statistical analysis was performed using one-way analysis of variance for multiple comparisons.ResultsIn all chromatograms obtained, only type III arsenic could be detected. The minimum amount of arsenic was detected in samples of white MTA ProRoot (3.3 × 10-4) and the maximum in the samples MTA Bio Angelus (Angelus, Londrina, PR, Brazil) (8.6 × 10-4). In the Gray MTA (Angelus), gray ProRoot MTA (Tulsa/Dentsply, Tulsa, OK) and CP Juntalider (Brasilatex Ltda, Diadema, SP, Brazil) did not detect any trace of arsenic. The values of arsenic found in CP Irajazinho (Votorantim Cimentos, Rio Branco, SP, Brazil) and white MTA Angelus were intermediaries to minimum and maximum values. The nonparametric test Kruskal-Wallis showed statistically similar results among all cements tested (p > 0.5).ConclusionsOverall, the present study showed that all cements showed insignificant amounts of type III arsenic as well as no trace of arsenic DMA and type V could be detected.  相似文献   

10.
《Saudi Dental Journal》2021,33(7):679-686
BackgroundBiocompatibility is an essential property for any dental root repair material that may interact with the surrounding periodontal tissues. We hypothesise that the three mineral trioxide aggregate (MTA) restorative brands ProRoot MTA, MTA Flow and Harvard MTA have similar biocompatibility. To test this hypothesis, we compared the cytotoxic effects of these materials on human gingival fibroblast (GF).MethodsMTA cements were prepared, and after completion of setting, they were incubated in Dulbecco's Modified Eagle Medium for 1 day or 4 days to obtain low and high concentrations of MTA elutes respectively. The elutes of MTA supplemented with fetal bovine serum were added to GF and incubated for 3 days at 37 °C and 5% CO2. Untreated cells were used as control. The cell viability was assessed using a 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) assay at 24, 48 and 72 h.ResultsAfter 24 h, the MTT assay showed that both 1- and 4-day elutes of MTA flow and Harvard MTA reduced cell viability significantly compared to control (P < 0.05). After 48 h, the 1-day elute of ProRoot MTA induced GF proliferation (P = 0.0136) while MTA flow and Harvard MTA were similar to control. After 72 h, the 1-day elute of ProRoot MTA and Harvard MTA induced GF proliferation, while the elute of MTA flow was comparable to control. The 4-day elute of Harvard MTA continued to be cytotoxic to GF after 24 h, 48 h, and 72 h incubation, while the 4-day elute of ProRoot MTA and MTA flow were similar to control.ConclusionProRoot MTA and MTA Flow showed comparable biocompatibility. However, the 4-day elute of Harvard MTA was cytotoxic to GF. Further studied are required to assess the cell viability after direct contact with these materials versus eluent in vitro and compare these sealers in the clinical setting.  相似文献   

11.
ObjectivesThe objectives of this study were to examine the effect of pulpal pressure on the microtensile bond strength (mTBS) of luting resin cements to human dentin and the permeability of dentin surfaces pre-treated with an adhesive and a self-etching primer.MethodsCylindrical composite blocks were luted with resin cements (RelyX ARC, 3M ESPE: ARC; Panavia F, Kuraray Medical Inc.: PF; RelyX Unicem, 3M ESPE: UN) in the absence or presence of simulated pulpal pressure. The application of Adper Single Bond 2 (3M ESPE) and ED primer 2.0 (Kuraray) was performed under 0 cm H2O. After each resin cement was applied, the pulpal pressure group was subjected to 20 cm H2O of hydrostatic pressure for 10 min during the initial setting period. Testing for mTBS was performed on 0.9 mm × 0.9 mm sectioned beams after 24 h water-storage. Scanning electron microscopy was performed to investigate the fractured surfaces after mTBS testing and additional dentin surfaces that were treated by an etchant, ED primer 2.0 and UN. Fluid permeability was measured on dentin surfaces that were applied with Adper Single Bond 2 and ED primer 2.0.ResultsApplication of pulpal pressure reduced mTBS significantly in groups ARC and PF. Porous bonding interfaces due to water permeability through the cured adhesive were observed on fractured surfaces. Dentin surfaces that were applied with the adhesive and the primer were more permeable than smear layer-covered dentin. The mTBS of UN was significantly lower than ARC and PF regardless of the absence/presence of pulpal pressure.SignificanceFluid permeation during the initial setting period deteriorated the bonding quality of resin cements.  相似文献   

12.

Objectives

To overcome shortcomings of hydraulic calcium-silicate cements (hCSCs), an experimental tricalcium silicate (TCS) cement, named ‘TCS 50’, was developed. In vitro research showed that TCS 50 played no negative effect on the viability and proliferation of human dental pulp cells, and it induced cell odontogenic differentiation. The objective was to evaluate the pulpal repair potential of TCS 50 applied onto exposed minipig pulps.

Methods

Twenty permanent teeth from three minipigs were mechanically exposed and capped using TCS 50; half of the teeth were scheduled for 7-day and the other half for 70-day examination (n = 10). Commercial hCSCs ProRoot MTA and TheraCal LC were tested as references (n = 8). Tooth discoloration was examined visually. After animal sacrifice, the teeth were scanned using micro-computed tomography; inflammatory response at day 7 and day 70, mineralized tissue formation at day 70 were assessed histologically.

Results

Up to 70 days, TCS 50 induced no discoloration, ProRoot MTA generated gray/black discoloration in all teeth. For TCS 50, 40.0% pulps exhibited a mild/moderate inflammation at day 7. No inflammation was detected and complete reparative dentin with tubular structures was formed in all pulps after 70 days. ProRoot MTA induced a similar response, TheraCal LC generated a less favorable response in terms of initial inflammation and reparative dentin formation; however, these differences were not significant (Chi-square test of independence: p > 0.05).

Significance

TCS 50 induced reparative dentinogenesis in minipig pulps. It can be considered as a promising pulp-capping agent, also for aesthetic areas.  相似文献   

13.
The present study aimed to evaluate the effect of sodium perborate on the compressive strength of calcium silicate‐based materials. ProRoot wMTA, MTA Plus, NeoMTA Plus and Biodentine discs with 5 mm thickness and 4 mm diameter were prepared. Thirty discs from each material were used for compressive strength testing and divided into two groups: control and bleaching (n = 15). The sodium perborate was mixed with 30% hydrogen peroxide in a creamy consistency and placed on the surface of the specimens. Specimens were tested in an Instron machine, and compressive strength values were recorded and compared. The data were analysed using one‐way anova and post hoc Tukey tests. Compressive strength of all tested materials significantly decreased after bleaching (P < 0.05). SEM examination revealed deterioration on materials’ surfaces after bleaching. Application of sodium perborate and hydrogen peroxide reduced the compressive strength of ProRoot wMTA, MTA Plus, NeoMTA Plus and Biodentine.  相似文献   

14.

Objective

To provide insight of the setting reactions of Biodentine?, a hydraulic calcium silicate cement, based upon observations using Fourier Transform Infra-Red (FTIR) spectroscopy.

Methods

FTIR spectra of components before and during the setting reaction were taken using the attenuated total reflectance (ATR) technique. Measurements over wavelengths 600–4000 cm?1 were taken at regular intervals for two days.

Results

FTIR spectrum of Biodentine? powder revealed a number of peaks from 650 to 1100 cm?1 and a plateau from 1400 to 1500 cm?1, indicative of SiO and CO3-bonding, while the mixing fluid exhibited water peaks. Results following mixing displayed three distinct regimes; (i) incubation phase, during the first 35 min, when minimal change occurred, (ii) rapid transitory stage, between 35 and 90 min, when major changes occurred, and (iii) slow sustained reaction stage for remaining 45 h. Incubation appears to be associated with the presence of CO3-peaks. The transition region indicates formation of CaOH and Jennite OH-peaks, anticipated intermediate reaction phases. At 90 min, the end of second stage, CaOH and Jennite are replaced by a dominant Portlandite (Ca(OH)2)-peak and minor presence of Tobermorite, another anticipated intermediate phase, and water reduction. During the following 45 h Portlandite and Tobermorite decline while the water peak increases.

Significance

FTIR can be used to follow the chemical reactions in dental cements and provides insight into the relatively slow setting reactions of hydraulic calcium silicate cements.  相似文献   

15.
This study aims to compare the bioactivity of Biodentine, ProRoot MTA and NeoMTA Plus with regard to their element uptake (Ca, Si and Ca/P) by root canal dentine in a simulated apex (n = 30 each) and evaluate the correlation between the dentine fracture resistance (n = 30 each) and interfacial layer thickness. Specimens immersed in a corrected simulated body solution (c‐SBF) for 1, 30 and 90 days were used. In all test materials, the Ca and Si concentrations in the root dentine were found to be significantly higher, whereas the Ca/P and Si concentrations increased over time (P < 0.05). The dentine fracture resistance showed a difference at only day 30. The dentine fracture resistance of Biodentine and ProRoot MTA was positively correlated with the Si and Ca/P values, and the mean interfacial layer thickness of all specimens. A high biomineralisation capacity of ProRoot MTA and Biodentine, and their positive effects on the dentine fracture resistance during the first 30 days suggest that they may present more advantages than NeoMTA Plus in apexification treatment.  相似文献   

16.
ObjectiveUnstimulated whole saliva (UWS) sialometry uses the spitting method to assess occurrence of hyposalivation. This study compares the UWS flow rates in volunteers sitting in a laboratory or in a clinical setting, in order to evaluate the influence of environment on salivary secretion.Design25 healthy volunteers were recruited and divided into two groups to perform UWS sialometry under the two different settings (T1). Eleven weeks later, the participants repeated the same test (T2). At a unique time point and under the clinical setting, 18 patients complaining of xerostomia also performed the UWS sialometry; these values were used as control to corroborate findings.ResultsDifferent scenarios – laboratory one vs. clinical one – did not affect measurements of mean UWS flow rates. Both intra- and inter-individual variabilities, reported as standard error of the mean (SEM) and within-subject variance (WSV), resulted below the threshold of 0.1 g/min. A significant difference was found between UWS flow rates from healthy volunteers and those from patients with xerostomia (p < 0.05). Test/retest reliability showed a moderate correlation of datasets collected at the two time points from healthy volunteers (T1 vs. T2, 11 weeks later): under laboratory and clinical settings, Pearson’s coefficients of correlation were r = 0.62 and r = 0.32, respectively.ConclusionsType of environment did not influence UWS sialometry via spitting method, which appeared reliable for intra-day analysis of the salivary flow rate, although prone to physiological variations over time.  相似文献   

17.

Introduction

OrthoMTA (BioMTA, Seoul, Korea) and Endocem MTA (Maruchi, Wonju-si, Korea) were recently developed to overcome the disadvantages of ProRoot MTA (Dentsply, Tulsa, OK). This study aimed to compare the biological properties of OrthoMTA and Endocem MTA with those of ProRoot MTA using the preosteoblastlike cell line MC3T3-E1.

Methods

The setting times of calcium silicate–based cements (CSCs) and their effects on the pH of distilled water during storage were determined according to ISO standards. MC3T3-E1 cells were cultured with ProRoot MTA, OrthoMTA, and Endocem MTA. The viability of the cells was assessed using the Cell Counting Kit-8 assay (Dojindo Laboratory, Kumamoto, Japan) on the supernatants of CSCs, and the cells' osteopontin production was determined by an enzyme-linked immunosorbent assay on a culture with the materials on days 3 and 7 of incubation.

Results

Endocem MTA exhibited a significantly shorter setting time (15.3 ± 0.5 minutes) than did ProRoot MTA and OrthoMTA (318.0 ± 56.0 and 324.3 ± 2.1 minutes, P < .05). Additionally, all CSCs caused their storage water to become highly alkaline after 7 days. OrthoMTA was significantly more cytotoxic than ProRoot and Endocem MTA (P < .05). ProRoot MTA induced significantly more OPN production than OrthoMTA and Endocem MTA on both days 3 and 7 (P < .05).

Conclusions

ProRoot MTA appeared to be superior to OrthoMTA and Endocem MTA in terms of biological properties although Endocem MTA exhibited the shortest setting time and presented lower cytotoxicity with osteoblastlike cells.  相似文献   

18.
《Dental materials》2019,35(8):1194-1203
ObjectiveTo investigate the surface micro-hardness (VHN) and fracture toughness (KIC) of resin-composites, with and without incorporated short fibers, after solvent storage.MethodsThree resin-composites incorporating fibers, additional to particle reinforcement, were examined: everX™, NovoPro Fill™ and NovoPro Flow™. Four composites were used as controls, with only particle reinforcement: Filtek bulk Fill™, Filtek bulk one™, Filtek XTE™, and Filtek Flow XTE™. For hardness measurement, materials were cured in 2 mm thick molds for 20 s by a LED source of average irradiance 1.2 W/cm2. Specimens (n = 6/group) were stored dry for 1 h and then in either water or 75% ethanol/water for 1 h, 1 day and 30 days at 37 ± 1 °C. Vickers hardness was measured under a load of 300 g for 15 s. For fracture toughness (KIC) measurements, single-edge-notched specimens (n = 6/group) were prepared: (32 × 6 × 3 mm) for 3-point bending and stored for 1 and 7 days in water at 37 °C. Fractured surfaces of fiber-reinforced composite were examined by scanning electron microscopy (SEM). VHN data were analyzed using three-way ANOVA, one-way ANOVA and the Tukey post hoc test (p  0.05). KIC data were analyzed by two-way ANOVA and one-way ANOVA and the Tukey post hoc test (p  0.05). An independent t-test was used to detect differences (α = 0.05) in KIC between stored groups for each material.ResultsVHN decreased for all composites with storage time in both solvents, but more appreciably in 75% ethanol/water (an average of 20%). KIC ranged from 2.14 (everX Posterior) to 0.96 NovoPro Flow) MPa. m0.5. The longer storage period (7 days) had no significant effect on this property relative to 1 day storage.SignificanceReinforcement with short fibers, and possibly matrix compositional differences, significantly enhanced the fracture toughness of EVX. However, for nano-fiber containing composites, there were no evident beneficial effects upon either their fracture toughness or hardness compared to a range of control composites. Water storage for 7 days of all these resin-composites produced no significant change in their KIC values, relative to 1 day storage.  相似文献   

19.

Objectives

To evaluate the effect of the eluates from 3 freshly-mixed and setting hydraulic calcium-silicate cements (hCSCs) on human dental pulp cells (HDPCs) and to examine the effect of a newly developed hCSC containing phosphopullulan (PPL) on HDPCs.

Methods

Human dental pulp cells, previously characterized as mesenchymal stem cells, were used. To collect the eluates, disks occupying the whole surface of a 12-well plate were prepared using an experimental hCSC containing phosphopullulan (GC), Nex-Cem MTA (GC), Biodentine (Septodont) or a zinc-oxide (ZnO) eugenol cement (material-related negative control). Immediately after preparing the disks (non-set), 3 ml of Dulbecco's Modified Eagle Medium (DMEM) with 10% fetal bovine serum (FBS) were added. The medium was left in contact with the disks for 24 h before being collected. Four different dilutions were prepared (100%, 50%, 25% and 10%) and cell-cytotoxicity, cell-proliferation, cell-migration and odontogenic differentiation were tested. The cell-cytotoxicity and cell-proliferation assays were performed by XTT-colorimetric assay at different time points. The cell-migration ability was tested with the wound-healing assay and the odontogenic differentiation capacity of hCSCs on HDPCs was tested with RT-PCR.

Results

Considering all experimental data together, the eluates from 3 freshly-mixed and setting hCSCs appeared not cytotoxic toward HDPCs. Moreover, all three cements stimulated proliferation, migration and odontogenic differentiation of HDPCs.

Significance

The use of freshly-mixed and setting hCSCs is an appropriate approach to test the effect of the materials on human dental pulp cells. The experimental material containing PPL is non-cytotoxic and positively stimulates HDPCs.  相似文献   

20.
ObjectivesTo analyze the microhardness of four dual-cure resin cements used for cementing fiber-reinforced posts under the following conditions: after 7 days of storage in water, after additional 24 h of immersion in 75% ethanol, and after 3 months of storage in water. Hardness measurements were taken at the cervical, middle and apical thirds along the cement line.MethodsRoot canals of 40 bovine incisors were prepared for post space. Fibrekor® glass fiber-reinforced posts (Jeneric/Pentron) of 1 mm in diameter were cemented using Panavia F 2.0 (Kuraray), Variolink (Ivoclar-Vivadent), Rely X Unicem (3M ESPE) or Duolink (Bisco) (N = 10). After 7 days of water storage at 37 °C, half the sample (N = 5) was longitudinally sectioned and the initial microhardness measured along the cement line from cervical to apex. These same samples were further immersed in 75% ethanol for 24 h and reassessed. The remaining half (N = 5) was kept unsectioned in deionized water at 37 °C for 3 months, followed by sectioning and measuring. Data were analyzed by a series of two-way ANOVA and Tukey tests at α = 5%.ResultsStatistically significant differences were identified among the cements, thirds and conditions. Significant interactions were also observed between cements and thirds and between cements and conditions. Panavia F exhibited significantly higher initial microhardness than the other three cements, which showed no statistical difference among themselves. Variolink and Duolink showed significantly higher microhardness values in the cervical third, without significant difference among the thirds for the other cements. Immersion in ethanol significantly reduced the hardness values for all cements, regardless of the thirds. Storage in water for 3 months had no influence on the hardness of most of the cements, with the exception of Unicem that showed a significant increase in the hardness values after this period.SignificanceResults showed heterogeneity in the microhardness of the cements inside the canal. All cements presented some degree of softening after ethanol treatment, which suggests instability of the polymer. The quality of curing of resin cements in the root canal environment seems unpredictable and highly material dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号