首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The olfactory receptor gene superfamily of the mouse.   总被引:18,自引:0,他引:18  
Olfactory receptor (OR) genes are the largest gene superfamily in vertebrates. We have identified the mouse OR genes from the nearly complete Celera mouse genome by a comprehensive data mining strategy. We found 1,296 mouse OR genes (including 20% pseudogenes), which can be classified into 228 families. OR genes are distributed in 27 clusters on all mouse chromosomes except 12 and Y. One OR gene cluster matches a known locus mediating a specific anosmia, indicating the anosmia may be due directly to the loss of receptors. A large number of apparently functional 'fish-like' Class I OR genes in the mouse genome may have important roles in mammalian olfaction. Human ORs cover a similar 'receptor space' as the mouse ORs, suggesting that the human olfactory system has retained the ability to recognize a broad spectrum of chemicals even though humans have lost nearly two-thirds of the OR genes as compared to mice.  相似文献   

2.
Paired receptors are families of membrane proteins characterized by similar extracellular regions but different transmembrane and cytoplasmic regions, meaning that some members can give inhibitory signals and others activating signals. Well‐characterized examples include the KIR, SIRP, Ly49, Nkpr, and Siglec families. The difference in the repertoire of these genes in mouse and man indicates that these families have evolved rapidly. For example, KIRs are found in humans and not mice, and Ly49 shows the converse. These genes are often very polymorphic, e.g. KIR and the number of genes can vary as shown for Ly49 in different mouse strains. Paired receptors are expressed mainly on NK and myeloid cells and their evolution is thought to be pathogen driven. In this article, we review various receptor families for which pathogen interactions are known and discuss the possible molecular mechanisms driving their evolution.  相似文献   

3.
Gilad Y  Man O  Glusman G 《Genome research》2005,15(2):224-230
Olfactory receptor (OR) genes constitute the basis of the sense of smell and are encoded by the largest mammalian gene superfamily, with >1000 members. In humans, but not in mice or dogs, the majority of OR genes have become pseudogenes, suggesting that OR genes in humans evolve under different selection pressures than in other mammals. To explore this further, we compare the OR gene repertoire of human with its closest living evolutionary relative, by taking advantage of the recently sequenced genome of the chimpanzee. In agreement with previous reports based on a small number of ORs, we find that humans have a significantly higher proportion of OR pseudogenes than chimpanzees. Moreover, we can reject the possibility that humans have been accumulating OR pseudogenes at a constant neutral rate since the divergence of human and chimpanzee. The comparison of the two repertoires reveals two chimpanzee-specific OR subfamily expansions and three expansions specific to humans. It also suggests that a subset of OR genes are under positive selection in either the human or the chimpanzee lineage. Thus, although overall there is relaxed constraint on human olfaction relative to chimpanzee, species-specific sensory requirements appear to have shaped the evolution of the functional OR gene repertoires in both species.  相似文献   

4.
In humans, the claudin superfamily consists of 19 homologous proteins that commonly localize to tight junctions of epithelial and endothelial cells. Besides being structural tight-junction components, claudins participate in cell-cell adhesion and the paracellular transport of solutes. Here, we identify and annotate the claudin genes in the whole-genome of the teleost fish, Fugu rubripes (Fugu), and determine their phylogenetic relationships to those in mammals. Our analysis reveals extensive gene duplications in the teleost lineage, leading to 56 claudin genes in Fugu. A total of 35 Fugu claudin genes can be assigned orthology to 17 mammalian claudin genes, with the remaining 21 genes being specific to the fish lineage. Thus, a significant number of the additional Fugu genes are not the result of the proposed whole-genome duplication in the fish lineage. Expression profiling shows that most of the 56 Fugu claudin genes are expressed in a more-or-less tissue-specific fashion, or at particular developmental stages. We postulate that the expansion of the claudin gene family in teleosts allowed the acquisition of novel functions during evolution, and that fish-specific novel members of gene families such as claudins contribute to a large extent to the distinct physiology of fishes and mammals.  相似文献   

5.
6.
Analysis of the chicken genome has shown that the chicken has a different repertoire of chemokines and chemokine receptors to those of mammals and other species. In this study, we report the sequencing and analysis of a bacterial artificial chromosome containing the entire chicken MIP family CC chemokine cluster. The gene duplication and divergence events that have taken place in mammals do not appear to have occurred as extensively in the avian lineage, as chickens possess fewer MIP family chemokine genes than humans or mice. We previously proposed that the four chicken MIP family members be named chicken (ch) CCLi1-4, according to their position on chicken chromosome 19, until such time as further analysis could determine if any of them were direct orthologues of mammalian MIP family members. Our analysis herein, combined with that of others, suggests that chCCLi4 is the orthologue of mammalian CCL5, and that chCCLi3 (K203) may be an orthologue of human CCL16. The other two chemokines do not have obvious orthologues, and thus we propose that they should still be called chCCLi1 and chCCLi2, until their biological function is further characterised. A similar pattern applies to the MIP family chemokine receptors, with only three receptor genes present at the relevant locus in the chicken genome, compared to four in man and mouse (CCR1, CCR2, CCR3 and CCR5). Of the three chicken receptor genes, only two look likely to be receptors for the MIP family chemokines, the third grouping with human, mouse and chicken CCR8 in phylogenetic analysis. The two chicken MIP CC receptors (CCRs) are not direct orthologues of the mammalian MIP CCRs.  相似文献   

7.
Summary:  The class A scavenger receptors are phagocytic pattern recognition receptors that are well represented in vertebrate genomes. The high level of conservation among vertebrates implies that this is an evolutionarily conserved family of receptors and indicates the presence of a common ancestral gene. The identity of this ancestral gene is not clear, as it appears that many of the domains of the scavenger receptors (e.g. collagenous, scavenger receptor cysteine rich) originated early in evolutionary history and are found in many combinations, often in genes of unknown function. These early receptors may function in cell–cell recognition, aggregation, or lipid recognition, and their involvement in pattern recognition, phagocytosis, and homeostasis may have been adaptations of such conserved patterns. Herein, we reclassify the class A scavenger receptors based on recent discoveries of new members of this family, describe the evolution of the various domains of the class A scavenger receptors, and discuss the appearance and function of these domains through evolutionary history.  相似文献   

8.
Shi P  Zhang J 《Genome research》2007,17(2):166-174
Two evolutionarily unrelated superfamilies of G-protein coupled receptors, V1Rs and V2Rs, bind pheromones and "ordinary" odorants to initiate vomeronasal chemical senses in vertebrates, which play important roles in many aspects of an organism's daily life such as mating, territoriality, and foraging. To study the macroevolution of vomeronasal sensitivity, we identified all V1R and V2R genes from the genome sequences of 11 vertebrates. Our analysis suggests the presence of multiple V1R and V2R genes in the common ancestor of teleost fish and tetrapods and reveals an exceptionally large among-species variation in the sizes of these gene repertoires. Interestingly, the ratio of the number of intact V1R genes to that of V2R genes increased by approximately 50-fold as land vertebrates evolved from aquatic vertebrates. A similar increase was found for the ratio of the number of class II odorant receptor (OR) genes to that of class I genes, but not in other vertebrate gene families. Because V1Rs and class II ORs have been suggested to bind to small airborne chemicals, whereas V2Rs and class I ORs recognize water-soluble molecules, these increases reflect a rare case of adaptation to terrestrial life at the gene family level. Several gene families known to function in concert with V2Rs in the mouse are absent outside rodents, indicating rapid changes of interactions between vomeronasal receptors and their molecular partners. Taken together, our results demonstrate the exceptional evolutionary fluidity of vomeronasal receptors, making them excellent targets for studying the molecular basis of physiological and behavioral diversity and adaptation.  相似文献   

9.
The ever-expanding Ly49 gene family: repertoire and signaling   总被引:7,自引:0,他引:7  
Summary: The mouse lectin-related Ly49 family and the human killer cell Ig-like receptor (KIR) family represent structurally distinct, yet functionally analogous, class I MHC receptors that are expressed on natural killer cells and some T cells. The functional similarity of these two families has been borne out by the demonstration of identical signal transduction pathways associated with each receptor family. The Ly49 family therefore provides a useful model system to study the role of this class of receptors in the regulation of the immune system. Recent data relating to the Ly49 repertoire in several mouse strains has revealed an additional evolutionary parallel between KIR and Ly49 receptor families. There is now an appreciation of the variation in the number and type of Ly49s expressed in different mouse strains, similar to the previously demonstrated differences in the number of KIR genes found in humans. This review summarizes the current members of the Ly49 gene family, their MHC class I recognition and associated signal transduction pathways.
This work was supported in part through NCI contract No. NO1-CO-56000.  相似文献   

10.
The sense of smell: genomics of vertebrate odorant receptors   总被引:1,自引:0,他引:1  
Olfactory receptor (OR) proteins interact with odorant molecules in the nose, initiating a neuronal response that triggers the perception of a smell. The OR family is one of the largest known mammalian gene families, with around 900 genes in human and 1500 in mouse. After discounting pseudogenes, the functional repertoire in mouse is more than three times larger than that of human. OR genes encode G-protein-coupled receptors containing seven transmembrane domains. ORs are arranged in clusters of up to 100 genes dispersed in 40-100 genomic locations. Each neuron in the olfactory epithelium expresses only one allele of one OR gene. The mechanism of gene choice is still unknown, but must involve locus, gene, and allele selection. The gene family has expanded mainly by tandem duplications, many of which have occurred since the divergence of the rodent and primate lineages. Interchromosomal segmental duplications including OR genes have also occurred, but more commonly in the human than the mouse family. As a result, many human OR genes have several possible mouse orthologs, and vice versa. Sequence and copy number polymorphisms in OR genes have been described, which may account for interindividual differences in odorant detection thresholds.  相似文献   

11.
12.
The olfactory receptor (OR) gene family constitutes one of the largest multigene families and is distributed among many chromosomal sites in the human genome. Four OR families have been defined in mammals. We previously demonstrated that a high fraction of human OR sequences have incurred deleterious mutations, thus reducing the repertoire of functional OR genes. In this study, we have characterized a new OR gene, 912-93, in primates. This gene is unique and it defines a new OR family. It localizes to human chromosome 11q11-12 and at syntenical sites in other hominoids. The sequence marks a previously unrecognized rearrangement of pericentromeric material from chromosome 11 to the centromeric region of gibbon chromosome 5. The human gene contains a nonsense point mutation in the region corresponding to the extracellular N-terminus of the receptor. This mutation is present in humans of various ethnic groups, but is absent in apes, suggesting that it probably appeared during the divergence of humans from other apes, <4 000 000-5 000 000 years ago. A second mutation, a frameshift at a different location, has occurred in the gorilla copy of this gene. These observations suggest that OR 912-93 has been recently silenced in human and gorilla, adding to a pool of OR pseudogenes whose growth may parallel a reduction in the sense of smell in primates.   相似文献   

13.
Natural killer (NK) cells express cell surface receptors that recognize class I major histocompatibility complex (MHC-I) molecules to distinguish between healthy and unhealthy cells. The multigenic and polymorphic nature of the MHC-I genes has influenced the convergent evolution of similarly polymorphic and diversified NK cell receptor families: the C-type lectin-like Ly49 receptors in mice, and the killer cell immunoglobulin-like receptors (KIRs) in humans. Although structurally distinct, both receptor families have similar functions in terms of MHC-I recognition and downstream signal transduction, and they regulate multiple aspects of NK cell biology during development and after maturation as fully differentiated and functionally competent cells. The Ly49 gene locus has undergone rapid, lineage-specific expansions and contractions resulting in multiple distinct haplotypes of variable gene number, allelic diversity, and MHC-I ligand specificity. This in turn has influenced the type and degree of Ly49 receptor expression on NK cells, and their contribution to immunity in different mouse strains. In this review, we have attempted to describe the evolutionary processes that have shaped strain-specific Ly49 receptor repertoires, and their impact on NK cell functions during health and disease.  相似文献   

14.
Antibody genes represent one of the most complex receptor gene systems which have evolved in the vertebrate lineage. One of the central questions is how antibody variable region genes diversify the complementarity determining region (CDR) in evolution while they are subject to forces for sequence homogenization operating in multigene families. Information on germ line antibody genes in lower vertebrates is still fragmentary and it would be fruitful to gain insight into this question. We have studied the evolutionary stability of a rainbow trout VH family (RTVH 431) by Southern blot hybridization in various fish species. Comparison of our results with paleontological/zoological evidence suggests that this VH family has been preserved in the genomes of many fish species over a time span of 150 million years. We also show that there exist species-specific residues common to rainbow trout VH genes, which strongly supports the presence of genetic processes for homogenization. These results are compatible with the view that antibody V genes evolve at a fairly constant rate and that the homogenization process (e.g. gene duplication) may be slow enough to allow diversification of CDR by mutation, selection and drift.  相似文献   

15.
A novel olfactory receptor gene family in teleost fish   总被引:2,自引:0,他引:2       下载免费PDF全文
While for two of three mammalian olfactory receptor families (OR and V2R) ortholog teleost families have been identified, the third family (V1R) has been thought to be represented by a single, closely linked gene pair. We identified four further V1R-like genes in every teleost species analyzed (Danio rerio, Gasterosteus aculeatus, Oryzias latipes, Tetraodon nigroviridis, Takifugu rubripes). In the phylogenetic analysis these ora genes (olfactory receptor class A-related) form a single clade, which includes the entire mammalian V1R superfamily. Homologies are much lower in paralogs than in orthologs, indicating that all six family members are evolutionarily much older than the speciation events in the teleost lineage analyzed here. These ora genes are under strong negative selection, as evidenced by very small d(N)/d(S) values in comparisons between orthologs. A pairwise configuration in the phylogenetic tree suggests the existence of three ancestral Ora subclades, one of which has been lost in amphibia, and a further one in mammals. Unexpectedly, two ora genes exhibit a highly conserved multi-exonic structure and four ora genes are organized in closely linked gene pairs across all fish species studied. All ora genes are expressed specifically in the olfactory epithelium of zebrafish, in sparse cells within the sensory surface, consistent with the expectation for olfactory receptors. The ora gene repertoire is highly conserved across teleosts, in striking contrast to the frequent species-specific expansions observed in tetrapod, especially mammalian V1Rs, possibly reflecting a major shift in gene regulation as well as gene function upon the transition to tetrapods.  相似文献   

16.
Opioid agonists produce analgesia in humans and other mammals by binding to three distinct types of G protein-coupled receptors; mu (MOR), delta (DOR), and kappa (KOR) opioid receptors. A fourth member of the opioid receptor family is the nociceptin or orphanin FQ receptor (ORL), however the role of the ORL receptor in analgesia is less clear. In the Northern grass frog, Rana pipiens, systemic and central administration of morphine and selective MOR, DOR, and KOR agonists produced dose-dependent antinociceptive effects blocked by the general opioid antagonist, naltrexone. The present study reports on the sequence, expression, and bioinformatics of four opioid receptor cDNAs cloned from Rana pipiens; rpMOR, rpDOR, rpKOR, and rpORL. These were the first opioid receptors cloned from a species of Class Amphibia, are selectively expressed in brain tissue, and show 70-84% identity to their homologous mammalian opioid receptors. Comparisons within species showed that MOR, DOR, and KOR proteins are significantly less divergent in earlier-evolved vertebrates compared to humans and other mammals. Among the four types of opioid receptors, MOR proteins show the least sequence variation among the six vertebrate species. Additionally, phylogenetic analysis supports the hypothesis that the family of opioid receptor proteins are coded by four genes that arose from two gene duplications of a single ancestral opioid receptor gene.  相似文献   

17.
Mill (MHC class I-like located near the leukocyte receptor complex) is a novel family of class I genes identified in mice that is most closely related to the human MICA/B family. In the present study, we isolated Mill cDNA from rats and carried out a comparative genomic analysis. Rats have two Mill genes orthologous to mouse Mill1 and Mill2 near the leukocyte receptor complex, with expression patterns similar to those of their mouse counterparts. Interspecies sequence comparison indicates that Mill is one of the most rapidly evolving class I gene families and that non-synonymous substitutions occur more frequently than synonymous substitutions in its alpha 1 domain, implicating the involvement of Mill in immune defenses. Interestingly, the alpha 2 domain of rat Mill2 contains a premature stop codon in many inbred strains, indicating that Mill2 is not essential for survival. A computer search of the database identified a horse Mill-like expressed sequence tag, indicating that Mill emerged before the radiation of mammals. Hence, the failure to find Mill in human indicates strongly that it was lost from the human lineage. Our present work provides convincing evidence that Mill is akin to the MICA/B family, yet constitutes a distinct gene family.  相似文献   

18.
Summary: Bovine immunoglobulins are made from genes belonging to a small family of closely related Vh, genes. In this respect cattle resemble all species of domesticated mammals, which also use one VH family The family, named BoVH1, is homologous to the mouse Q52 family, and there are no more than 20 genes of this family in the bovine genome. Another feature of bovine heavy chains is the use of long CDR3s, which have an average of 21 codons. It seems that there are several families of long, closely related D genes rich in glycine and tyrosine responsible for this length. Sequences described as targets for mutations in other species can be found in CDR1, CDR2, and the putative D genes. The mutation mechanism starts at some point between late fetal stage and birth and seems to be antigen Independent. Diversity seems to be generated by hypermutation, although other mechanistns cannot be discomited at this time. Contrary to humans and mice, which have several Vh gene families comprising more than 100 genes, cattle use only a few genes and long CDR3s followed by somatic mutation to generate the necessary diversity to recognize the universe of antigens they will encounter during their life.  相似文献   

19.
Botryllus schlosseri is a colonial tunicate that shared a common ancestor with the lineage leading to mammals about 450 million years ago, and flourishes today along the California coast. Prior studies of Botryllus populations have demonstrated the presence of a co-dominantly expressed, highly polymorphic histocompatibility locus (Fu/HC) controlling the acceptance (fusion) or rejection of new individuals into a parabiotic colony. Intercolonial blood cell contact, and recognition of self/not self, precedes both fusion and rejection reactions. Efforts to understand the evolution of the immune system necessitate study of cell surface molecules involved in cell-cell recognition events in primitive species. In mammals, birds, amphibians, and fishes clonally distributed lymphocyte surface molecules that are responsible for antigen recognition (B cell immunoglobulins and T cell receptors) can be distinguished by the disulfide linkage that pairs two or more polypeptides containing constant and variable regions. We have identified a disulfide-linked, heterodimeric (alpha beta) cell surface molecule in Botryllus with biochemical resemblance to mammalian lymphocyte antigen receptors. Observed charge variants of constituent chains of the tunicate protein described here do not correlate with Fu/HC allelic diversity. Both chains of this heterodimer can be resolved into several isoforms which are not based upon post-translational carbohydrate or phosphate additions. Comparisons of iodinated tryptic peptides from two beta chain isomorphs reveal one distinct and several common peptides.  相似文献   

20.
The srh family of chemoreceptors in the nematode Caenorhabditis elegans is very large, containing 214 genes and 90 pseudogenes. It is related to the str, stl, and srd families of seven-transmembrane or serpentine receptors. Like these three families, most srh genes are concentrated on chromosome V, and mapping of their chromosomal locations on a phylogenetic tree reveals 27 different movements of genes to other chromosomes. Mapping of intron gains and losses onto the phylogenetic tree reveals that the last common ancestral gene of the family had five introns, which are inferred to have been lost 70 times independently during evolution of the family. In addition, seven intron gains are revealed, three of which are fairly recent. Comparisons with 20 family members in the C. briggsae genome confirms these patterns, including two intron losses in C. briggsae since the species split. There are 14 clear C. elegans orthologs for these 20 genes, whose average amino acid divergence of 68% allows estimation of 85 gene duplications in the C. elegans lineage since the species split. The absence of six orthologs in C. elegans also indicates that gene loss occurs; consideration of all deletions and terminal truncations of srh pseudogenes reveals that large deletions are common. Together these observations provide insight into the evolutionary dynamics of this compact animal genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号