首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Single channel recordings of Ca2+-activated K+ currents were made from dissociated cockroach neurons by means of the gigaohm-seal patch-clamp technique. Bursts of single channel openings were composed of two distinct classes: the 'long-open burst' contained groups of long, rectangular, pulse-like openings with durations of 3.5 to 1.2 ms (depending on membrane potential), whereas the 'flickering burst' consisted of clusters of brief openings with an average duration of 0.4 ms (voltage-independent) separated by short closings with a duration of about 1.0 ms. The long-open burst and the flickering burst appeared to reflect distinct states of a single Ca2+-activated K+ channel because direct transitions between these two types of burst were often detected. We present a kinetic scheme for the gating activation pathway of a neuronal Ca2+-activated K+ channel, based on these findings.  相似文献   

2.
Small conductance Ca2+ -activated K+ (SK) channels play a prominent role in modulating the spontaneous activity of dopamine (DA) neurons as well as their response to synaptically-released glutamate. SK channel gating is dependent on Ca2+ binding to constitutively bound calmodulin, which itself is subject to endogenous and exogenous modulation. In the present study, patch-clamp recording techniques were used to examine the relationship between the apparent Ca2+ affinity of cloned SK3 channels expressed in cultured human embryonic kidney 293 cells and the excitability of DA neurons in slices from rat substantia nigra using the positive and negative SK channel modulators, 6,7-dichloro-1 H -indole-2,3-dione-3-oxime and R- N -(benzimidazol-2-yl)-1,2,3,4-tetrohydro-1-naphtylamine. Increasing the apparent Ca2+ affinity of SK channels decreased the responsiveness of DA neurons to depolarizing current pulses, enhanced spike frequency adaptation and slowed spontaneous firing, effects attributable to an increase in the amplitude and duration of an apamin-sensitive afterhyperpolarization. In contrast, decreasing the apparent Ca2+ affinity of SK channels enhanced DA neuronal excitability and changed the firing pattern from a pacemaker to an irregular or bursting discharge. Both the reduction in apparent Ca2+ affinity and the bursting associated with negative SK channel modulation were gradually surmounted by co-application of the positive SK channel modulator. These results underscore the importance of SK channels in 'tuning' the excitability of DA neurons and demonstrate that gating modulation, in a manner analogous to physiological regulation of SK channels in vivo , represents a means of altering the response of DA neurons to membrane depolarization.  相似文献   

3.
4.
The envelope glycoprotein gp120 of the human immunodeficiency virus HIV-1 has been proposed to cause neuron death in developing murine hippocampal cultures and rat retinal ganglion cells. In the present study, cultured human embryonic cerebral and spinal neurons from 8- to 10-week-old embryos were used to study the neurotoxic effect of gp120 and gp160. Electrophysiological properties as well as N -methyl- d -aspartate (NMDA)-induced currents were recorded from neurons maintained in culture for 10–30 days. Neither voltage-activated sodium or calcium currents nor NMDA-induced currents were affected by exposure of neurons to 250 pM gp120 or gp160. In contrast, when neurons were subjected to photometric measurements using the calcium dye indo-1 to monitor the intracellular free Ca2+ concentration ([Ca2+]i), gp120 and gp160 (20–250 pM) potentiated the large rises in [Ca2+]i induced by 50 μM NMDA. The potentiation of NMDA-induced Ca2+ responses required the presence of Ca2+ in the medium, and was abolished by the NMDA antagonist d -2-amino-5-phosphonovalerate (AP5) and the voltage-gated Ca2+ channel inhibitor nifedipine. Moreover, exposure of a subpopulation of spinal neurons (25% of the cells tested) to 20–250 pM gp120 or gp160 resulted in an increase in [Ca2+]i that followed three patterns: fluctuations not affected by AP5, a single peak, and the progressive and irreversible rise of [Ca2+]i. The neurotoxicity of picomolar doses of gp120 and gp160 cultures was estimated by immuno-fluorescence and colorimetric assay. Treatment of cultures with AP5 or nifedipine reduced gp120-induced toxicity by 70 and 100% respectively.  相似文献   

5.
The development of oligodendrocytes from their precursor cells through different developmental stages can be studied in vitro. These stages can be distinguished by specific monoclonal antibodies and by a characteristic K+ channel profile. In this study we demonstrate that the occurrence of Ca2+ currents also undergoes marked changes during the development of mouse oligodendrocytes. Immature precursor cells which can develop into astrocytes or oligodendrocytes expressed two different types of voltage-activated Ca2+ channels. The expression of Ca2+ channels in precursor cells was strongly correlated with the expression of Na+ channels. When cells started to express the O1 antigen and were committed to the oligodendrocyte lineage, Ca2+ and Na+ currents could no longer be detected. Large Ca2+ currents were, however, recorded later in the development of the oligodendrocytes, correlated with the expression of the O10 antigen. The Ca2+ channels were classified as high and low voltage-activated Ca2+ channels according to their range of activation, and are further described by their kinetic and pharmacological properties.  相似文献   

6.
N-type and P/Q-type Ca2+ channels support glutamate release at central synapses. To determine whether the glutamate release mediated by these channels exhibits distinct properties, we have isolated each release component in cerebrocortical nerve terminals from wild-type mice by specifically blocking N-type Ca2+ channels with ω-conotoxin-GVIA and P/Q-type Ca2+ channels with ω-agatoxin-IVA. In addition, we have determined the release properties at terminals from mice lacking the α1B subunit of N-type channels (Cav 2.2) to test the possibility that P/Q-type channels can compensate for the loss of N-type Ca2+ channels. We recently demonstrated that, while evoked glutamate release depends on P/Q- and N-type channels in wild-type nerve terminals, only P/Q-type channels participate in these knockout mice. Moreover, in nerve terminals expressing solely P/Q-type channels, metabotropic glutamate receptor 7 (mGluR7) fails to inhibit the evoked Ca2+ influx and glutamate release. Here, we show that the failure of mGluR7 to modulate evoked glutamate release is not due to a lack of receptors, as nerve terminals from mice lacking N-type Ca2+ channels express mGluR7. Indeed, we show that other receptor responses, such as the inhibition of forskolin-induced release, are preserved in these knockout mice. N-type channels are more loosely coupled to release than P/Q-type channels in nerve terminals from wild-type mice, as reflected by the tighter coupling of release in knockout nerve terminals. We conclude that the glutamate release supported by N- and P/Q-type channels exhibits distinct properties, and that P/Q-type channels cannot fully compensate for the loss of N-type channels.  相似文献   

7.
Intercellular communication between γ-aminobutyric acid (GABA)ergic suprachiasmatic nucleus (SCN) neurons facilitates light-induced phase changes and synchronization of individual neural oscillators within the SCN network. We used ratiometric Ca2+ imaging techniques to record changes in the intracellular calcium concentration ([Ca2+]i) to study the role of GABA in interneuronal communication and the response of the SCN neuronal network to optic nerve stimulations that mimic entraining light signals. Stimulation of the retinohypothalamic tract (RHT) evoked divergent Ca2+ responses in neurons that varied regionally within the SCN with a pattern that correlated with those evoked by pharmacological GABA applications. GABAA and GABAB receptor agonists and antagonists were used to evaluate components of the GABA-induced changes in [Ca2+]i. Application of the GABAA receptor antagonist gabazine induced changes in baseline [Ca2+]i in a direction opposite to that evoked by GABA, and similarly altered the RHT stimulation-induced Ca2+ response. GABA application induced Ca2+ responses varied in time and region within the SCN network. The NKCC1 cotransporter blocker, bumetanide, and L-type calcium channel blocker, nimodipine, attenuated the GABA-induced rise of [Ca2+]i. These results suggest that physiological GABA induces opposing effects on [Ca2+]i based on the chloride equilibrium potential, and may play an important role in neuronal Ca2+ balance, synchronization and modulation of light input signaling in the SCN network.  相似文献   

8.
We studied, in rat sensory neurons, the modulation of high voltage-activated Ca2+ currents (ICa mediated by the pertussis toxin-sensitive activation of muscarinic receptors, which were found to be of subtypes M2, or M4. Muscarine reversibly blocked somatic Ca2+ spikes but strong predepolarizations only partially relieved the inhibited Ca2+ current. On the other hand, the putative coupling messenger could not rapidly diffuse towards channels whose activity was recorded from a macro-patch. The perforated patch technique virtually prevented the response rundown present during whole-cell experiments. Both ω-conotoxin GVIA (ω-CgTx)-sensitive channels and ω-CgTx- and dihydropyridine-resistant channels are coupled to the muscarinic receptor, but not the L-channel. When measured in the same neuron, dose - response relationships for the first and subsequent agonist applications differed; maximal inhibition, the reciprocal of half-maximal concentration and the Hill coefficient were always highest in the first trial. Muscarine and oxotremorine exhibited monotone dose - response curves, but oxotremorine-M showed non-linear relationships which became monotonic when cells were intracellularly perfused with inhibitors of protein kinase A (PKA) and C (PKC), suggesting that either PKA or receptor-induced PKC could phosphorylate and thus inactivate G-proteins or other unknown proteins involved in inhibitory muscarinic actions on ICa. In summary, these data provide a preliminary pharmacological characterization of the muscarinic inhibition of the Ca2+ channels in sensory neurons, with implications about agonist specificity and the interplay between signalling pathways.  相似文献   

9.
Some of the marked biochemical and electrophysiological changes provoked by section of the axon in mature neurons suggest that the intracellular calcium concentration ([Ca2+]i) may be increased. We have measured the [Ca2+]i using the fluorescent indicator Indo-1 microinjected into rat superior cervical ganglion neurons. No differences in resting [Ca2+]i levels were found between control neurons and cells which had been axotomized 7–10 days before. However, the rise in [Ca2+]i evoked by orthodromic or antidromic stimulation and the recovery after the stimulating train were considerably slower in axotomized neurons than in control cells. We also found that the number of calbindin-D28k-immunopositive cells in the ganglion increases after axotomy, which could be related to the observed differences in calcium homeostasis.  相似文献   

10.
11.
The distribution of voltage-sensitive elevations of the level of Ca2+ in untreated SH-SY5Y cells and cells that had been induced to differentiate with staurosporine was investigated by monitoring fura-2 fluorescence in cell suspensions, and by using microfluorometry and quantitative fluorescence imaging on cell bodies and on cellular processes. Cell bodies of both types of cells displayed small Ca2+ elevations, which were composed of transient and sustained components. Elevations were partially sensitive to the L- and N-channel blockers nifedipine (1 μM) and ω-conotoxin GVIA (100 nM) respectively. Up to ten times higher Ca2+ elevations were observed in varicosities of treated cells than in cell bodies of treated and untreated cells. These elevations were insensitive to compounds known to release Ca2+ from intracellular stores. Elevations of Ca2+ were sustained, and they were insensitive to 5 pM nifedipine, 100 nM ω-agatoxin IVA and 100 nM ω-conotoxin GVIA, and partially sensitive to 2 pM ω-conotoxin GVIA, indicating predominance of non-L-type, non-N-type, non-P-type channel activity. The intracellular localization of neuropeptide Y, a marker of differentiation in these cells, was also investigated by fluorescence immunocytochemistry. Varicosities of treated cells displayed marked fluorescence when viewed in a confocal microscope. These findings show that the varicosities of staurosporine-treated cells exhibit some of the functional properties of nerve terminals. The varicosities resemble boutons en passant nerve endings and they seem to express Ca2+ channels different from those in the cell body.  相似文献   

12.
Replacement of Ca2+ with Ba2+ in HEPES-buffered saline stimulated [3H]noradrenalin release in the human neuroblastoma clone SH-SY5Y by up to 20% of the cell content in the absence of other secretory stimuli. The Ba2+-evoked release was inhibited by 85% by 3 μM tetrodotoxin and 95% by 5 μM nifedipine. Ba2+ also increased the potency of K+-evoked release of [3H]noradrenalin, as maximal release was observed with 60 mM K+ compared with the 100 mM K+ necessary to achieve maximal release in the presence of Ca2+. In contrast, replacing Ca2+ with Ba2+ had little effect on carbachol- and bradykinin-evoked release of [3H]noradrenalin. No evidence was obtained from studies on changes in [Ca2+]i (in response to 100 pM carbachol) using fura-2 that Ba2+ could enter intracellular stores in SH-SY5Y cells. Whole-cell patch-clamp studies showed that Ba2+ depolarizes SH-SY5Y cells as well as enhancing inward Ca2+ channel currents and shifting their voltage dependence to more negative values. These results are discussed in terms of the hypothesis that Ba2+ blocks K+ channels, leading to depolarization followed by opening of voltage-sensitive Na+ channels. This in turn opens voltage-sensitive L-type Ca2+ channels, which are coupled to the release of [3H]noradrenalin in SH-SY5Y cells.  相似文献   

13.
Abstract: Piracetam-like nootropics (or cognitive enhancers) have been used for the treatment of various forms of dementia, including Alzheimer's disease. The underlying mechanisms of their actions, however, are largely unknown. Our recent studies have demonstrated that nefiracetam, a nootropic agent, can markedly enhance activities of neuronal L-and N-type (α1B) Ca2+ channels as well as those of presynaptic nicotinic acetylcholine (ACh) receptors, thereby increasing neurotransmitter release. Aniracetam exerted a slight facilitatory effect on Ca2+ channels, but no effect on nicotinic ACh receptors. Piracetam and oxiracetam have no such actions on Ca2+ channels and nicotinic ACh receptors. It is suggested that inhibitory G-proteins (Go/Gi) and protein kinase A (PKA) mediate the nefiracetam action on Ca2+ channels, whereas protein kinase C (PKC) mediates the drug action on nicotinic ACh receptors. In the hippocampus of the rodent, nefiracetam induces a long-lasting (>4 h) facilitation of synaptic transmission. The 'LTP-like' facilitation appears to result from activation of presynaptic nicotinic ACh receptors (and Ca2+ channels as well) by nefiracetam. In conclusion, nefiracetam is distinguished from other nootropic agents for its preferential actions on both presynaptic Ca2+ channels and nicotinic ACh receptors, and could therefore be of great therapeutic importance to the neurotransmission failure that contributes to the symptoms of Alzheimer's disease and associated disorders.  相似文献   

14.
Nitric oxide and arachidonic acid act as inter- and intracellular messengers in the central nervous system. It is well known that the NMDA-mediated generation of nitric oxide and arachidonic acid is dependent on extracellular Ca2+. However, the role of voltage-dependent calcium channels (VDCCs) in this regard is poorly understood. We report here that NMDA-mediated nitric oxide production in striatal neuron cultures is blocked (80%) by the L-type VDCC antagonist nifedipine, but not by ω-conotoxin or ω-agatoxin IVA, antagonists of the N-and P-type VDCCs respectively. By contrast, none of the VDCC antagonists inhibited the NMDA-mediated release of arachidonic acid. These data indicate that permeation through different Ca2+ channels is responsible for the production of arachidonic acid and nitric oxide in striatal neurons.  相似文献   

15.
Introduction – Beneficial clinical effects of 4-aminopyridine (4-AP) in multiple sclerosis (MS) have been reported. The use of 4-AP in MS is based upon its ability to facilitate conduction in axons blocked by demyelination. This improvement is due to blocking of potassium (K+) channels in these fibres. Because K+ channels also play an important role in immune mechanisms successful treatment with K+ channel blockers in neuroimmunological diseases may have several causes. Therefore it seems important to study effects of K+ channel blockers in animal models of autoimmune disease. Material & methods – We studied the effects of 4-AP and quinidine on actively induced acute experimental allergic encephalomyelitis (EAE) in Lewis rats. Results – There was no effect on the incidence of the disease. The severity of the disease was also unchanged although the disease duration was slightly diminished in the treated groups. Immunohistological comparison between the animals of different groups showed no differences. Conclusion – We conclude that 4-AP and quinidine are not capable of significantly changing the clinical course of EAE.  相似文献   

16.
An essential function of myelinating oligodendroglia in the mammalian central nervous system is the regulation of extracellular potassium levels by means of a prominent inwardly rectifying K+ current. Cardiac and neuronal K+ inward rectifiers are either activated by hyperpolarizing voltages or controlled by neurotransmitters through the action of receptor-activated G proteins. Neuromodulation of inward rectifiers has not previously been considered as a way to regulate oligodendrocyte function. Here we report the expression of serotonin, somatostatin and muscarinic acetylcholine G protein-coupled receptors in rat brain oligodendrocytes. Activation of these receptors leads to pertussis toxin-sensitive inhibition of inwardly rectifying K+ channels within <1 s. By contrast, in the heart and in neurons, similar pathways activate an inwardly rectifying conductance. Thus, transmitter-mediated blockade of inward rectifiers appears to be an oligodendrocyte-specific variation of a common motif for convergent signalling pathways. In vivo , expression of this mechanism, which may be dependent on neuron-glia signalling, may have a regulatory role in K+ homeostasis during neuron activity in the central nervous system.  相似文献   

17.
Embryonic spinal neurons maintained in organotypic slice culture are known to mimic certain maturation-dependent signalling changes. With such a model we investigated, in embryonic mouse spinal segments, the age-dependent spatio-temporal control of intracellular Ca2+ signalling generated by neuronal populations in ventral circuits and its relation with electrical activity. We used Ca2+ imaging to monitor areas located within the ventral spinal horn at 1 and 2 weeks of in vitro growth. Primitive patterns of spontaneous neuronal Ca2+ transients (detected at 1 week) were typically synchronous. Remarkably, such transients originated from widespread propagating waves that became organized into large-scale rhythmic bursts. These activities were associated with the generation of synaptically mediated inward currents under whole-cell patch-clamp. Such patterns disappeared during longer culture of spinal segments: at 2 weeks in culture, only a subset of ventral neurons displayed spontaneous, asynchronous and repetitive Ca2+ oscillations dissociated from background synaptic activity. We observed that the emergence of oscillations was a restricted phenomenon arising together with the transformation of ventral network electrophysiological bursting into asynchronous synaptic discharges. This change was accompanied by the appearance of discrete calbindin immunoreactivity against an unchanged background of calretinin-positive cells. It is attractive to assume that periodic oscillations of Ca2+ confer a summative ability to these cells to shape the plasticity of local circuits through different changes (phasic or tonic) in intracellular Ca2+.  相似文献   

18.
Wallerian degeneration of severed axons is delayed in C57BL/Wlds mice. We have examined this further in cultured sympathetic, sensory and CNS neurons using superior cervical ganglion (SCG), dorsal root ganglion (DRG) and cerebellar granule neurons respectively from neonatal mice. We found that the time taken for the neurites to degenerate depends upon the length of time in culture before cutting, reaching a maximum by -7 days when C57BL/WldS neurites survive for >6 days after axotomy. The onset of degeneration could also be extended in SCG and DRG neurites from wild type C57BL/6J mice. After 7 days in culture these neurites normally degenerate within -12–16 h of axotomy, but in the presence of raised K+ (50 mM) degeneration often did not begin until a further 2 days had lapsed. Under similar conditions degeneration of neurites from C57BL/WldS mice was also found to be further delayed, extending survival from -5–6 days to >7 days. The L-type Ca2+ channel blockers nifedipine (5 μM) and verapamil (10 μM) both blocked the effect of raised [K+], although not completely. Thapsigargin, which raises cytoplasmic [Ca2+], and the cAMP analogue 8-(4-chlorophenylthio)cAMP were also able to delay degeneration, but only when added 24 h prior to axotomy. These results show that it is possible to influence the course of Wallerian degeneration and that increases in levels of cytoplasmic Ca2+ can protect neurites from its onset.  相似文献   

19.
Intracellular recording from CA1 neurons of the rat hippocampal slice preparation was used to examine the possibility of functional interactions between 5-hydroxytryptamine (5-HT) and thyrotropin releasing hormone (TRH), which act as cotransmitters in other areas of the central nervous system. 5-HT (30 μM) elicited complex effects consisting of biphasic changes in membrane potential and a strong depression of the afterhyperpolarization (AHP) following a spike burst. TRH (10 μM) did not alter membrane potential or input conductance but it produced a partial block of the AHP. Under single-electrode voltage clamp, 5-HT and TRH both reduced the amplitude of voltage-activated total K+ currents. When the two substances were co-applied, their actions were occluded. The voltage-activated K+ current remaining in Ca2+-free solution lost its sensitivity to 5-HT and TRH, suggesting that the K+ current modulated by TRH and 5-HT was Ca2+-dependent, although TRH itself did not depress high-threshold voltage-activated Ca2+ currents. When a relatively small concentration (5 μM) of 5-HT was co-applied with an equimolar amount of TRH, the degree of block of the spike AHP was the sum of the two individual effects of these drugs. It is suggested that in hippocampal pyramidal cells 5-HT and TRH influenced neuronal excitability by depressing a Ca2+-dependent K+ current, a phenomenon perhaps mediated through a common intracellular second messenger pathway.  相似文献   

20.
We have analysed the ion channel complement of the oligodendrocyte-type 2 astrocyte (O-2A) glial cell progenitor obtained from the commonly studied neonatal rat mixed brain preparation. Ionic currents, in O-2A progenitors identified on both morphological and immunological grounds, were recorded using the whole-cell variant of the patch-clamp technique. The cells had an average resting membrane potential close to -50 mV and fired single action potentials in response to suprathreshold current injections. Using voltage-clamp methods we were able to identify and characterize a voltage-activated TTX-sensitive Na+ current, two classes of voltage-activated outward K+ currents, an inactivating inwardly rectifying K+ current, a voltage-activated Cl- current and at least three classes of Ca2+ current.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号