共查询到20条相似文献,搜索用时 15 毫秒
1.
Several lines of evidence indicate that Group II metabotropic glutamate receptor (mGluR) activation can depress sensory transmission. We have reported the expression of Group II mGluRs on unmyelinated axons, many of which were presumed to be nociceptors, in the rat digital nerve [Carlton SM, Hargett GL, Coggeshall RE (2001b) Localization of metabotropic glutamate receptors 2/3 on primary afferent axons in the rat. Neuroscience 105:957-969]. The goals of the present study are to further our understanding of Group II modulation of nociceptor processing in the periphery, documenting behavioral changes using inflammatory models and documenting, for the first time, cutaneous single fiber activity following exposure to a Group II agonist (2R,4R)-4-aminopyrrolidine-2,4-dicarboxylate (APDC) and antagonist (2S)-2-amino-2-[(1S,2S)-2-carboxycycloprop-1-yl]-3-(xanth-9-yl) propanoic acid (LY341495, LY). The data indicate that peripheral Group II mGluR activation does not depress nociceptive behaviors or nociceptor fiber responses in the non-sensitized state (i.e. following brief nociceptive mechanical or thermal stimulation) but can depress these responses when nociceptors are sensitized by exposure to formalin or inflammatory soup. Group II mGluR agonist-induced inhibition can be blocked by a selective Group II antagonist. Peripheral Group II mGluR-induced inhibition evoked in these studies occurs through activation of local receptors and not through spinal or supraspinal mechanisms. The data indicate that administration of selective Group II agonists may be potent therapeutic agents for prevention of peripheral sensitization and for treatment of inflammatory pain. 相似文献
2.
Group I metabotropic glutamate receptors activate a calcium-sensitive transient receptor potential-like conductance in rat hippocampus 总被引:7,自引:3,他引:7
In CA3 pyramidal neurons from organotypic slice cultures, activation of Gq -coupled group I metabotropic glutamate receptors (mGluRs) induces a non-selective cationic conductance that enhances excitability. We have found that this response shares several properties with conductances that are mediated by the transient receptor potential (TRP) family of ion channels, including inhibition by La3+ , 2-aminoethoxydiphenylborane (2APB), cis - N- (2-phenylcyclopentyl)azacyclotridec-1-en-2-amine (MDL 12,330A) and a doubly rectifying current-voltage relationship. Stimulation of mGluR1 and mGluR5 converged to activate the TRP-like conductance in a synergistic manner, and activation of either subtype alone produced only a fraction of the normal response. Activation of the cationic current required elevated intracellular Ca2+ . Chelating intracellular Ca2+ or blocking Ca2+ entry through voltage-gated Ca2+ channels attenuated responses to the activation of mGluRs. Conversely, raising intracellular Ca2+ potentiated mGluR activation of the TRP-like conductance. Under control conditions, blocking G protein activation using intracellular GDPβS with or without N -(2, 6-dimethylphenylcarbamoylmethyl) triethylammonium chloride (QX-314) prevented mGluR-mediated activation of the TRP-like conductance. Following G protein blockade, however, the coupling between mGluRs 1 and/or 5 and the TRP-like conductance was rescued by increasing intracellular Ca2+ . This suggests that a G protein-independent signalling pathway is also activated by group I mGluRs. Such a pathway may represent an alternative transduction mechanism to maintain metabotropic responses under conditions where G proteins are functionally uncoupled from their cognate receptors. 相似文献
3.
We have examined the development of expression of group I and II metabotropic glutamate receptors (mGluRs) in pure rat spinal cord astrocyte cultures, using immunocytological and calcium imaging techniques. mGluR1alpha and mGluR2/3 antibodies were found to label roughly 10% of the total astrocyte population at all time points examined, whereas mGluR5 was poorly expressed in our culture system. Results from intracellular Ca2+ imaging experiments, measured using fura-2 ratio imaging, suggest that 20% of these cultured astrocytes express functional group I mGluRs (mGluR1 and/or 5). Our results contrast with previously published work in cultured cortical astrocytes where mGluR5 and not mGluR1 is expressed, suggesting that cultured astrocytes from different parts of the CNS exhibit different patterns of mGluR expression. 相似文献
4.
The effects of various psychotropic drugs (benzodiazepines, antidepressants, neuroleptics and nootropic drugs, a family of cognition activator agents) on firing rates of septohippocampal neurons, identified by electrical antidromic stimulation, were studied in the medial septum-nucleus of the diagonal band of Broca of rats anaesthetized with urethan. Extracellular potentials from single septohippocampal neurons were recorded using glass pipettes. Drugs were applied by either microiontophoresis or intravenous injections (i.v.). Benzodiazepines produced a marked depression of spontaneous firing rates of septohippocampal neurons whether applied i.v. (diazepam) or iontophoretically (flurazepam, midazolam). In addition, diazepam had a potent depressant effect on the rhythmically bursting activity of the septohippocampal neurons. Baclofen also had an inhibitory effect. Antidepressant drugs (applied by iontophoresis) as well as amphetamine, had a depressant effect on spontaneous firing rates. Neuroleptics (i.v.) had less significant or consistent effects on septohippocampal neurons, although the effects of haloperidol were usually inhibitory. Nootropic drugs were generally ineffective. These data indicate that most psychotropic drugs tested (with the exception of nootropic drugs) have an inhibitory effect on the spontaneous activity of septohippocampal neurons. However, benzodiazepines seem to be more active than antidepressants or neuroleptics. Oxotremorine (i.v.) had a potent excitatory effect on septohippocampal neurons. Atropine (i.v.) increased the septohippocampal neurons' firing rate in some cases. These results are discussed in view of the possible implication of the involvement of septohippocampal neurons in the mediation of the effects of psychotropic drugs on the central nervous system and, more specifically, on the cholinergic systems. 相似文献
5.
Metabotropic glutamate receptors (mGluRs) are expressed predominantly in dendritic regions of neurons of auditory thalamus. We studied the effects of mGluR activation in neurons of the ventral partition of medial geniculate body (MGBv) using whole cell current- and voltage-clamp recordings in brain slices. Bath application of the mGluR-agonist, 1S,3R-1-aminocyclopentan-1,3-dicarboxylic acid or 1S,3R-ACPD (5-100 microM), depolarized MGBv neurons (n = 67), changing evoked response patterns from bursts to tonic firing as well as frequency responses from resonance ( approximately 1 Hz) to low-pass filter characteristics. The depolarization was resistant to Na(+)-channel blockade with tetrodotoxin (TTX; 300 nM) and Ca(2+)-channel blockade with Cd(2+) (0.1 mM). The application of 1S, 3R-ACPD did not change input conductance and produced an inward current (I(ACPD)) with an average amplitude of 84.2 +/- 5.3 pA (at -70 mV, n = 22). The application of the mGluR antagonist, (RS)-alpha-methyl-4-carboxyphenylglycine (0.5 mM), reversibly blocked the depolarization or I(ACPD). During intracellular application of guanosine 5'-O-(3-thiotriphosphate) from the recording electrode, bath application of 1S,3R-ACPD irreversibly activated a large amplitude I(ACPD). During intracellular application of guanosine 5'-O-(2-thiodiphosphate), application of 1S, 3R-ACPD evoked only a small I(ACPD). These results implicate G proteins in mediation of the 1S,3R-ACPD response. A reduction of external [Na(+)] from 150 to 26 mM decreased I(ACPD) to 32.8 +/- 10. 3% of control. Internal applications of a Ca(2+) chelator, 1, 2-bis-(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA; 10 mM), suppressed I(ACPD), implying a contribution of a Ca(2+) signal or Na(+)/Ca(2+) exchange. However, partial replacement of Na(+) with Li(+) (50 mM) did not significantly change I(ACPD). Therefore it seemed less likely that a Na(+)/Ca(2+) exchange current was a major participant in the response. A reduction of extracellular [K(+)] from 5.25 to 2.5 mM or external Ba(2+) (0.5 mM) or Cs(+) (2 mM) did not significantly change I(ACPD) between -40 and -85 mV. Below -85 mV, 1S,3R-ACPD application reversibly attenuated an inward rectification, displayed by 11 of 20 neurons. Blockade of an inwardly rectifying K(+) current with Ba(2+) (1 mM) or Cs(+) (2-3 mM) occluded the attenuation. In the range positive to -40 mV, 1S, 3R-ACPD application activated an outward current which Cs(+) blocked; this unmasked a voltage dependence of the inward I(ACPD) with a maximum amplitude at approximately -30 mV. The I(ACPD) properties are consistent with mGluR expression as a TTX-resistant, persistent Na(+) current in the dendritic periphery. We suggest that mGluR activation changes the behavior of MGBv neurons by three mechanisms: activation of a Na(+)-dependent inward current; activation of an outward current in a depolarized range; and inhibition of the inward rectifier, I(KIR). These mechanisms differ from previously reported mGluR effects in the thalamus. 相似文献
6.
Group I metabotropic glutamate receptors in spiral ganglion neurons contribute to excitatory neurotransmissions in the cochlea 总被引:3,自引:0,他引:3
Evidence has accumulated over the years supporting glutamate as the primary neurotransmitter used by hair cells in afferent cochlear neurotransmission. Besides acting on ionotropic glutamate receptors, glutamate also activates second messenger systems via G-protein-coupled metabotropic glutamate receptors (mGluRs) to modulate neuronal excitability. However, it is unclear whether mGluRs participate in cochlear neurotransmission. We present evidence directly supporting a functional role for group I metabotropic glutamate receptors (mGluRIs) in spiral ganglion (SG) neurons. The presence of mGluRI and downstream G-protein subunits was demonstrated by molecular biology and immunolabeling methods. Direct activation of mGluRIs in cultured SG neurons resulted in transient increases of intracellular Ca(++) concentration and transient inward currents that gave rise to firings of multiple action potentials. These responses showed mGluRI pharmacological specificity and quickly desensitized. We next examined changes in cochlear function after noise exposure as a result of pharmacologically manipulating cochlear glutamate neurotransmission. These in vivo tests showed that blocking non-N-methyl-D-aspartic acid glutamate receptors was sufficient to eliminate compound action potentials of the auditory nerve, and pharmacologically inhibiting mGluRIs in the cochlea did not significantly affect the hearing threshold. In contrast, blocking mGluRIs lowered the amplitude of compound action potentials at louder sound levels and reduced the noise-induced temporary threshold shift. Our results suggest that although mGluRIs did not initiate fast excitatory cochlear neurotransmission, their activation contributed to the growth of excitatory responses of the cochlea. As a result, the cochlea was more resistant to noise-induced temporary hearing losses without the activation of mGluRIs in SG neurons. 相似文献
7.
8.
Desensitization of heterologously expressed metabotropic glutamate receptor 5a (mGluR5a) was examined in rat sympathetic neurons. Calcium currents in cells expressing mGluR5a exhibited substantial inhibition in response to glutamate exposure. In the continued presence of glutamate, inhibition attenuated rapidly over the course of about a minute. Desensitization was eliminated when a nonhydrolyzable ATP analogue was substituted for ATP in the pipette solution, suggesting that desensitization was mediated by a phosphorylation event. Next, pharmacological agents were used to investigate the nature of the kinase involved in desensitization. Desensitization was sensitive to the nonspecific kinase inhibitor, staurosporine, but not H-7, another nonspecific kinase inhibitor. Inhibitors of myosin light chain kinase and calmodulin-dependent kinase were without effect on desensitization. However, desensitization was sensitive to the protein kinase C inhibitor bisindolymaleimide. In contrast, G?6976, a selective inhibitor of conventional protein kinase C isoforms, was without effect. In addition, desensitization persisted in the presence of 10 mM intracellular bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid, a fast Ca(2+) chelator. Finally, overexpression of wild-type calmodulin, which can bind mGluR5 and inhibit phosphorylation, did not alter mGluR desensitization. Two Ca(2+)-binding-deficient calmodulin mutants were also without effect. These data indicate a role for nonconventional protein kinase C isoforms as a mediator of mGluR5 desensitization and that the phosphorylation of mGluR5a that competes with calmodulin binding does not mediate desensitization. 相似文献
9.
Ryuta Koyama Maki Kobayashi Yamada Nobuyoshi Nishiyama Norio Matsuki Yuji Ikegaya 《The Journal of physiology》2002,539(1):157-162
Glutamate is the main neurotransmitter at hippocampal mossy fibre (MF) terminals. Because neurotransmitters have been proposed as regulating factors of neural network formation and neurite morphogenesis in the developing CNS, we examined the possible contribution of glutamate to MF pathfinding. Entorhino-hippocampal slices prepared from early postnatal rats were cultivated in the presence of glutamate receptor antagonists. Timm histochemical staining revealed that pharmacological blockade of metabotropic glutamate receptors (mGluR), but not of ionotropic glutamate receptors, induced abnormal outgrowth of the MFs. When slices were cultured in the presence of mGluR antagonists, DiI-labelled MF axons displayed a great degree of defasciculation, and MF-mediated EPSPs in the CA3 pyramidal cells were altered. Similar results were obtained for a selective antagonist of group II mGluR, but not of group I or III mGluR. Glutamate is, therefore, likely to regulate MF outgrowth via activation of group II mGluR. The present study may provide a novel role of glutamate in hippocampal development. 相似文献
10.
Glutamate is the major excitatory neurotransmitter in the brain and plays a unique role in a variety of central nervous system (CNS) functions. The discovery of the metabotropic receptors (mGluRs), a family of G-protein coupled receptors than can be activated by glutamate, has led to an impressive number of studies in recent years aimed at understanding their biochemical, physiological and pharmacological characteristics. The eight mGluRs now known are divided into three groups according to their sequence homology, signal transduction mechanisms, and agonist selectivity. Group I mGluRs include mGluR1 and mGluR5, which are linked to the activation of phospholipase C; Groups II and III include all others and are negatively coupled to adenylyl cyclases. The availability in recent years of agents selective for Group I mGluRs has made possible the study of the physiological roles of these receptors in the CNS. In addition to mediating glutamatergic neurotransmission, Group I mGluRs can modulate other neurotransmitter receptors, including GABA and the ionotropic glutamate receptors. Group I mGluRs are involved in many CNS functions and may participate in a variety of disorders such as pain, epilepsy, ischemia, and chronic neurodegenerative diseases. This class of receptor may provide important pharmacological therapeutic targets and elucidating its functions will be relevant to develop new treatments for neurological and psychiatric disorders in which glutamatergic neurotransmission is abnormally regulated. In this review anatomical, physiological and pharmacological results are presented with a special emphasis on the role of Group I mGluRs in functional and pathological processes. 相似文献
11.
Group I metabotropic glutamate receptor inhibition selectively blocks a prolonged Ca(2+) elevation associated with age-dependent excitotoxicity 总被引:2,自引:0,他引:2
Attucci S Clodfelter GV Thibault O Staton J Moroni F Landfield PW Porter NM 《Neuroscience》2002,112(1):183-194
It has been recognized for some years that a prolonged Ca(2+) elevation that is predictive of impending cell death develops in cultured neurons following excitotoxic insult. In addition, neurons exhibit enhanced sensitivity to excitotoxic insult with increasing age in culture. However, little is known about the processes that selectively regulate the post-insult Ca(2+) elevation and therefore, it remains unclear whether it is associated specifically with age-dependent toxicity.Here, we tested the hypothesis that a group I metabotropic glutamate receptor antagonist selectively modulates the prolonged Ca(2+) elevation in direct association with its protective effects against excitotoxicity. Rat hippocampal cultures of two ages (8-9 and 21-28 days in vitro) were exposed to a 5-min glutamate insult (400 microM in younger and 10 microM in older cultures) sufficient to kill >50% of the neurons, and were treated with vehicle or the specific group I metabotropic glutamate receptor antagonist 1-aminoindan-1,5-dicarboxylic acid (AIDA; 1 mM), throughout and following the insult. Neuronal survival was quantified 24 h after insult. In parallel studies, neurons of similar age in culture were imaged ratiometrically with a confocal microscope during and for 60 min after the glutamate insult. A large post-insult Ca(2+) elevation was present in older but not most younger neurons. The N-methyl-D-aspartate receptor antagonist, MK-801, blocked the Ca(2+) elevation both during and following the insult. In contrast, AIDA blocked only the post-insult prolonged Ca(2+) elevation in older neurons. Moreover, AIDA was neuroprotective in older but not younger cultures.From these results we suggest that the post-insult Ca(2+) elevation is regulated differently from the Ca(2+) elevation during glutamate insult and is modulated by group I metabotropic glutamate receptors. Further, the prolonged Ca(2+) elevation appears to be directly linked to an age-dependent component of vulnerability. 相似文献
12.
Intracellular recordings were made from thalamocortical neurons in slices of rat dorsal lateral geniculate nucleus in vitro, where ionotropic glutamate receptors and ionotropic and metabotropic GABA receptors had been blocked. The activation of specific metabotropic glutamate receptors by exogenous agonists and by the electrical stimulation of the corticothalamic pathway was then assessed using selective antagonists. The specific group I agonist (S)-3, 5-dihydoxyphenylglycine and the non-selective agonist (1S, 3R)-1-aminocyclo-pentane-1,3-dicarboxylic acid both caused a concentration-dependent depolarization of membrane potential. These effects were associated with an increase in the apparent input resistance, and a more robust expression of both the depolarizing sag of the voltage response and the low-threshold Ca(2+) potential and an increase in thalamocortical neuron excitability. However, group I agonists selective for the mGlu5 receptor and agonists selective for group II and III receptors did not have these effects. Consequently, these data suggested that these actions were mediated specifically by the group I mGlu1 receptor.The activation of cortical fibres, with trains of 50 stimuli at 50Hz, resulted in a two-component depolarizing response. The first part of this synaptic response and the agonist-induced depolarization of membrane potential were depressed by the novel group I receptor antagonists LY367366 and LY367385, which are active at mGlu1 receptors. However, they were not blocked by 6-methyl-2-(phenylethyl)-pyridine, a highly selective mGlu5 receptor antagonist.Thus, the membrane potential depolarization of thalamocortical neurons caused either by exogenous agonists or by the stimulation of cortical fibres resulted from the specific activation of mGlu1 but not mGlu5 receptors. This result is consistent with the location of this receptor type on the distal dendrites of thalamocortical neurons in the dorsal lateral geniculate nucleus of the thalamus. 相似文献
13.
Glutamate is the predominant excitatory neurotransmitter in the vertebrate CNS. Ionotropic glutamate receptors mediate fast excitatory actions whereas metabotropic glutamate receptors (mGluRs) mediate a variety of slower effects. For example, mGluRs can mediate presynaptic inhibition, postsynaptic excitation, or, more rarely, postsynaptic inhibition. We previously described an unusually slow form of postsynaptic inhibition in one class of projection neuron in the song-control nucleus HVc of the songbird forebrain. These neurons, which participate in a circuit that is essential for vocal learning, exhibit an inhibitory postsynaptic potential (IPSP) that lasts several seconds. Only a portion of this slow IPSP is mediated by GABA(B) receptors. Since these cells are strongly hyperpolarized by agonists of mGluRs, we used intracellular recording from brain slices to investigate the mechanism of this hyperpolarization and to determine whether mGluRs contribute to the slow synaptic inhibition. We report that mGluRs hyperpolarize these HVc neurons by activating G protein-coupled, inwardly-rectifying potassium (GIRK) channels. MGluR antagonists blocked this response and the slow synaptic inhibition. Thus, glutamate can combine with GABA to mediate slow synaptic inhibition by activating GIRK channels in the CNS. 相似文献
14.
谷氨酸是脑内最重要的兴奋性递质 ,除参与快速的兴奋性突触传递外 ,还与突触前递质释放、突触传递的长时程增强和长时程抑制、学习和记忆过程、突触发育的可塑性等正常生理功能密切相关。谷氨酸过量时还具有神经毒作用 ,可导致神经元死亡。谷氨酸受体分为两类 :(1)离子型谷氨酸受体 (ionotrop-ic glutam ate receptors,i Glu Rs) ,属于配体门控离子通道 ,包括 NMDA、AMPA和 KA三种亚型 ,均以异源性蛋白的多聚体形式存在 [1 ] ;(2 )代谢型谷氨酸受体 (m etabotropic gluta-mate receptors,m Glu Rs) ,是一组新型的 G-蛋白偶联受体。m … 相似文献
15.
A metabotropic glutamate receptor variant functions as a taste receptor 总被引:12,自引:0,他引:12
Sensory transduction for many taste stimuli such as sugars, some bitter compounds and amino acids is thought to be mediated via G protein-coupled receptors (GPCRs), although no such receptors that respond to taste stimuli are yet identified. Monosodium L-glutamate (L-MSG), a natural component of many foods, is an important gustatory stimulus believed to signal dietary protein. We describe a GPCR cloned from rat taste buds and functionally expressed in CHO cells. The receptor couples negatively to a cAMP cascade and shows an unusual concentration-response relationship. The similarity of its properties to MSG taste suggests that this receptor is a taste receptor for glutamate. 相似文献
16.
Lavialle-Defaix C Gautier H Defaix A Lapied B Grolleau F 《Journal of neurophysiology》2006,96(5):2437-2450
Using whole cell patch-clamp technique and immunocytochemistry on adult dorsal unpaired median (DUM) neurons isolated from the cockroach Periplaneta americana CNS, we reported the characterization of a native mGluR, sharing pharmacological properties with vertebrate metabotropic glutamate receptor III (mGluRIII) that regulated voltage-dependent sodium current (I(Na)). The global I(Na) was dissociated by means of l-glutamate sensitivity, deactivation time constant, voltage dependence of activation and inactivation, recovery from inactivation, and intracellular regulation process. These two currents were respectively designated I(Na1) and I(Na2) for l-glutamate-sensitive and -insensitive sodium currents. l-glutamate selectively reduced I(Na1) by an increase of intracellular cAMP level. Using different activators and/or inhibitors of G proteins and cAMP/PKA cascade, together with St-Ht31 (an inhibitor of PKA binding to AKAP) and AKAP-79 antibodies, we established that mGluRIII was linked to I(Na1) by a Gi/o and a suspected Gs protein. According to the activated signaling pathway, l-glutamate elevated the cAMP level, which thereby activated cytosolic PKA and released PKA bound to AKAP. As expected from both biophysical and pharmacological studies, we showed that, through an inhibition of I(Na1), l-glutamate increased DUM neuron spontaneous electrical activity. These results indicated that such mGluRIII-activated dual processes provided a new physiological control of pacemaker neuronal firing. 相似文献
17.
Patch pipettes were used to record currents in whole-cell configuration to study the effects of group II metabotropic glutamate receptor (mGluR) stimulation on synaptic transmission in slices of rat subthalamic nucleus. Evoked glutamatergic excitatory postsynaptic currents (EPSCs) were reversibly reduced by the selective group II mGluR agonist (2' S ,2' R ,3' R )-2-(2',3'-dicarboxycyclopropyl)glycine (DCG IV) in a concentration-dependent manner, with an IC50 of 0.19 ± 0.05 µ m . DCG IV (1 µ m ) had no effect on inhibitory postsynaptic currents mediated by GABA. DCG IV-induced inhibition of EPSCs was reversed by the selective group II mGluR antagonist LY 341495 (100 n m ) and mimicked by another selective group II agonist (2 S ,1' S ,2' S )-2-(carboxycyclopropyl)glycine ( l -CCG-I). Inhibition of EPSC amplitude by DCG IV and l -CCG-I was associated with an increase in the paired-pulse ratio of EPSCs. The protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (2 µ m ) reduced the inhibitory effect of DCG IV on EPSCs. However, the response to DCG IV was not affected by the protein kinase A (PKA) activator forskolin (20 µ m ), by the adenylyl cyclase inhibitor MDL 12230A (20 µ m ), or by the phosphodiesterase inhibitor Ro 20–1724 (50 µ m ). DCG IV-induced inhibition of EPSCs was reduced by the non-selective protein kinase inhibitors H-7 (100 µ m ), H-8 (50 µ m ) and HA-1004 (100 µ m ). These results suggest that group II mGluR stimulation acts presynaptically to inhibit glutamate release by a PKC-dependent mechanism in the subthalamic nucleus. 相似文献
18.
Alessandro Stefani Francesca Spadoni Giorgio Bernardi 《Experimental brain research. Experimentelle Hirnforschung. Expérimentation cérébrale》1998,119(2):237-244
In pyramidal neurons of the rat sensorimotor cortex, we have investigated the modulation of high voltage-activated calcium
currents by agonists at group III metabotropic glutamate receptors (mGluRs). l-2-Amino-4-phosphonobutyrate (l-AP4) and l-serine-O-phosphate (l-SOP) reduced calcium currents in the vast majority of cells isolated from the adult animal. Interestingly, this
modulation was negligible in the young animals (2–14 postnatal days), becoming prominent only after full development (more
than 21 days). The efficacy of l-SOP mimicked l-AP4 in reducing calcium currents. Yet, l-SOP produced saturating responses at about 3 μM and significant modulation at nanomolar concentrations (EC50=923 nM). The voltage-dependence of the group III mGluR-mediated responses was evaluated by comparing the inhibition of “standard”
and “facilitated” conductances. On the calcium currents facilitated by depolarizing prepulse, 3 μM l-SOP produced a mean 13.4% inhibition compared with 19.6% in control condition, supporting the proposition that part of the
modulation was voltage-dependent. The calcium current inhibition caused by the activation of group III metabotropic glutamate
receptors was only partially sensitive to ω-conotoxin GVIA, but largely inhibited by ω-agatoxin IVA, at concentrations (100
nM) known to block P- and Q-type channels. Conversely, the dihydropyridine antagonists nifedipine and nimodipine (50–500 nM)
failed to prevent the group III mGluR-mediated response in the majority of tested cells (more than 65%). Furthermore, the
long-lasting tail promoted by the inclusion of the dihydropyridine agonist Bay K 8644 was not consistently affected by l-SOP
and l-AP4. These findings imply that the observed modulation involves different channel subtypes, namely N- and P- or Q-type
channels, and suggests that group III mGluRs play an important role in the intrinsic and synaptic functions of adult cortical
pyramidal neurons.
Received: 10 April 1997 / Accepted: 10 September 1997 相似文献
19.
The nucleus tractus solitarius (NTS) is essential for coordinating baroreflex control of blood pressure. The baroreceptor sensory fibers make glutamatergic synapses onto second-order NTS neurons. Glutamate spillover activates Group II and III presynaptic metabotropic glutamate receptors (mGluRs) on the baroreceptor central terminals to inhibit synaptic transmission, but the role of postsynaptic mGluRs is less understood. We used whole cell patch-clamping in anatomically identified second-order baroreceptor neurons in a brain stem slice to test whether Group I, II, and III mGluRs had postsynaptic effects at this first central synapse in the baroreceptor afferent pathway. The Group I agonist DHPG induced a depolarization and spiking that was mimicked by endogenous glutamate. Group I mGluR blockade prevented the depolarization and slightly hyperpolarized the neurons, suggesting a small tonic Group I mGluR activation. The DHPG-induced inward current consisted of voltage-dependent and -independent components; the former was blocked by TEA and the latter was blocked by replacing extracellular NaCl with LiCl or Tris-HCl. The DHPG current was potentiated in a Ca2+-free external solution and was diminished by intracellular dialysis with BAPTA and by perfusion with Na+-Ca2+ exchanger blockers, KB-R7943 or 3',4'-dichlorobenzamil. Intracellular dialysis with GDPbetaS or heparin and perfusion with the PLC inhibitor U-73122 or the Ca2+-calmodulin inhibitor W-7 significantly decreased the DHPG current. The data suggest that Group I mGluRs on baroreceptor neurons are functional; are activated by endogenous glutamate; and activate a Na+-Ca2+ exchanger through G-protein, PLC, IP3, and Ca2+-calmodulin mechanisms to excite the cell, thus providing postsynaptic mechanisms to enhance or prolong baroreceptor signal transmission. 相似文献
20.
Keele NB Zinebi F Neugebauer V Shinnick-Gallagher P 《Journal of neurophysiology》2000,83(4):2458-2462
Postsynaptic metabotropic glutamate (mGlu) receptor-activated inward current mediated by Na(+)-Ca(2+) exchange was compared in basolateral amygdala (BLA) neurons from brain slices of control (na?ve and sham-operated) and amygdala-kindled rats. In control neurons, the mGlu agonist, quisqualate (QUIS; 1-100 microM), evoked an inward current not associated with a significant change in membrane slope conductance, measured from current-voltage relationships between -110 and -60 mV, consistent with activation of the Na(+)-Ca(2+) exchanger. Application of the group I selective mGlu receptor agonist (S)-3,5-dihydroxyphenylglycine [(S)-DHPG; 10-1000 microM] or the endogenous agonist, glutamate (10-1000 microM), elicited the exchange current. QUIS was more potent than either (S)-DHPG or glutamate (apparent EC(50) = 19 microM, 57 microM, and 0.6 mM, respectively) in activating the Na(+)-Ca(2+) exchange current. The selective mGlu5 agonist, (R, S)-2-chloro-5-hydroxyphenylglycine [(R,S)-CHPG; apparent EC(50) = 2. 6 mM] also induced the exchange current. The maximum response to (R, S)-DHPG was about half of that of the other agonists suggesting partial agonist action. Concentration-response relationships of agonist-evoked inward currents were compared in control neurons and in neurons from kindled animals. The maximum value for the concentration-response relationship of the partial agonist (S)-DHPG- (but not the full agonist- [QUIS or (R,S)-CHPG]) induced inward current was shifted upward suggesting enhanced efficacy of this agonist in kindled neurons. Altogether, these data are consistent with a kindling-induced up-regulation of a group I mGlu-, possibly mGlu5-, mediated responses coupled to Na(+)-Ca(2+) exchange in BLA neurons. 相似文献