首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutations in the gene encoding dysferlin (DYSF) cause the allelic autosomal recessive disorders limb girdle muscular dystrophy 2B and Miyoshi myopathy. It encompasses 55 exons spanning 150 kb of genomic DNA. Dysferlin is involved in membrane repair in skeletal muscle. We identified three families with novel sequence variants in DYSF. All affected family members showed limb girdle weakness and had reduced or absent dysferlin protein on immunohistochemistry. All exons of DYSF were screened by genomic sequencing. Five novel variants in DYSF were found: two missense mutations (c.895G>A and c.4022T>C), one 5' donor splice-site variant (c.855+1delG), one nonsense mutation (c.1448C>A), and a variant in the 3'UTR of DYSF (c.*107T>A). All alterations were confirmed by restriction enzyme analysis and not found in 400 control alleles. Nonsense mediated RNA decay or changes in the three-dimensional protein structure resulting in intracellular dysferlin aggregates and finally the lack of dysferlin protein were identified as consequences of the novel DYSF variants.  相似文献   

2.
Dysferlinopathies belong to the heterogeneous group of autosomal recessive muscular dystrophies. Mutations in the gene encoding dysferlin (DYSF) lead to distinct phenotypes, mainly Limb Girdle Muscular Dystrophy type 2B (LGMD2B) and Miyoshi myopathy (MM). Here, we analysed the mutational data from the largest cohort described to date, a cohort of 134 patients, included based on clinical suspicion of primary dysferlinopathy and/or dysferlin protein deficiency identified on muscle biopsy samples. Data were compiled from 38 patients previously screened for mutations in our laboratory (Nguyen, et al., 2005; Nguyen, et al., 2007), and 96 supplementary patients screened for DYSF mutations using genomic DHPLC analysis, and subsequent sequencing of detected variants, in a routine diagnostic setting. In 89 (66%) out of 134 patients, molecular analysis identified two disease causing mutations, confirming the diagnosis of primary Dysferlinopathy on a genetic basis. Furthermore, one mutation was identified in 30 patients, without identification of a second deleterious allele. We are currently developing complementary analysis for patients in whom only one or no disease-causing allele could be identified using the genomic screening procedure. Altogether, 64 novel mutations have been identified in this cohort, which corresponds to approximately 25% of all DYSF mutations reported to date. The mutational spectrum of this cohort significantly shows a higher proportion of nonsense mutations, but a lower proportion of deleterious missense changes as compared to previous series. (c) 2008 Wiley-Liss, Inc.  相似文献   

3.
Mutations in the dysferlin gene (DYSF) lead to a complete or partial absence of the dysferlin protein in skeletal muscles and are at the origin of dysferlinopathies, a heterogeneous group of rare autosomal recessive inherited neuromuscular disorders. As a step towards a better understanding of the DYSF mutational spectrum, and towards possible inclusion of patients in future therapeutic clinical trials, we set up the Universal Mutation Database for Dysferlin (UMD‐DYSF), a Locus‐Specific Database developed with the UMD® software. The main objective of UMD‐DYSF is to provide an updated compilation of mutational data and relevant interactive tools for the analysis of DYSF sequence variants, for diagnostic and research purposes. In particular, specific algorithms can facilitate the interpretation of newly identified intronic, missense‐ or isosemantic‐exonic sequence variants, a problem encountered recurrently during genetic diagnosis in dysferlinopathies. UMD‐DYSF v1.0 is freely accessible at www.umd.be/DYSF/. It contains a total of 742 mutational entries corresponding to 266 different disease‐causing mutations identified in 558 patients worldwide diagnosed with dysferlinopathy. This article presents for the first time a comprehensive analysis of the dysferlin mutational spectrum based on all compiled DYSF disease‐causing mutations reported in the literature to date, and using the main bioinformatics tools offered in UMD‐DYSF. ©2011 Wiley‐Liss, Inc. Hum Mutat 33:E2317–E2331, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

4.
Myoferlin, a candidate gene and potential modifier of muscular dystrophy   总被引:7,自引:0,他引:7  
Dysferlin, the gene product of the limb girdle muscular dystrophy (LGMD) 2B locus, encodes a membrane-associated protein with homology to Caenorhabditis elegans fer-1. Humans with mutations in dysferlin ( DYSF ) develop muscle weakness that affects both proximal and distal muscles. Strikingly, the phenotype in LGMD 2B patients is highly variable, but the type of mutation in DYSF cannot explain this phenotypic variability. Through electronic database searching, we identified a protein highly homologous to dysferlin that we have named myoferlin. Myoferlin mRNA was highly expressed in cardiac muscle and to a lesser degree in skeletal muscle. However, antibodies raised to myoferlin showed abundant expression of myoferlin in both cardiac and skeletal muscle. Within the cell, myoferlin was associated with the plasma membrane but, unlike dysferlin, myoferlin was also associated with the nuclear membrane. Ferlin family members contain C2 domains, and these domains play a role in calcium-mediated membrane fusion events. To investigate this, we studied the expression of myoferlin in the mdx mouse, which lacks dystrophin and whose muscles undergo repeated rounds of degeneration and regeneration. We found upregulation of myoferlin at the membrane in mdx skeletal muscle. Thus, myoferlin ( MYOF ) is a candidate gene for muscular dystrophy and cardiomyopathy, or possibly a modifier of the muscular dystrophy phenotype.  相似文献   

5.
Miyoshi myopathy (MM) is an autosomal recessive distal muscular dystrophy caused by mutations in the dysferlin gene (DYSF) on chromosome 2p13. Although MM patients and their mutations in the DYSF gene have been found from all over the world, there is only one report of genetically confirmed case of MM in Korea. Recently, we encountered three unrelated Korean patients with MM and two of them have previously been considered as having a type of inflammatory myopathy. The clinical and laboratory evaluation showed typical features of muscle involvement in MM in all patients but one patient initially had moderate proximal muscle involvement and another showed incomplete quadriparesis with rapid progression. Direct sequencing analysis of the DYSF gene revealed that each patient had compound heterozygous mutations (Gln832X and Trp992Arg, Gln832X and Trp999Cys, and Lys1103X and Ile1401HisfsX8, respectively) among which three were novel. Although MM has been thought to be quite rare in Korea, it should be considered in a differential diagnosis of patients exhibiting distal myopathy.  相似文献   

6.
Recently, a single gene, DYSF, has been identified which is mutated in patients with limb-girdle muscular dystrophy type 2B (LGMD2B) and with Miyoshi myopathy (MM). This is of interest because these diseases have been considered as two distinct clinical conditions since different muscle groups are the initial targets. Dysferlin, the protein product of the gene, is a novel molecule without homology to any known mammalian protein. We have now raised a monoclonal antibody to dysferlin and report on the expression of this new protein: immunolabelling with the antibody (designated NCL-hamlet) demonstrated a polypeptide of approximately 230 kDa on western blots of skeletal muscle, with localization to the muscle fibre membrane by microscopy at both the light and electron microscopic level. A specific loss of dysferlin labelling was observed in patients with mutations in the LGMD2B/MM gene. Furthermore, patients with two different frameshifting mutations demonstrated very low levels of immunoreactive protein in a manner reminiscent of the dystrophin expressed in many Duchenne patients. Analysis of human fetal tissue showed that dysferlin was expressed at the earliest stages of development examined, at Carnegie stage 15 or 16 (embryonic age 5-6 weeks). Dysferlin is present, therefore, at a time when the limbs start to show regional differentiation. Lack of dysferlin at this critical time may contribute to the pattern of muscle involvement that develops later, with the onset of a muscular dystrophy primarily affecting proximal or distal muscles.  相似文献   

7.
Autosomal recessive limb-girdle muscular dystrophies (LGMDs) are genetically heterogeneous. A subgroup of these disorders is caused by mutations in the dystrophin-associated sarcoglycan complex. Truncating mutations in the 43 kDa beta-sarcoglycan gene (LGMD 2E) were originally identified in a sporadic case of Duchenne-like muscular dystrophy, and a common missense mutation (T151R) was identified independently in Indiana Amish pedigrees with a milder form of LGMD. To facilitate mutational analysis of larger numbers of patients directly from genomic DNA, as opposed to reverse transcribed RNA from muscle biopsies, we have determined the genomic structure of the beta-sarcoglycan gene. The open reading frame of the beta-sarcoglycan coding region extends over six exons. Primers were designed for PCR amplification of single exons from genomic DNA and subsequent single strand conformation polymorphism (SSCP) analysis. We screened 15 patients from the Brazilian LGMD patient population, 13 of whom followed a severe course. Most of the patients had been assessed previously for deficiency of alpha- sarcoglycan immunofluorescence on muscle biopsy sections as a marker for disease of the sarcoglycan complex. Novel mutations in two familial and two sporadic cases of severe childhood-onset LGMD were identified. Only one of these patients carried a truncating mutation (homozygous 2 bp deletion, FS164TER), while the other three carried missense mutations (homozygous R91P, homozygous M100K, heterozygous recessive L108R; only one allele could be identified in this family). All three missense mutations occurred in exon 3, coding for the immediate extracellular domain. Complete absence for all three of the known sarcoglycans was noted by immunohistochemistry on muscle biopsy sections of the patients.   相似文献   

8.
Recent genetic and immunohistochemical analyses have shown that Miyoshi myopathy (MM) is caused by a mutation in the DYSF gene, which induces dysfunction of dysferlin. The author described one patient showing characteristic MM phenotype with deficiency of dysferlin on immunohistochemistry. Direct DNA sequencing of whole exons of DYSF gene revealed one homozygous missense mutation (G1165C) on exon 12, which let to an amino acid substitution from the glutamic acid to glutamine at the 389 of the peptide sequence in this patient. This is the first reported case of MM confirmed by immunohistochemical and genetic analyses in Korea.  相似文献   

9.
A candidate gene, myotubularin, involved in the pathogenesis of X- linked myotubular myopathy (MTM1) was isolated recently. Mutations originally were identified in 12% of patients examined for 40% of the coding sequence, raising the possibility that additional genes could be responsible for a proportion of X-linked cases. We report here the identification of mutations in 26 of 41 independent male patients with muscle biopsy-proven MTM, by direct genomic sequencing of 92% of the known coding sequence of the myotubularin gene. Eighteen patients had point mutations, including one A/G transition found in four patients which alters a splice acceptor site in exon 12 and leads to a three amino acid insertion. Six patients had small deletions involving <6 bp, while two larger deletions encompassed two or six exons, respectively. No differences were noted among the types of mutations between familial and sporadic cases. However, all of the five patients with a mild phenotype had missense mutations. While 50% of the mutations were found in exons 4 and 12, and three distinct mutations were found in more than one patient, no single mutation accounted for more than 10% of the cases. The low frequency of large deletions and the varied mutations identified suggest that direct mutation screening for molecular diagnosis may require gene sequencing.   相似文献   

10.
Dysferlin is a 237-kDa transmembrane protein involved in calcium-mediated sarcolemma resealing. Dysferlin gene mutations cause limb-girdle muscular dystrophy (LGMD) 2B, Miyoshi myopathy (MM) and distal myopathy of the anterior tibialis. Considering that a secondary Dysferlin reduction has also been described in other myopathies, our original goal was to identify cases with a Dysferlin deficiency without dysferlin gene mutations. The dysferlin gene is huge, composed of 55 exons that span 233 140 bp of genomic DNA. We performed a thorough mutation analysis in 65 LGMD/MM patients with ≤20% Dysferlin. The screening was exhaustive, as we sequenced both genomic DNA and cDNA. When required, we used other methods, including real-time PCR, long PCR and array CGH. In all patients, we were able to recognize the primary involvement of the dysferlin gene. We identified 38 novel mutation types. Some of these, such as a dysferlin gene duplication, could have been missed by conventional screening strategies. Nonsense-mediated mRNA decay was evident in six cases, in three of which both alleles were only detectable in the genomic DNA but not in the mRNA. Among a wide spectrum of novel gene defects, we found the first example of a ‘nonstop'' mutation causing a dysferlinopathy. This study presents the first direct and conclusive evidence that an amount of Dysferlin ≤20% is pathogenic and always caused by primary dysferlin gene mutations. This demonstrates the high specificity of a marked reduction of Dysferlin on western blot and the value of a comprehensive molecular approach for LGMD2B/MM diagnosis.  相似文献   

11.
Muscular dystrophies comprise a genetically heterogeneous group of degenerative muscle disorders characterized by progressive muscle wasting and weakness. Two forms of limb-girdle muscular dystrophy, 2A and 2B, are caused by mutations in calpain 3 (CAPN3) and dysferlin (DYSF), respectively. While CAPN3 may be involved in sarcomere remodeling, DYSF is proposed to play a role in membrane repair. The coexistence of CAPN3 and AHNAK, a protein involved in subsarcolemmal cytoarchitecture and membrane repair, in the dysferlin protein complex and the presence of proteolytic cleavage fragments of AHNAK in skeletal muscle led us to investigate whether AHNAK can act as substrate for CAPN3. We here demonstrate that AHNAK is cleaved by CAPN3 and show that AHNAK is lost in cells expressing active CAPN3. Conversely, AHNAK accumulates when calpain 3 is defective in skeletal muscle of calpainopathy patients. Moreover, we demonstrate that AHNAK fragments cleaved by CAPN3 have lost their affinity for dysferlin. Thus, our findings suggest interconnectivity between both diseases by revealing a novel physiological role for CAPN3 in regulating the dysferlin protein complex.  相似文献   

12.
Mutations in the dysferlin (DYSF) and caveolin-3 (CAV3) genes are associated with muscle disease. Dysferlin is mislocalized, by an unknown mechanism, in muscle from patients with mutations in caveolin-3 (Cav-3). To examine the link between Cav-3 mutations and dysferlin mistargeting, we studied their localization at high resolution in muscle fibers, in a model muscle cell line, and upon heterologous expression of dysferlin in muscle cell lines and in wild-type or caveolin-null fibroblasts. Dysferlin shows only partial overlap with Cav-3 on the surface of isolated muscle fibers but co-localizes with Cav-3 in developing transverse (T)-tubules in muscle cell lines. Heterologously expressed dystrophy-associated mutant Cav3R26Q accumulates in the Golgi complex of muscle cell lines or fibroblasts. Cav3R26Q and other Golgi-associated mutants of both Cav-3 (Cav3P104L) and Cav-1 (Cav1P132L) caused a dramatic redistribution of dysferlin to the Golgi complex. Heterologously expressed epitope-tagged dysferlin associates with the plasma membrane in primary fibroblasts and muscle cells. Transport to the cell surface is impaired in the absence of Cav-1 or Cav-3 showing that caveolins are essential for dysferlin association with the PM. These results suggest a functional role for caveolins in a novel post-Golgi trafficking pathway followed by dysferlin.  相似文献   

13.
Nemaline myopathy (NM) is a clinically and genetically heterogeneous disorder of skeletal muscle caused by mutations in at least five different genes encoding thin filament proteins of the striated muscle sarcomere. We have previously described 18 different mutations in the last 42 exons of the nebulin gene (NEB) in 18 families with NM. Here we report 45 novel NEB mutations detected by denaturing high-performance liquid chromatography (dHPLC) and sequence analysis of all 183 NEB exons in NM patients from 44 families. Altogether we have identified, including the deletion of exon 55 identified in the Ashkenazi Jewish population, 64 different mutations in NEB segregating with autosomal recessive NM in 55 families. The majority (55%) of the mutations in NEB are frameshift or nonsense mutations predicted to cause premature truncation of nebulin. Point mutations (25%) or deletions (3%) affecting conserved splice signals are predicted in the majority of cases to cause in-frame exon skipping, possibly leading to impaired nebulin-tropomyosin interaction along the thin filament. Patients in 18 families had one of nine missense mutations (14%) affecting conserved amino acids at or in the vicinity of actin or tropomyosin binding sites. In addition, we found the exon 55 deletion in four families. The majority of the patients (in 49/55 families) were shown to be compound heterozygous for two different mutations. The mutations were found in both constitutively and alternatively expressed exons throughout the NEB gene, and there were no obvious mutational hotspots. Patients with more severe clinical pictures tended to have mutations predicted to be more disruptive than patients with milder forms.  相似文献   

14.
Limb girdle muscular dystrophy type 2B (LGMD2B) and Miyoshi myopathy (MM), a distal muscular dystrophy, are both caused by mutations in the recently cloned gene dysferlin, gene symbol DYSF. Two large pedigrees have been described which have both types of patient in the same families. Moreover, in both pedigrees LGMD2B and MM patients are homozygous for haplotypes of the critical region. This suggested that the same mutation in the same gene would lead to both LGMD2B or MM in these families and that additional factors were needed to explain the development of the different clinical phenotypes. In the present paper we show that in one of these families Pro791 of dysferlin is changed to an Arg residue. Both the LGMD2B and MM patients in this kindred are homozygous for this mutation, as are four additional patients from two previously unpublished families. Haplotype analyses suggest a common origin of the mutation in all the patients. On western blots of muscle, LGMD2B and MM patients show a similar abundance in dysferlin staining of 15 and 11%, respectively. Normal tissue sections show that dysferlin localizes to the sarcolemma while tissue sections from MM and LGMD patients show minimal staining which is indistinguishable between the two types. These findings emphasize the role for the dysferlin gene as being responsible for both LGMD2B and MM, but that the distinction between these two clinical phenotypes requires the identification of additional factor(s), such as modifier gene(s).  相似文献   

15.
McArdle disease is a rare autosomal recessive disorder of the muscle glycogen metabolism caused by mutations in the muscle glycogen phosphorylase gene. Until now, a total number of 11 different mutations in the coding region or splice sites of the myophosphorylase gene have been identified. In contrast to a wealth of data on the RNA and protein level, little information is available on the genomic sequence of the corresponding gene. To facilitate molecular diagnosis of McArdle disease, we reinvestigated the genomic structure of the myophosphorylase gene and sequenced about 9.8 kilobases (kb) on the genomic level. By choosing 14 intronic primer pairs, we were able to amplify the complete human coding sequence as well as the adjacent splice sites of the 20 exons. Direct sequencing of the amplification products of a consanguineous Turkish family with typical McArdle disease revealed a novel single base pair deletion in exon 18, which predicts a frameshift and a premature termination of the protein. In summary, we established a system for molecular diagnosis of McArdle disease based on a revised genomic structure of the myophosphorylase gene and demonstrated its feasibility by identification of a novel mutation. Hum Mutat 12:27–32, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

16.
The NF2 tumor suppressor gene, located in chromosome 22q12, is involved in the development of sporadic meningiomas of the nervous system. In order to evaluate the role of the NF2 gene in sporadic meningiomas, we analyzed the entire coding regions of the NF2 gene in a group of 42 sporadic meningiomas: 17 meningothelial, 11 transitional, 11 fibrous, one secretory, one atypical, and one malignant subtype, using denaturing high-performance liquid chromatography (DHPLC) and sequence analysis. Twenty-one mutations were identified in 20 patients with an overall mutation detection rate of 47.6%. The mutations included nine deletions (exons 1, 2, 5, 10, and 12), resulting in a frameshift, four non-sense mutations (exons 1, 2, and 7), four splice errors (exons 4, 5, 7, and 12), two missense mutations (exon 5) and two silent mutations (exon 11). Among these, 14 novel mutations were also identified in the present study. All mutations were noted in the first 12 exons, the region of homology with the ezrin-moesin-radixin protein. Furthermore, an association between NF2 mutations and histologic subtypes were observed; NF2 mutations were more frequent in fibrous meningiomas (8/11, 73%) and transitional meningiomas (6/11, 55%), than in meningothelial variant (5/17, 29%). These results provide evidence that mutations in the NF2 gene play an important role in the development of sporadic meningiomas as well as indicating a different tumorigenesis of these meningioma variants.  相似文献   

17.
Heterogeneous spectrum of mutations in the Fanconi anaemia group A gene   总被引:2,自引:0,他引:2  
Fanconi anaemia (FA) is a genetically heterogeneous autosomal recessive disorder associated with chromosomal fragility, bone-marrow failure, congenital abnormalities and cancer. The gene for complementation group A (FAA), which accounts for 60-65% of all cases, has been cloned, and is composed of an open reading frame of 4.3 kb, which is distributed among 43 exons. We have investigated the molecular pathology of FA by screening the FAA gene for mutations in a panel of 90 patients identified by the European FA research group, EUFAR. A highly heterogeneous spectrum of mutations was identified, with 31 different mutations being detected in 34 patients. The mutations were scattered throughout the gene, and most are likely to result in the absence of the FAA protein. A surprisingly high frequency of intragenic deletions was detected, which removed between 1 and 30 exons from the gene. Most microdeletions and insertions occurred at homopolymeric tracts or direct repeats within the coding sequence. These features have not been observed in the other FA gene which has been cloned to date (FAC) and may be indicative of a higher mutation rate in FAA. This would explain why FA group A is much more common than the other complementation groups. The heterogeneity of the mutation spectrum and the frequency of intragenic deletions present a considerable challenge for the molecular diagnosis of FA. A scan of the entire coding sequence of the FAA gene may be required to detect the causative mutations, and scanning protocols will have to include methods which will detect the deletions in compound heterozygotes.  相似文献   

18.
The major cause of congenital adrenal hyperplasia (CAH), a common recessive genetic disease, is the deficiency of steroid 21-hydroxylase (21OH), a microsomal enzyme encoded by the CYP21 gene. Although several CAH causing mutations have been identified in the CYP21 gene of patients with 21OH deficiency, genotyping of the 21OH locus is quite complex because of the high frequency of gene conversion and the presence of multiple mutations on single CAH alleles. In order to perform the complete characterisation of the CYP21 gene coding region more simply, we developed a highly sensitive, non-radioactive method allowing DNA single strand conformation polymorphism (DNA-SSCP) analysis. This method was applied to the characterisation of all the exons and intron-exon junctions of the CYP21 gene in five patients affected by the simple virilising form and one affected by the salt wasting form. In all samples showing SSCP signals, direct sequence analysis showed the presence of more than one single sequence variant. In particular, four mutations which are already known to cause the disease, 16 polymorphisms, and one newly identified C to T transition at position 849 were detected. A random sequence analysis, performed on 31 out of 81 exons showing a normal SSCP pattern, shows the method to be highly sensitive: no sequence variant was detected, thus confirming the validity of this non-radioactive DNA-SSCP analysis in characterising the CYP21 gene in patients with steroid 21OH deficiency. Notwithstanding the complete characterisation of all exons and exon/intron junctions of the CYP21 gene, no complete genotype/phenotype correlation was found in the panel of patients analysed, thus suggesting that characterisation of CAH alleles must be extended to outside the coding region of the CYP21 gene, most probably into the promoter region.  相似文献   

19.
The COL2A1 gene was assayed for mutations in genomic DNA from 12 patients with achondrogenesis type II/hypochondrogenesis. The exons and flanking sequences of the 54 exons in the COL2A1 gene were amplified by a series of specific primers using PCR. The PCR products were scanned for mutations by conformation sensitive gel electrophoresis, and PCR products that generated heteroduplex bands were then sequenced. Mutations in the COL2A1 gene were found in all 12 patients. Ten of the mutations were single base substitutions that converted a codon for an obligate glycine to a codon for an amino acid with a bulkier side chain. One of the mutations was a change in a consensus RNA splice site. Another was an 18-base pair deletion of coding sequences. The results confirmed previous indications that conformation sensitive gel electrophoresis is highly sensitive for detection of mutations in large and complex genes. They also demonstrate that most, if not all, patients with achondrogenesis type II/hypochondrogenesis have mutations in the COL2A1 gene.  相似文献   

20.
Mutations in the DYSF gene underlie two main muscle diseases: Limb Girdle Muscular Dystrophy (LGMD) 2B and Miyoshi myopathy (MM). Dysferlin is involved in muscle membrane-repair and is thought to interact with other dysferlin molecules and annexins A1 and A2 at the sarcolemma. We performed genotype/phenotype correlations in a large cohort of dysferlinopathic patients and explored the possible role of annexins as modifier factors in LGMD-2B and MM. In particular, clinical examination, expression of sarcolemmal proteins and genetic analysis were performed on 27 dysferlinopathic subjects. Expression of A1 and A2 annexins was investigated in LGMD-2B/MM subjects and in patients with other muscle disorders. We identified 24 different DYSF mutations, 10 of them being novel. We observed no clear correlation between mutation type and clinical phenotype, but MM patients were found to display muscle symptoms significantly earlier in life than LGMD subjects. Remarkably, dysferlinopathic patients and subjects suffering from other muscular disorders expressed higher levels of both annexins compared to controls; a significant correlation was observed between annexin expression levels and clinical severity scores. Also, annexin amounts paralleled the degree of muscle histopathologic changes. In conclusion, our data indicate that the pathogenesis of different inherited and acquired muscle disorders involves annexin overexpression, probably because these proteins actively participate in the plasmalemma repair process. The positive correlation between annexin A1 and A2 and clinical severity, as well as muscle histopathology, suggests that their level may be a prognostic indicator of disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号