首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Sinensetin is a polymethoxylated flavone with anti-inflammatory and anti-oxidative activities. This work aimed to explore the function and mechanism of sinensetin in oxygen and glucose deprivation/reperfusion (OGD/R)-induced neurotoxicity. The overlapping target genes of cerebral stroke and sinensetin were determined according to GeneCards and ParmMapper tools and were subjected to Gene Ontology (GO) annotations and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Human cerebral microvascular endothelial cells (HCMECs) were stimulated with OGD/R. Neurotoxicity was investigated by Cell Counting Kit-8, lactate dehydrogenase (LDH) release, reactive oxygen species (ROS) level, qRT-PCR, and TUNEL analysis. The proteins (p38, JNK, and ERK) in mitogen-activated protein kinase (MAPK) signaling were measured using Western blotting. Total of 50 overlapping target genes of cerebral stroke and sinensetin were predicted. Pathway analysis showed they might be involved in the MAPK pathway. Sinensetin attenuated OGD/R-induced neurotoxicity by mitigating viability reduction, LDH release, ROS generation, inflammatory response, and apoptosis in HCMECs. Sinensetin weakened OGD/R-induced activation of the MAPK pathway via decreasing the phosphorylation of p38, JNK, and ERK. The pathway inhibitors mitigated the activation of the MAPK signaling, and sinensetin exacerbated this effect. The inhibitors reversed OGD/R-induced neurotoxicity in HCMECs, and sinensetin contributed to this role. Overall, sinensetin prevents OGD/R-induced neurotoxicity through decreasing the activation of MAPK pathway.  相似文献   

3.
The nod-like receptor protein 3 (NLRP3) inflammasome has a critical role in cerebral ischemic injury, and autophagy is related to activation of the inflammasome under oxidative stress conditions. However, it is unclear how NLRP3 inflammasome activation is regulated. Glycogen synthase kinase 3β (GSK-3β) emerged as an important risk factor for brain ischemia reperfusion injury, and GSK-3β inhibits autophagic activity in many diseases. In this study, we examined whether NLRP3 inflammasome-derived inflammation could be ameliorated by GSK-3β inhibition in a cerebral ischemia reperfusion injury model and assessed whether autophagy is involved in this process. To establish ischemic reperfusion injury, we used a middle cerebral artery occlusion-reperfusion (MCAO/R) model in rats. A chemical inhibitor (SB216763) and GSK-3β siRNA were used to suppress GSK-3β activation and GSK-3β expression in vivo. The results demonstrated that SB216763 and GSK-3β siRNA improved neurological scores, reduced cerebral infarct volume, and decreased the levels of NLRP3 inflammasome, cleaved-caspase-1, IL-1β, and IL-18. Inhibiting GSK-3β activation enhanced autophagic activity (ratio of LC3B-II/LC3B-I and p62/SQSTM1), whereas treating with an autophagy inhibitor (3-MA) abrogated the inhibitory effect on NLRP3 inflammasome activation after GSK-3β inhibition. These results suggest that inhibiting GSK-3β downregulates NLRP3 inflammasome expression by increasing autophagic activity in cerebral ischemia reperfusion injury. GSK-3β might be an attractive specific target and that it functions by regulating the NLRP3 inflammasome.  相似文献   

4.
(?)-Epigallocatechin-3-gallate (EGCG), the principal constituent of green tea, protects neurons from toxic insults by suppressing the microglial secretion of neurotoxic inflammatory mediators. Voltage-gated proton channels are expressed in microglia, and are required for NADPH oxidase-dependent reactive oxygen species generation. Brain damage after ischemic stroke is dependent on proton channel activity. Accordingly, we examined whether EGCG could inhibit proton channel function in the murine microglial BV2 cells. EGCG potently inhibited proton currents with an IC50 of 3.7 μM. Other tea catechins, (?)-epigallocatechin, (?)-epicatechin and (?)-epicatechin-3-gallate, were far less potent than EGCG. EGCG did not change the kinetics of proton currents such as the activation and the deactivation time constants, the reversal potential and the activation voltage, suggesting that the gating process of proton channels were not altered by EGCG. EGCG is known to disturb lipid rafts by sequestering cholesterol. However, neither extraction of cholesterol with methyl-β-cyclodextrin or cholesterol supplementation could reverse the EGCG inhibition of proton currents. In addition, the EGCG effect was preserved in the presence of the cytoskeletal stabilizers paclitaxel and phalloidin, phosphatase inhibitors, the antioxidant Trolox, superoxide dismutase or catalase. The proton channel inhibition can be a substantial mechanism for EGCG to suppress microglial activation and subsequent neurotoxic events.  相似文献   

5.
Accumulating lines of evidence suggest that retinoic acid receptor agonists such as Am80 exerts anti-inflammatory actions in the central nervous system, although detailed mechanisms of the action remain largely unknown. Our previous findings suggest that Am80 provides therapeutic effect on intracerebral hemorrhage in mice via suppression of expression of chemokine (C-X-C motif) ligand 2 (CXCL2). Here we investigated the mechanisms of inhibitory action of Am80 on expression of CXCL2 and other pro-inflammatory factors in microglial BV-2 cells. Pretreatment with Am80 markedly suppressed lipopolysaccharide (LPS)-induced expression of CXCL2 mRNA and release of CXCL2 protein. Am80 had no effect on LPS-induced activation of p38 mitogen-activated protein kinase and extracellular signal-regulated kinase. On the other hand, Am80 prevented LPS-induced nuclear translocation of p65 subunit of NF-κB complex. In addition, total expression levels of p65 and IκBα proteins, as well as of mRNAs encoding p65 and IκBα, were lowered by Am80. Dependence of CXCL2 expression on NF-κB was confirmed by the effect of an NF-κB inhibitor caffeic acid phenethyl ester that abolished LPS-induced CXCL2 expression. Caffeic acid phenethyl ester also abolished LPS-induced expression of inducible nitric oxide synthase, interleukin-1β and tumor necrosis factor α, which may be relevant to the inhibitory effect of Am80 on expression of these pro-inflammatory factors. We additionally found that Am80 attenuated LPS-induced up-regulation of CD14, a co-receptor for Toll-like receptor 4 (TLR4). These results suggest that inhibitory effect on TLR4 signaling mediated by NF-κB pathway underlies the anti-inflammatory action of retinoic acid receptor agonists in microglia.  相似文献   

6.
7.
AIM: To observe the neuroprotective effect of stearic acid (SA) (1 -30μmol/L) on rat hippocampal cells insulted by oxygen-glucose depriveation (OGD), H2O2 and glutamate in vitro. METHODS: Primarily cultured fetus rat hippocampal cells were partitioned into three groups at random as follows: control group, injury group, and pretreatment group. Injury models of hippocampal cells were induced by oxygen-glucose deprivation, H2O2 and glutamate.  相似文献   

8.
Endothelial dysfunction is a key event in the progression of atherosclerosis with diabetes. Increasing cell apoptosis may lead to endothelial dysfunction. Apigenin and naringenin are two kinds of widely used flavones. In the present study, we investigated whether and how apigenin and naringenin reduced endothelial dysfunction induced by high glucose in endothelial cells. We showed that apigenin and naringenin protected against endothelial dysfunction via inhibiting phosphorylation of protein kinase C βII (PKCβII) expression and downstream reactive oxygen species (ROS) production in endothelial cells exposed to high glucose. Furthermore, we demonstrated that apigenin and naringenin reduced high glucose-increased apoptosis, Bax expression, caspase-3 activity and phosphorylation of NF-κB in endothelial cells. Moreover, apigenin and naringenin effectively restored high glucose-reduced Bcl-2 expression and Akt phosphorylation. Importantly, apigenin and naringenin significantly increased NO production in endothelial cells subjected to high glucose challenge. Consistently, high glucose stimulation impaired acetylcholine (ACh)-mediated vasodilation in the rat aorta, apigenin and naringenin treatment restored the impaired endothelium-dependent vasodilation via dramatically increasing eNOS activity and nitric oxide (NO) level. Taken together, our results manifest that apigenin and naringenin can ameliorate endothelial dysfunction via regulating ROS/caspase-3 and NO pathway.  相似文献   

9.
10.
11.
Emerging evidence suggests that the transforming growth factor (TGF)-β1-induced epithelial–mesenchymal transition (EMT) of alveolar epithelial cells (AEC) may contribute to airway remodeling in severe asthma and fibrotic lung diseases. Studies have shown that extracts from propolis protect chemical-induced cardiac and liver fibrosis in animals. This study assesses the inhibitory effect of propolis on TGF-β1-induced EMT in serum-deprived A549 cells (human AECs). Experimental results show progressive cell morphological changes, decreased E-cadherin, increased N-cadherin production, intracellular F-actin rearrangement, increased reactive oxygen species (ROS) production, and increased cell motility with increasing TGF-β1 concentration. A549 cells pretreated with propolis and then treated with TGF-β1 for 24 h regained epithelial cell morphology, decreased the production of N-cadherin and ROS, and had reduced motility. Propolis prevents the effects of TGF-β1-induced Smad2 and AKT activation pathways and Snail expression. Moreover, propolis pretreatment may prevent the TGF-β1-induced down-regulation of nuclear hormone receptors and peroxisome proliferator-activated receptor gamma (PPARγ) protein in A549 cells, whose effect was blocked by adding PPARγ antagonist, GW9662. Two active components of propolis, caffeic acid phenethyl ester (CAPE) and pinocembrin (PIN), only had partial effects on TGF-β1-induced EMT in A549 cells. The results of this study suggest that natural propolis extracts may prevent TGF-β1-induced EMT in immortalized type II AECs via multiple inhibitory pathways, which may be clinically applied in the prevention and/or treatment of EMT-related fibrotic diseases as well as airway remodeling in chronic asthma.  相似文献   

12.
All-trans retionic acid (ATRA) treatment confers disease remission in acute promyelocytic leukemia (APL) patients by inducing granulocytic differentiation, which is followed by cell apoptosis. Although glycogen synthase kinase (GSK)-3β is known to be required for spontaneous cell death in neutrophils, the requirement of GSK-3β activation for the apoptotic effects remains unknown. This question is addressed in the present study using a model of ATRA-induced granulocytic differentiation and apoptosis in APL HL60 cells. ATRA at a therapeutic concentration (1 μM) induced granulocytic differentiation, followed by apoptosis. ATRA treatment caused decreased Mcl-1, caspase-3 activation, and PARP cleavage following the inactivation of phosphatidylinositol 3-kinase/AKT and the activation of GSK-3β. Pharmacologically and genetically inhibiting GSK-3β effectively retarded ATRA-induced Mcl-1 degradation and apoptosis. Additional differentiation inducers, phorbol 12-myristate 13-acetate and dimethyl sulfoxide, also triggered GSK-3β-dependent apoptosis. Mechanistically, ATRA caused the generation of reactive oxygen species (ROS) through increased expression of NADPH oxidase subunits (p47phox and p67phox) to facilitate ATRA-induced GSK-3β activation and cell apoptosis. This study indicates that ROS initiate GSK-3β-dependent apoptosis in granulocyte-differentiated cells after long-term ATRA treatment.  相似文献   

13.
Little is known about whether trans-isoferulic acid (TIA) regulates the production of lipopolysaccharide (LPS)-induced proinflammatory mediators. Therefore, we examined the effect of TIA isolated from Clematis mandshurica on LPS-induced nitric oxide (NO) and prostaglandin E2 (PGE2) production in BV2 microglial cells. We found that TIA inhibited the production of LPS-induced NO and PGE2 without accompanying cytotoxicity in BV2 microglial cells. TIA also downregulated the expression levels of specific regulatory genes such as inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) by suppressing LPS-induced NF-κB activity via dephosphorylation of PI3K/Akt. In addition, we demonstrated that a specific NF-κB inhibitor PDTC and a selective PI3K/Akt inhibitor, LY294002 effectively attenuated the expression of LPS-stimulated iNOS and COX-2 mRNA, while LY294002 suppressed LPS-induced NF-κB activity, suggesting that TIA attenuates the expression of these proinflammatory genes by suppressing PI3K/Akt-mediated NF-κB activity. Our results showed that TIA suppressed NO and PGE2 production through the induction of nuclear factor erythroid 2-related factor 2 (Nrf2)-dependent heme oxygenase-1 (HO-1). Taken together, our data indicate that TIA suppresses the production of proinflammatory mediators such as NO and PGE2, as well as their regulatory genes, in LPS-stimulated BV2 microglial cells, by inhibiting PI3K/Akt-dependent NF-κB activity and enhancing Nrf2-mediated HO-1 expression.  相似文献   

14.
15.
OBJECTIVE To explore the protective andmodulatory effects of baicalein on neuroinflammation, oxidative stress and metabolic disorders in lipopolysaccharide(LPS)-activated BV-2 cells based on 1 HNMR metabolomics. METHODS The cell viability was detected by MTT assay and nitric oxide(NO) production was detected by using Griess reagent. The levels of proinflammatory cytokines such as interleukin-6(IL-6) and tumor necrosis factor-α(TNF-α) were assayed by using ELISA kits. Reactive oxygen species(ROS) was measured based on oxidation of DCFH-DA to the fluorescent product2, 7-dichlorodihydro-fluorescein(DCF). The expressionof cyclooxygenase-2(COX-2) and nuclear factor-b(NF-κB)/P65 was measured by immunofluorescence.1 H-NMR metabolomics was used to identify differential metabolites regulated by baicalein in BV-2 cells. RESULTS The results demonstrated that treatment with baicalein significantly inhibited the releases of inflammatory mediators such as NO, IL-6 and TNF-α in LPS-activated BV-2 cells. Furthermore, baicalein significantly reduced the release of ROS,and decreased COX-2 and NF-κB/P65 expression. Based on ~1H-NMR metabolomics analysis, the results showed that 12 differential metabolites were regulated by baicalein, implicated in alanine, aspartate and glutamate metabolism, glutathione metabolism, arginine and proline metabolism, D-gluconeogene and D-glutamate metabolism. CONCLUSION Our results indicated that baicalein has protective and modulatory effects on neuroinflammation and oxidative stress in LPS-activated BV-2 cells.These findings will provide new evidence for application of baicalein in preventing neurodegenerative diseases and aging cognitive dysfunction.  相似文献   

16.
17.
The NLRP3 inflammasome is an important mediator of inflammatory responses and its regulation is an active area of research. RalA is a Ras-like GTPase, which play pivotal roles in the biology of cells. So far, there have been very few studies on RalA regulating inflammatory responses. Bioinformatics analysis predicted that RalA might participate in the regulatory network of NLRP3 inflammasome, which has been confirmed in THP-1 macrophages. After virtual screening of compounds, it was found that levonidazole selected from our virtual small molecule compound library has the potential to bind to RalA. Of note, the interaction of RalA/levornidazole was verified by Surface Plasmon Resonance-Biacore T200, LC/MS analysis and Western blotting analysis. Molecular dynamics simulations revealed that the conformational changes of RalA might be regulated by levornidazole. Additionally, IL-1β/IL-18 secretion from ATP + LPS stimulated THP-1-derived macrophages was RalA-dependently suppressed by levornidazole, suggesting that RalA might have an inhibitory effect on NLRP3 inflammasome activation. The results of co-immunoprecipitation and RalA depletion experiments showed that levornidazole could induce RalA to block the assembly of NLRP3/ASC/pro-caspase-1 complex, thereby reducing the levels of cleaved-caspase-1 and IL-1β/IL-18 secretion. Our study has suggested an anti-inflammatory function of RalA and identified its targeting chemical compound. Overall, this study clarifies a novel pharmacological mechanism by which RalA/levornidazole inhibits NLRP3 inflammasome activation and IL-1β/IL-18 secretion.  相似文献   

18.
Here, we tried to elucidate the possible role of autophagy against H2O2 and Amyloid beta (Aβ) induced neurotoxicity using retinoic acid differentiated SH-SY5Y cells. We found that H2O2 disrupted neurite outgrowth concomitant with production of Aβ. Furthermore, we showed that H2O2 could increase the apoptotic factors such as Bax/Bcl-2 ratio, caspase-3 level, and PARP activity in a time course manner. These findings were confirmed by acridine orange/ethidium bromide and Hoechst staining. In addition, we observed that H2O2 led to conversion of LC3 protein from LC3I to LC3II and an increase in autophagy flux. Autophagy factors including LC3B, Atg7, and Atg12 increased and reached their highest level after 2 h of insulting and then dropped to a lower level. Our results showed that autophagy could internalize and degrade intra- and extracellular Aβ after 3 h treatment with H2O2. However, the remaining amount of Aβ accelerated morphological atrophy and, as a result, increased neuronal death (apoptosis). Inhibition of autophagy influx, using 3-methyl-adenine, increased intra- and extracellular levels of Aβ, providing more proof for a protective role of autophagy against oxidative stress. Further studies can shed light on the important role of autophagy by finding new pathways involved in Aβ degeneration.  相似文献   

19.
Baicalein (5,6,7-trihydroxyflavone), isolated from the root of traditional Chinese herb Scutellaria baicalensis Georgi, has anti-inflammatory and anti-oxidative activities. This study explored the protective and modulatory mechanisms of baicalein on neuroinflammation, oxidative stress and metabolic abnormality in lipopolysaccharide (LPS)-activated BV-2 cells. Our results demonstrated that treatment with baicalein remarkably restrained the production of pro-inflammatory factors including nitric oxide (NO), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in LPS-activated BV-2 cells. Moreover, baicalein significantly inhibited reactive oxygen species (ROS) production, decreased cyclooxygenase-2 (COX-2) and nuclear factor-b (NF-κB)/p65 expression. 1H NMR metabolomics analysis revealed that 12 differential metabolites were regulated by baicalein, implicated in alanine, aspartate and glutamate metabolism, glutathione metabolism, arginine and proline metabolism, D-glutamine and D-glutamate metabolism. In conclusion, these results indicated that baicalein has protective and modulatory effects on neuroinflammation and oxidative stress in LPS-activated BV-2 cells.  相似文献   

20.

Aim:

To investigate whether NO over-production in rat mesangial cells cultured in high glucose (HG) is related to activation of the TGF-β1/PI3K/Akt pathway.

Methods:

Rat mesangial cells line (HBZY-1) was exposed to HG (24.44 mmol/L) or H2O2 (10 μmol/L) for 16 h. NO release was quantified using the Griess assay. The TGF-β1 level was measured using ELISA. The protein expression of p-Akt, t-Akt, Bim, and iNOS was examined by Western blotting. The mRNA levels of TGF-β1 and Bim were measured using RT-PCR. The cell proliferation rate was estimated using a BrdU incorporation assay.

Results:

Treatment of the cells with HG, H2O2, or TGF-β1 (5 ng/mL) significantly increased the NO level that was substantially inhibited by co-treatment with the NADPH oxidase inhibitor diphenylene iodonium (DPI), TGF-β1 inhibitor SB431542, or PI3K inhibitor LY294002. Both HG and H2O2 significantly increased the protein and mRNA levels of TGF-β1 in the cells, and HG-induced increases of TGF-β1 protein and mRNA were blocked by co-treatment with DPI. Furthermore, the treatment with HG or H2O2 significantly increased the expression of phosphorylated Akt and iNOS and cell proliferation rate, which was blocked by co-treatment with DPI, SB431542, or LY294002. Moreover, the treatment with HG or H2O2 significantly inhibited Bim protein and mRNA expression, which was reversed by co-treatment with DPI, SB431542, or LY294002.

Conclusion:

The results demonstrate that high glucose causes oxidative stress and NO over-production in rat mesangial cells in vitro via decreasing Bim and increasing iNOS, which are at least partially mediated by the TGF-β1/PI3K/Akt pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号