首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.

Background:

Our present study of the microRNA (miRNA) expression signature in castration-resistant prostate cancer (CRPC) revealed that the clustered miRNAs microRNA-221 (miR-221) and microRNA-222 (miR-222) are significantly downregulated in cancer tissues. The aim of this study was to investigate the functional roles of miR-221 and miR-222 in prostate cancer (PCa) cells.

Methods:

A CRPC miRNA signature was constructed by PCR-based array methods. Functional studies of differentially expressed miRNAs were analysed using PCa cells. The association between miRNA expression and overall survival was estimated by the Kaplan–Meier method. In silico database and genome-wide gene expression analyses were performed to identify molecular targets regulated by the miR-221/222 cluster.

Results:

miR-221 and miR-222 were significantly downregulated in PCa and CRPC specimens. Kaplan–Meier survival curves showed that low expression of miR-222 predicted a short duration of progression to CRPC. Restoration of miR-221 or miR-222 in cancer cells revealed that both miRNAs significantly inhibited cancer cell migration and invasion. Ecm29 was directly regulated by the miR-221/222 cluster in PCa cells.

Conclusions:

Loss of the tumour-suppressive miR-221/222 cluster enhanced migration and invasion in PCa cells. Our data describing targets regulated by the tumour-suppressive miR-221/222 cluster provide insights into the mechanisms of PCa and CRPC progression.  相似文献   

2.

Background:

Hypopharyngeal squamous cell carcinoma (HSCC) is an aggressive malignancy with one of the worst prognoses among all head and neck cancers. Greater understanding of the pertinent molecular oncogenic pathways could help improve diagnosis, therapy, and prevention of this disease. The aim of this study was to identify tumour-suppressive microRNAs (miRNAs), based on miRNA expression signatures from clinical HSCC specimens, and to predict their biological target genes.

Methods:

Expression levels of 365 human mature miRNAs from 10 HSCC clinical samples were screened using stem-loop real-time quantitative PCR. Downregulated miRNAs were used in cell proliferation assays to identify a tumour-suppressive miRNA. Genome-wide gene expression analyses were then performed to identify the target genes of the tumour-suppressive miRNA.

Results:

Expression analysis identified 11 upregulated and 31 downregulated miRNAs. Gain-of-function analysis of the downregulated miRNAs revealed that miR-489 inhibited cell growth in all head and neck cancer cell lines examined. The gene PTPN11 coding for a cytoplasmic protein tyrosine phosphatase containing two Src Homology 2 domains was identified as a miR-489-targeted gene. Knockdown of PTPN11 resulted in the inhibition of cell proliferation in head and neck SCC cells.

Conclusion:

Identification of the tumour-suppressive miRNA miR-489 and its target, PTPN11, might provide new insights into the underlying molecular mechanisms of HSCC.  相似文献   

3.

Background:

Our recent studies of microRNA (miRNA) expression signatures demonstrated that microRNA-29s (miR-29s; miR-29a/b/c) were significantly downregulated in head and neck squamous cell carcinoma (HNSCC) and were putative tumour-suppressive miRNAs in human cancers. Our aim in this study was to investigate the functional significance of miR-29s in cancer cells and to identify novel miR-29s-mediated cancer pathways and responsible genes in HNSCC oncogenesis and metastasis.

Methods:

Gain-of-function studies using mature miR-29s were performed to investigate cell proliferation, migration and invasion in two HNSCC cell lines (SAS and FaDu). To identify miR-29s-mediated molecular pathways and targets, we utilised gene expression analysis and in silico database analysis. Loss-of-function assays were performed to investigate the functional significance of miR-29s target genes.

Results:

Restoration of miR-29s in SAS and FaDu cell lines revealed significant inhibition of cancer cell migration and invasion. Gene expression data and in silico analysis demonstrated that miR-29s modulated the focal adhesion pathway. Moreover, laminin γ2 (LAMC2) and α6 integrin (ITGA6) genes were candidate targets of the regulation of miR-29s. Luciferase reporter assays showed that miR-29s directly regulated LAMC2 and ITGA6. Silencing of LAMC2 and ITGA6 genes significantly inhibited cell migration and invasion in cancer cells.

Conclusion:

Downregulation of miR-29s was a frequent event in HNSCC. The miR-29s acted as tumour suppressors and directly targeted laminin–integrin signalling. Recognition of tumour-suppressive miRNA-mediated cancer pathways provides new insights into the potential mechanisms of HNSCC oncogenesis and metastasis and suggests novel therapeutic strategies for the disease.  相似文献   

4.
5.

Background:

Hypopharyngeal squamous cell carcinoma (HSCC) has a very poor prognosis because of its high rates of regional and distant metastasis. Identification of differentially expressed miRNAs and their regulated molecular targets in tumour cells might enhance our understanding of the molecular mechanisms of metastasis in human cancers.

Methods:

A HSCC miRNA signature was constructed by array-based methods. Functional studies of microRNA-451a (miR-451a) and target genes were performed to investigate cell proliferation, migration and invasion by cancer cell lines. To identify miR-451a-regulated molecular targets, we adopted gene expression analysis and in silico database analysis.

Results:

Our miRNA signature revealed that miR-451a was significantly downregulated in HSCC. Restoration of miR-451a in cancer cell lines revealed that this miRNA significantly inhibited cancer cell migration and invasion. Our data demonstrated that the gene coding for endothelial and smooth muscle cell-derived neuropilin-like molecule (ESDN/DCBLD2) was a direct target of miR-451a regulation. Silencing of ESDN inhibited cell migration and invasion by cancer cells.

Conclusions:

Loss of tumour suppressive miR-451a enhanced cancer cell migration and invasion in HSCC through direct regulation of ESDN. Our miRNA signature and functional analysis of targets regulated by tumour suppressive miR-451a provide new insights into the potential mechanisms of HSCC oncogenesis and metastasis.  相似文献   

6.

Background:

On the base of the microRNA (miRNA) expression signature of bladder cancer (BC), we found that miR-1 and miR-133a were significantly downregulated in BC. In this study, we focussed on the functional significance of miR-1 and miR-133a in BC cell lines and identified a molecular network of these miRNAs.

Methods and results:

We investigated the miRNA expression signature of BC clinical specimens and identified several downregulated miRNAs (miR-133a, miR-204, miR-1, miR-139-5p, and miR-370). MiR-1 and miR-133a showed potential role of tumour suppressors by functional analyses of BC cells such as cell proliferation, apoptosis, migration, and invasion assays. Molecular target searches of these miRNAs showed that transgelin 2 (TAGLN2) was directly regulated by both miR-1 and miR-133a. Silencing of TAGLN2 study demonstrated significant inhibitions of cell proliferation and increase of apoptosis in BC cell lines. The immunohistochemistry showed a positive correlation between TAGLN2 expression and tumour grade in clinical BC specimens.

Conclusions:

The downregulation of miR-1 and miR-133a was a frequent event in BC, and these miRNAs were recognised as tumour suppressive. TAGLN2 may be a target of both miRNAs and had a potential oncogenic function. Therefore, novel molecular networks provided by miRNAs may provide new insights into the underlying molecular mechanisms of BC.  相似文献   

7.

Background:

On the basis of the microRNA (miRNA) expression signature of maxillary sinus squamous cell carcinoma (MSSCC), we found that miR-874 was significantly reduced in cancer cells. We focused on the functional significance of miR-874 in cancer cells and identification of miR-874-regulated novel cancer networks in MSSCC.

Methods:

We used PCR-based methods to investigate the downregulated miRNAs in clinical specimens of MSSCC. Our signature analyses identified 23 miRNAs that were significantly reduced in cancer cells, such as miR-874, miR-133a, miR-375, miR-204, and miR-1. We focused on miR-874 as the most downregulated novel miRNA in our analysis.

Results:

We found potential tumour suppressive functions such as inhibition of cancer cell proliferation and invasion. A molecular target search of miR-874 revealed that PPP1CA was directly regulated by miR-874. Overexpression of PPP1CA was observed in MSSCC clinical specimens. Silencing of the PPP1CA gene significantly inhibited cancer cell proliferation and invasion.

Conclusion:

The downregulation of miR-874 was a frequent event in MSSCC, which suggests that miR-874 functions as a tumour suppressive miRNA, directly regulating PPP1CA that has a potential role of an oncogene. The identification of novel miR-874-regulated cancer pathways could provide new insights into potential molecular mechanisms of MSSCC oncogenesis.  相似文献   

8.

Background:

Our recent studies of microRNA (miRNA) expression signature demonstrated that microRNA-874 (miR-874) was significantly downregulated in maxillary sinus squamous cell carcinoma (MSSCC), and a putative tumour-suppressive miRNA in human cancers. Our aim of this study was to investigate the functional significance of miR-874 in cancer cells and to identify novel miR-874-mediated cancer pathways and responsible genes in head and neck squamous cell carcinoma (HNSCC).

Methods:

Gain-of-function studies using mature miR-874 were performed to investigate cell proliferation and cell cycle distribution in HNSCC cell lines (SAS and FaDu). To identify miR-874-mediated molecular pathways and targets, we utilised gene expression analysis and in silico database analysis. Loss-of-function assays were performed to investigate the functional significance of miR-874 target genes.

Results:

Expression levels of miR-874 were significantly downregulated in HNSCC tissues (including oral, pharyngeal and laryngeal SCCs) compared with normal counterpart epithelia. Restoration of miR-874 in SAS and FaDu cell lines revealed significant inhibition of cell proliferation and induction of G2/M arrest and cell apoptosis. Our expression data and in silico analysis demonstrated that miR-874 modulated the cell cycle pathway. Moreover, histone deacetylase 1 (HDAC1) was a candidate target of miR-874 regulation. Luciferase reporter assays showed that miR-874 directly regulated HDAC1. Silencing of the HDAC1 gene significantly inhibited cell proliferation and induced G2/M arrest and cell apoptosis in SAS cells.

Conclusions:

Downregulation of miR-874 was a frequent event in HNSCC. miR-874 acted as a tumour suppressor and directly targeted HDAC1. Recognition of tumour-suppressive miRNA-mediated cancer pathways provides new insights into the potential mechanisms of HNSCC oncogenesis and suggests novel therapeutic strategies for the disease.  相似文献   

9.

Background:

Our recent analyses of miRNA expression signatures showed that miR-1 and miR-133a were significantly reduced in several types of cancer. Interestingly, miR-1 and miR-133a are located on the same chromosomal locus in the human genome. We examined the functional significance of miR-1 and miR-133a in prostate cancer (PCa) cells and identified the novel molecular targets regulated by both miR-1 and miR-133a.

Methods and Results:

The expression levels of miR-1 and miR-133a were significantly downregulated in PCa compared with non-PCa tissues. Restoration of miR-1 or miR-133a in PC3 and DU145 cells revealed significant inhibition of proliferation, migration, and invasion. Molecular target identification by genome-wide gene expression analysis and luciferase reporter assay showed that purine nucleoside phosphorylase (PNP) was directly regulated by both miRNAs. Silencing of the PNP gene inhibited proliferation, migration, and invasion in both PC3 and DU145 cells. Immunohistochemistry detected positive staining of PNP in PCa specimens.

Conclusions:

Downregulation of miR-1 and miR-133a was a frequent event in PCa and both function as tumour suppressors. The PNP is a novel target gene of both miRNAs and potentially functions as an oncogene. Therefore, identification of novel molecular networks regulated by miRNAs may provide new insights into the underlying causes of PCa oncogenesis.  相似文献   

10.

Background:

Many micro-RNAs (miRNAs) are differentially expressed in Helicobacter pylori-infected gastric mucosa and in gastric cancer tissue and previous reports have suggested the possibility of serum miRNAs as complementary tumour markers. The aim of the study was to investigate serum miRNAs and pepsinogen levels in individuals at high risk for gastric cancer both before and after H. pylori eradication.

Methods:

Patients with recent history of endoscopic resection for early gastric cancer and the sex- and age-matched controls were enrolled. Serum was collected from subjects before or after eradication and total RNA was extracted to analyse serum levels of 24 miRNAs. Serum pepsinogen (PG) I and II levels were measured using enzyme-linked immunosorbent assay kits.

Results:

Using miR-16 as an endogenous control, the relative levels of miR-106 and let-7d before and after H. pylori eradication and miR-21 after eradication were significantly higher in the high-risk group than in the controls. H. pylori eradication significantly decreased miR-106b levels and increased let-7d only in the control group. After eradication, the combination MiR-106b with miR-21 was superior to serum pepsinogen and the most valuable biomarker for the differentiating high-risk group from controls.

Conclusion:

Serum miR-106b and miR-21 may provide a novel and stable marker of increased risk for early gastric cancer after H. pylori eradication.  相似文献   

11.

Background:

We have recently identified down-regulated microRNAs including miR-145 and miR-133a in bladder cancer (BC). The aim of this study is to determine the genes targeted by miR-145, which is the most down-regulated microRNA in BC.

Methods:

We focused on fascin homologue 1 (FSCN1) from the gene expression profile in miR-145 transfectant. The luciferase assay was used to confirm the actual binding sites of FSCN1 mRNA. Cell viability was evaluated by cell growth, wound-healing, and matrigel invasion assays. BC specimens were subjected to immunohistochemistry of FSCN1 and in situ hybridisation of miR-145.

Results:

The miR-133a as well as miR-145 had the target sequence of FSCN1 mRNA by the database search, and both microRNAs repressed the mRNA and protein expression of FSCN1. The luciferase assay revealed that miR-145 and miR-133a were directly bound to FSCN1 mRNA. Cell viability was significantly inhibited in miR-145, miR-133a, and si-FSCN1 transfectants. In situ hybridisation revealed that miR-145 expression was markedly repressed in the tumour lesion in which FSCN1 was strongly stained. The immunohistochemical score of FSCN1 in invasive BC (n=46) was significantly higher than in non-invasive BC (n=20) (P=0.0055).

Conclusion:

Tumour suppressive miR-145 and miR-133a directly control oncogenic FSCN1 in BC.  相似文献   

12.

Background:

Wnt-signalling has an important role in renal cancer and it is modulated by genistein in other cancers. Recently, microRNAs (miRNAs) have emerged as new regulators of gene expression. Thus, we focused on miRNAs to examine the regulatory mechanism of genistein on the Wnt-signalling pathway in renal cell carcinoma (RCC).

Methods:

Initially, we investigated the effect of genistein on Wnt-signalling (TOPflash reporter assay (TCF reporter assays)) in renal cancer cells, and using microarray identified candidate miRNAs whose expression was decreased by genistein. We performed functional analyses and investigated the relationship between miRNA expression and renal cancer patient outcomes. We also did 3′UTR luciferase assays to look at direct miRNA regulation of Wnt-signalling-related genes.

Results:

Genistein promoted apoptosis while inhibiting RCC cell proliferation and invasion. Genistein also decreased TCF reporter activity in RCC cells. We found that miR-1260b was highly expressed and significantly downregulated by genistein in RCC cells. The expression of miR-1260b was significantly higher in renal cancer tissues compared with normal, and significantly related to overall shorter survival. In addition, miR-1260b promoted renal cancer cell proliferation and invasion in RCC cells. The 3′UTR luciferase activity of target genes (sFRP1, Dkk2, Smad4) was significantly decreased and their protein expression significantly upregulated in miR-1260b inhibitor-transfected renal cancer cells.

Conclusion:

Our data suggest that genistein inhibited Wnt-signalling by regulating miR-1260b expression in renal cancer cells.  相似文献   

13.

Background:

TMPRSS4 is a membrane-anchored protease involved in cell migration and invasion in different cancer types including lung cancer. TMPRSS4 expression is increased in NSCLC and its inhibition through shRNA reduces lung metastasis. However, molecular mechanisms leading to the protumorigenic regulation of TMPRSS4 in lung cancer are unknown.

Methods:

miR-205 was identified as an overexpressed gene upon TMPRSS4 downregulation through microarray analysis. Cell migration and invasion assays and in vivo lung primary tumour and metastasis models were used for functional analysis of miR-205 overexpression in H2170 and H441 cell lines. Luciferase assays were used to identify a new miR-205 direct target in NSCLC.

Results:

miR-205 overexpression promoted an epithelial phenotype with increased E-cadherin and reduced fibronectin. Furthermore, miR-205 expression caused a G0/G1 cell cycle arrest and inhibition of cell growth, migration, attachment to fibronectin, primary tumour growth and metastasis formation in vivo. Integrin α5 (a proinvasive protein) was identified as a new miR-205 direct target in NSCLC. Integrin α5 downregulation in lung cancer cells resulted in complete abrogation of cell migration, a decreased capacity to adhere to fibronectin and reduced in vivo tumour growth, compared with control cells. TMPRSS4 silencing resulted in a concomitant reduction of integrin α5 levels.

Conclusion:

We have demonstrated for the first time a new molecular pathway that connects TMPRSS4 and integrin α5 through miR-205 to regulate cancer cell invasion and metastasis. Our results will help designing new therapeutic strategies to inhibit this novel pathway in NSCLC.  相似文献   

14.
15.
16.

Background:

HOX gene expression is altered in many cancers; previous microarray revealed changes in HOX gene expression in head and neck squamous cell carcinoma (HNSCC), particularly HOXD10.

Methods:

HOXD10 expression was assessed by qPCR and immunoblotting in vitro and by immunohistochemistry (IHC) in tissues. Low-expressing cells were stably transfected with HOXD10 and the phenotype assessed with MTS, migration and adhesion assays and compared with the effects of siRNA knockdown in high-HOXD10-expressing cells. Novel HOXD10 targets were identified using expression microarrays, confirmed by reporter assay, and validated in tissues using IHC.

Results:

HOXD10 expression was low in NOKs, high in most primary tumour cells, and low in lymph node metastasis cells, a pattern confirmed using IHC in tissues. Overexpression of HOXD10 decreased cell invasion but increased proliferation, adhesion and migration, with knockdown causing reciprocal effects. There was no consistent effect on apoptosis. Microarray analysis identified several putative HOXD10-responsive genes, including angiomotin (AMOT-p80) and miR-146a. These were confirmed as HOXD10 targets by reporter assay. Manipulation of AMOT-p80 expression resulted in phenotypic changes similar to those on manipulation of HOXD10 expression.

Conclusions:

HOXD10 expression varies by stage of disease and produces differential effects: high expression giving cancer cells a proliferative and migratory advantage, and low expression may support invasion/metastasis, in part, by modulating AMOT-p80 levels.  相似文献   

17.

Background:

Metastatic clear cell renal cell carcinoma (ccRCC) patients have <9% 5-year survival rate, do not respond well to targeted therapy and eventually develop resistance. A better understanding of molecular pathways of RCC metastasis is the basis for the discovery of novel prognostic markers and targeted therapies.

Methods:

We investigated the biological impact of galectin-1 (Gal-1) in RCC cell lines by migration and invasion assays. Effect of Gal-1 expression on the mitogen-activated protein kinase pathway was assessed by proteome array.

Results:

Increased expression of Gal-1 increased cell migration while knocking down Gal-1 expression by siRNA resulted in reduced cellular migration (P<0.001) and invasion (P<0.05). Gal-1 overexpression increased phosphorylation of Akt, mTOR and p70 kinase. Upon hypoxia and increased HIF-1α, Gal-1 increased in a dose-dependent manner. We also found miR-22 overexpression resulted in decreased Gal-1 and HIF-1α. Immunohistochemistry analysis showed that high Gal-1 protein expression was associated with larger size tumor (P=0.034), grades III/IV tumors (P<0.001) and shorter disease-free survival (P=0.0013). Using the Cancer Genome Atlas data set, we found that high Gal-1 mRNA expression was associated with shorter overall survival (41 vs 78 months; P<0.01).

Conclusions:

Our data suggest Gal-1 mediates migration and invasion through the HIF-1α–mTOR signaling axis and is a potential prognostic marker and therapeutic target.  相似文献   

18.

Background:

MiR-221/-222 are frequently overexpressed in breast cancer and are associated with increased malignancy. The specific modification of microRNAs (miRNAs) expression could be a promising strategy in breast cancer therapy, leading to the suppression of tumourigenic processes in tumour cells.

Methods:

MiR-221/-222 expressions were analysed in 86 breast cancer tissues by quantitative RT–PCR and tested for correlation with immunohistochemistry data and clinical follow-up. In vitro assays were conducted using human breast cancer cell lines with lentiviral overexpression of miR-221/-222.

Results:

In tumour tissues, miR-221/-222 were associated with the occurrence of distant metastases. In particular, high levels of miR-221 were revealed to have a high prognostic impact for the identification of significantly different groups with advanced tumours. MiR-221/-222 overexpression strongly increased cell proliferation and invasion in vitro. Following miR-221/-222 overexpression an increased uPAR expression and cell invasion were observed.

Conclusion:

This study demonstrates a significant role for highly expressed miR-221/-222 in advanced breast cancers allowing for the identification of significantly different prognostic groups, particularly for HER2-positive and lymph-node-positive breast cancers. Considering that miR-221/-222 are strongly involved in cell invasion, these miRNAs may be promising markers for breast cancer prognosis and therapy.  相似文献   

19.

Background:

Renal cell carcinoma (RCC) is the most common neoplasm of the adult kidney. Metastatic RCC is difficult to treat. The 5-year survival rate for metastatic RCC is ⩽10%. Recently, microRNAs (miRNAs) have been shown to have a role in cancer metastasis and potential as prognostic biomarkers in cancer.

Method:

We performed a miRNA microarray to identify a miRNA signature characteristic of metastatic compared with primary RCCs. We validated our results by quantitative real-time PCR. We performed experimental and bioinformatic analyses to explore the involvement of miR-215 in RCC progression and metastasis.

Results:

We identified 65 miRNAs that were significantly altered in metastatic compared with primary RCCs. We validated our results by examining the expression of miR-10b, miR-126, miR-196a, miR-204 and miR-215, in two independent cohorts of patients. We showed that overexpression of miR-215 decreased cellular migration and invasion in an RCC cell line model. In addition, through gene expression profiling, we identified direct and indirect targets of miR-215 that can contribute to tumour metastasis.

Conclusion:

Our analysis showed that miRNAs are altered in metastatic RCCs and can contribute to kidney cancer metastasis through different biological processes. Dysregulated miRNAs represent potential prognostic biomarkers and may have therapeutic applications in kidney cancer.  相似文献   

20.
D Sun  C Wang  S Long  Y Ma  Y Guo  Z Huang  X Chen  C Zhang  J Chen  J Zhang 《British journal of cancer》2015,112(9):1491-1500

Background:

Evidences have shown that the RAS signalling pathway plays an important role in colorectal cancer (CRC). Moreover, RAS-GTPase-activating proteins (RASGAPs) as RAS signalling terminators are associated with tumourigenicity and tumour progression. In this study, we used bioinformatics analysis to predict and study important miRNAs that could target RAS p21 GTPase-activating protein 1 (RASA1), an important member of RASGAPs.

Methods:

The levels of RASA1 and miR-223 were analysed by real-time PCR, western blotting or in situ immunofluorescence analyses. The functional effects of miR-223 and the effects of miR-223-targeted inhibitors were examined in vivo using established assays.

Results:

Upregulation of miR-223 was detected in CRC tissues (P<0.01) and was involved in downregulation of RASA1 in CRC tissues. Furthermore, the direct inhibition of RASA1 translation by miR-223 and the activation of miR-223 by CCAAT/enhancer binding protein-β (C/EBP-β) were evaluated in CRC cells. An in vivo xenograft model of CRC suggested that the upregulation of miR-223 could promote tumour growth and that the inhibition of miR-223 might prevent solid tumour growth.

Conclusions:

These results identify that C/EBP-β-activated miR-223 contributes to tumour growth by targeting RASA1 in CRC and miR-223-targeted inhibitors may have clinical promise for CRC treatment via suppression of miR-223.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号