首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A synthetic 22-mer peptide that mimics the sequence of a putative pore segment of the voltage-dependent sodium channel forms transmembrane ionic channels in lipid bilayers. Several features of the authentic sodium channel are exhibited by the synthetic peptide: (i) The single channel conductance of the most frequent event is 20 pS in 0.5 M NaCl. (ii) The single channel open and closed lifetimes are in the ms time range. (iii) The synthetic channel discriminates cations over anions but is nonselective between Na+ and K+. However, the synthetic channel displays no significant voltage dependence. Energetic considerations suggest a bundle of four parallel amphipathic alpha-helices as the most plausible channel structure. The synthetic 22-mer channel-forming peptide allows study of the mechanisms of ion permeation through sodium channels by protein engineering techniques.  相似文献   

2.
A class of proteins that mimic the fundamental pore structure of authentic ionic channels has been designed, synthesized, and characterized. The design is based on our earlier result that a 23-mer peptide with the sequence of the M2 segment of the Torpedo californica acetylcholine receptor delta subunit--Glu-Lys-Met-Ser-Thr-Ala-Ile-Ser-Val-Leu-Leu-Ala-Gln-Ala-Val-Phe -Leu- Leu-Leu-Thr-Ser-Gln-Arg--forms cation-selective channels in lipid bilayers, presumably by self-assembly of conductive oligomers. Accordingly, a tethered parallel tetramer was synthesized with four M2 delta peptides attached to a carrier template--a 9-amino acid backbone with four attachment sites. As expected, the complete 101-residue protein does form channels in lipid bilayers reproducing several features that are characteristic of authentic acetylcholine receptor channels, such as single-channel conductance, cation selectivity, transitions between closed and open states in the millisecond time range, and sensitivity to local anesthetic channel blockers. An analogue protein, in which the serine residue in position 8 is replaced with alanine in each of the four M2 delta 23-mer peptides ([Ala8]M2 delta), also forms channels that, however, exhibit lower single-channel conductance. By contrast, a similar tethered tetramer with M1 delta peptides does not form channels, in accord with expectations. The general validity of this strategy to other channel sequences and oligomer numbers is anticipated. Thus, synporins--a term coined to identify this class of synthetic pore proteins--enrich our armamentarium directed toward the elucidation of structure-function relationships.  相似文献   

3.
A mouse cDNA clone has been isolated that contains the complete coding region of a protein highly homologous to the delta subunit of the Torpedo acetylcholine receptor (AcChoR). The cDNA library was constructed in the vector lambda 10 from membrane-associated poly(A)+ RNA from BC3H-1 mouse cells. Surprisingly, the delta clone was selected by hybridization with cDNA encoding the gamma subunit of the Torpedo AcChoR. The nucleotide sequence of the mouse cDNA clone contains an open reading frame of 520 amino acids. This amino acid sequence exhibits 59% and 50% sequence homology to the Torpedo AcChoR delta and gamma subunits, respectively. However, the mouse nucleotide sequence has several stretches of high homology with the Torpedo gamma subunit cDNA, but not with delta. The mouse protein has the same general structural features as do the Torpedo subunits. It is encoded by a 3.3-kilobase mRNA. There is probably only one, but at most two, chromosomal genes coding for this or closely related sequences.  相似文献   

4.
5.
Labeling studies of Torpedo marmorata nicotinic acetylcholine receptor with the noncompetitive channel blocker [3H]chlorpromazine have led to the initial identification of amino acids plausibly participating to the walls of the ion channel on the alpha, beta, and delta subunits. We report here results obtained with the gamma subunit, which bring additional information on the structure of the channel. After photolabeling of the membrane-bound receptor under equilibrium conditions in the presence of agonist and with or without phencyclidine (a specific ligand for the high-affinity site for noncompetitive blockers), the purified labeled gamma subunit was digested with trypsin, and the resulting fragments were fractionated by HPLC. Sequence analysis of peptide mixtures containing various amounts of highly hydrophobic fragments showed that three amino acids are labeled by [3H]chlorpromazine in a phencyclidine-sensitive manner: Thr-253, Ser-257, and Leu-260. These residues all belong to the hydrophobic and putative transmembrane region MII of the gamma subunit. Their distribution along the sequence is consistent with an alpha-helical organization of this segment. The [3H]chlorpromazine-labeled amino acids are conserved at homologous positions in the known sequences of other ligand-gated ion channels and may, thus, play a critical role in ion-transport mechanisms.  相似文献   

6.
A photoactivatable derivative of neurotoxin II from Naja naja oxiana containing a 125I-labeled p-azidosalicylamidoethyl-1,3'-dithiopropyl label at Lys-25 forms a photo-induced cross-link with the delta subunit of the membrane-bound Torpedo californica nicotinic acetylcholine receptor (AChR). The cross-linked radioactive receptor peptide was isolated by reverse-phase HPLC after tryptic digestion of the labeled delta subunit. The sequence of this peptide, delta-(260-277), and the position of the label at Ala-268 were established by matrix-assisted laser-desorption-ionization mass spectrometry based on the molecular mass and on post-source decay fragment analysis. With the known dimensions of the AChR molecule, of the photolabel, and of alpha-neurotoxin, finding the cross-link at delta Ala-268 (located in the upper part of the channel-forming transmembrane helix M2) means that the center of the alpha-neurotoxin binding site is situated at least approximately 40 A from the extracellular surface of the AChR, proximal to the channel axis.  相似文献   

7.
Cat muscle acetylcholine receptors (AcChoR) expressed in Xenopus oocytes desensitized more slowly than Torpedo electric organ AcChoRs, also expressed in oocytes. To examine the bases for the different degrees of desensitization, cat-Torpedo AcChoR hybrids were formed by injecting oocytes with cat denervated muscle mRNA mixed with a large excess of cloned Torpedo AcChoR subunit mRNAs. Hybrid AcChoRs formed by coinjection of cat muscle mRNA with the Torpedo beta or delta subunit mRNAs desensitized as slowly as cat AcChoR. In contrast, the hybrid AcChoRs expressed by coinjection with the Torpedo gamma subunit mRNA desensitized much more rapidly than cat AcChoR. The AcChoRs expressed in oocytes injected with cat muscle mRNA together with the Torpedo beta, gamma, and delta subunit mRNAs desensitized as rapidly as Torpedo AcChoR, indicating that the cat alpha subunit does not play an important role in determining the slow rate of desensitization. It is concluded that the difference in the rates of desensitization of cat and Torpedo AcChoRs is determined mainly by differences in their respective gamma subunits.  相似文献   

8.
A synthetic peptide corresponding to a myasthenogenic region of Torpedo californica acetylcholine (AcCho) receptor (AcChoR) alpha subunit, AcChoR alpha-(125-148), was conjugated to monomethoxypolyethylene glycol (mPEG). Injection of mice with the mPEG-AcChoR alpha-(125-148) conjugate and subsequent immunization with whole Torpedo AcChoR suppressed the development of experimental autoimmune myasthenia gravis (EAMG) by electrophysiological criteria. In anti-AcChoR sera from these animals, the antibody response against unconjugated AcChoR alpha-(125-148) was decreased, while the antibody responses against whole AcChoR and other epitopes were not altered. There were no detectable changes in T-cell proliferation responses to AcChoR alpha-(125-148) or to whole AcChoR in these animals. Prior injections with a "nonsense" peptide-mPEG conjugate had no effect on responses to the subsequent immunization with whole Torpedo AcChoR. The results indicate that the mPEG-AcChoR alpha-(125-148) conjugate has epitope-specific tolerogenicity for antibody responses in EAMG and that the AcChoR alpha-subunit region comprising residues 125-148 plays an important pathophysiological role in EAMG. The epitope-directed tolerogenic conjugates may be useful for future immunotherapies of human myasthenia gravis. The strategy of specific suppression of the antibody response to a predetermined epitope by using a synthetic mPEG-peptide conjugate may prove useful in manipulation and suppression of unwanted immune responses such as autoimmunity and allergy.  相似文献   

9.
The majority of antibodies to the acetylcholine receptor (AcChoR), both in the human disease myasthenia gravis and in its experimental models, are directed against an extracellular area of the AcChoR alpha subunit called the main immunogenic region (MIR). We have studied the binding of anti-AcChoR monoclonal antibodies (mAbs) to 26 synthetic peptides corresponding to the hydrophilic parts of the human AcChoR alpha subunit. The binding sites for eight anti-MIR mAbs and for eight anti-alpha-subunit, non-anti-MIR mAbs were localized. Anti-MIR mAbs bound to one peptide corresponding to residues 63-80 of the human alpha subunit. A second panel of peptides corresponding to the various parts of the alpha-subunit segment 63-80 was synthesized. Anti-MIR antibodies bound to a peptide that contained the alpha-subunit sequence 67-76. Thus, a main constituent loop of the MIR is localized between residues 67 and 76 of the alpha subunit.  相似文献   

10.
A major antigenic region of native nicotinic acetylcholine receptors (AcChoR) has been identified by using a synthetic disulfide-looped peptide corresponding to alpha-subunit residues 125-147 of Torpedo electric organ AcChoR: Lys-Ser-Tyr-Cys-Glu-Ile-Ile-Val-Thr-His-Phe- Pro-Phe-Asp-Gln-Gln-Asn-Cys-Thr-Met-Lys-Leu-Gly. The peptide bound 26-56% of polyclonal antibodies induced in rat, rabbit, and dog by immunization with native AcChoR. Rats inoculated with 50 micrograms of unconjugated peptide developed helper T-cell responses, delayed hypersensitivity, and antibodies to native AcChoR. Anti-peptide antibodies were more reactive with native than denatured AcChoR and bound to the alpha subunit. Some reacted exclusively with mammalian muscle AcChoR, some induced modulation of AcChoR on cultured myotubes, but none inhibited binding of alpha-bungarotoxin to solubilized or membrane-associated AcChoR. Repeated immunization induced experimental autoimmune myasthenia gravis: clinical signs in one rat and electrophysiologic and/or biochemical signs in 10 of 11 rats. Thus, at least part of the corresponding region of the mammalian AcChoR alpha subunit is extracellular at the neuromuscular junction and a potential target for pathogenic autoantibodies in patients with acquired myasthenia gravis.  相似文献   

11.
12.
Antibodies were raised against two synthetic peptides whose sequences correspond respectively to the COOH-terminal end (residues 501-516) of the protein encoded by the gene for the delta chain and to a proposed cytoplasmic region (residues 350-358) of the beta chain of the acetylcholine receptor from Torpedo californica. Binding of the COOH-terminal antibody to the acetylcholine receptor in intact, receptor-rich vesicles was tested by radioimmunoassay and by precipitation with immobilized protein A. In both cases, binding was detected only after treatment of the vesicles with detergent, suggesting that the segment of the receptor that is recognized by this antibody is on the cytoplasmic side of the membrane. Electron microscopy of tissue from Torpedo electric organ labeled with colloidal gold-conjugated second antibodies established that both anti-receptor antibodies bind to the cytoplasmic surface of the postsynaptic membrane. These experiments give ultrastructural evidence that the COOH-terminal segment of the delta chain as well as residues 350-358 of the beta chain are on the cytoplasmic surface. They strongly support a model in which each of the receptor subunits crosses the membrane five times in which one transmembrane segment of each chain contributes to the formation of a central ion channel.  相似文献   

13.
14.
Seventeen cell lines producing monoclonal antibodies against Torpedo californica (torpedo) acetylcholine receptor (AcChoR) and its subunits were established. By using these antibodies as probes, we identified: (i) a similar antigenic determinant on alpha and beta torpedo subunits, (ii) a similar antigenic determinant on gamma and delta subunits, (iii) antigenic determinants unique for alpha or beta torpedo AcChoR subunits, (iv) a small region on the alpha subunit that dominates the immunogenicity of native torpedo AcChoR in rats (a monoclonal antibody directed at this region could bind to rat AcChoR in vivo and cause passive experimental autoimmune myasthenia gravis), and (v) antigenic determinants on torpedo subunits recognized in AcChoR from other species. The unexpected similarities between alpha and beta and between gamma and delta subunits raise the possibility that the complex four-subunit structure of AcChoR was derived from a simpler precursor and suggests that these antigenic similarities might reflect some structural and functional homologies.  相似文献   

15.
The amino-terminal amino acid sequences of the four major peptides (Mr 41,000, 50,000, 55,000, and 62,000) present in purified preparations of Electrophorus electricus nicotinic acetylcholine receptor (AcChoR) have been determined for 24 cycles by automated sequence analysis procedures yielding four unique polypeptide sequences. The sequences showed a high degree of similarity, having identical residues in a number of positions ranging between 37% and 50% for specific pairs of subunits. Comparison of the sequences obtained with those of the subunits of similar molecular weight from Torpedo californica AcChoR revealed an even higher degree of homology (from 46% to 71%) for these two highly diverged species. Simultaneous sequence analysis of the amino termini present in native, purified Electrophorus AcChoR showed that these four related sequences were the only ones present and that they occur in a ratio of 2:1:1:1, with the smallest subunit ("alpha 1") being present in two copies. Genealogical analysis suggests that the subunits of both Torpedo and Electrophorus AcChoRs derive from a common ancestral gene, the divergence having occurred early in the evolution of the receptor. This shared ancestry and the very early divergence of the four subunits, as well as the highly conserved structure of the AcChoR complex along animal evolution, suggest that each of the subunits evolved to perform discrete crucial roles in the physiological function of the AcChoR.  相似文献   

16.
The nicotinic acetylcholine receptor (AcChoR) is a ligand-gated ion channel that is activated upon binding of acetylcholine. α-Neurotoxins, in particular α-bungarotoxin (α-BTX), bind specifically and with high affinity to the AcChoR and compete with binding of the natural ligand. We employed a 15-mer phage-display peptide library to select epitopes reacting with α-BTX. Phages bearing the motif YYXSSL as a consensus sequence were found to bind with high affinity to α-BTX. The library-derived peptide (MRYYESSLKSYPD) bears amino acid sequence similarities to a region of the α-subunit of the Torpedo muscle AcChoR, as well as of other muscle and neuronal AcChoRs that bind α-BTX. The library-derived peptide and the corresponding peptides containing residues 187–199 of the Torpedo AcChoR α-subunit (WVYYTCCPDTPYL), as well as peptides analogous to the above region in the neuronal AcChoR (e.g., human α7; ERFYECCKEPYPD) that binds α-BTX, inhibit the binding of α-BTX to the intact Torpedo AcChoR with IC50 values of 10−6 M. A synthetic peptide from a neuronal AcChoR that does not bind α-BTX (e.g., human α2; ERKYECCKEPYPD) which differs by just one amino acid from the homologous peptide from the α-BTX-binding protein (α7)—i.e., Lys in α2 and Tyr in α7—does not inhibit the binding of α-BTX to Torpedo AcChoR. These results indicate the requirement for two adjacent aromatic amino acid residues for binding to α-BTX.  相似文献   

17.
Two populations of membrane fragments, both rich in acetylcholine receptor (AcChoR), appeared during subcellular fractionation by ultracentrifugation of neonatal Torpedo marmorata electric organs. One of these equilibrated at 38.5% (wt/wt) sucrose, as did AcChoR-rich membranes from adult fish; the other equilibrated at 36.8% sucrose. AcChoR purified from these light membrane fractions gave the same subunit profile as adult AcChoR (after polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate) but was more susceptible to heat inactivation and focused at an isoelectric point more alkaline by 0.1 pH unit. Treatment of adult AcChoR with Escherichia coli alkaline phosphatase decreased its thermal stability and shifted its isoelectric point towards alkaline pH. However, identical treatment did not affect AcChoR purified from neonatal light membrane fractions. The gamma and delta chains of AcChoR can be phosphorylated in vitro by endogenous protein kinases, which copurify with AcChoR-rich membranes. Treatment of AcChoR from neonatal light membranes by E. coli alkaline phosphatase enhanced the phosphorylation of the gamma and delta chains but did so to a smaller extent than in the case of adult AcChoR. In conclusion, adult AcChoR appears to be more phosphorylated than AcChoR from neonatal light membranes, indicating that its state of phosphorylation changes during development.  相似文献   

18.
The competitive nicotinic antagonist d-[3H]tubocurarine was used as a photoaffinity label for the acetylcholine binding sites on the nicotinic acetylcholine receptor (AcChoR) from Torpedo. Irradiation with 254-nm UV light of AcChoR-rich membranes equilibrated with d-[3H]tubocurarine resulted in covalent incorporation into the alpha, gamma, and delta subunits that could be blocked by alpha-bungarotoxin or by carbamoylcholine. The concentrations of d-[3H]tubocurarine required for half-maximal specific incorporation into the gamma and delta subunits were 40 nM and 0.9 microM, respectively, consistent with the dissociation constants for the high- and low-affinity binding sites (Kd = 35 nM and 1.2 microM). The concentration dependence of incorporation into alpha subunit was biphasic and consistent with labeling of both the high- and low-affinity d-tubocurarine binding sites. The specific photolabeling of each AcChoR subunit was inhibited by carbamoylcholine with appropriate dose dependence. These results establish that, in addition to the alpha subunits, the gamma and delta subunits also contribute directly to the acetylcholine binding sites and that each binding site is at an interface of subunits. Because the AcChoR subunits are homologous and are arranged pseudosymmetrically about a central axis, the photolabeling results are inconsistent with an arrangement of subunits in the AcChoR rosette of alpha beta alpha gamma delta and indicate that either the gamma or delta subunit resides between the alpha subunits.  相似文献   

19.
Recent studies suggest that phosphorylation may regulate the rate of desensitization of nicotinic acetylcholine (AcCho) receptors (AcChoR) in vertebrate muscle and Torpedo. It is not known if phosphorylation is involved in regulation of the neuronal AcChoR, however. In this study we examine the possibility that protein kinase C might regulate nicotinic AcChoR function in neurons. Several activators of protein kinase C (1-oleoyl-2-acetylglycerol, phorbol 12,13-diacetate, and phorbol 12,13-dibutyrate) were tested for their ability to modulate AcChoR function in embryonic chicken sympathetic ganglion neurons. Neurons were voltage-clamped at the resting potential, and the response to AcCho was tested before and after treatment with activators of protein kinase C. We find that all of these agents enhance the rate of decay of AcCho-induced current without affecting peak current amplitude or cellular input resistance. The drugs were ineffective if applied concurrently with AcCho: significant effects could be detected after 60 sec of pretreatment. A phorbol that does not increase protein kinase C activity (4 beta-phorbol) was ineffective in enhancing the decay of AcCho-induced current. Thus, the effects of these agents on AcChoR function are likely to be mediated by their interaction with C kinase, rather than by direct interaction with the AcChoR channel. Our data suggest that kinase C may regulate agonist-induced desensitization of the neuronal AcChoR channel.  相似文献   

20.
Acetylcholine receptor (AcChoR) subunit mRNAs transcribed from mouse BC3H-1 cDNAs were injected into Xenopus oocytes and the expressed AcChoR channels were examined by single channel recording. Injection of alpha-, beta-, gamma-, and delta-subunit mRNAs produced two predominant channel classes with conductances of approximately 50 and approximately 12 pS, while infrequent openings of approximately 25-pS channels were also observed. Injection of alpha-, beta-, and gamma-subunit mRNAs produced a single class of approximately 12-pS AcChoR channels, which resembled the smallest conductance channels present in alpha beta gamma omega-injected oocytes. Assembly of delta-less channels may thus explain the lowest conductance AcChoR channels in alpha beta gamma delta-injected oocytes and might also account for similar channels that have been observed in vertebrate skeletal muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号