首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 15 毫秒
1.
Summary After exercise dehydration (3% of body weight) the restoration of water and electrolyte balance was followed in 6 male subjects. During a 2 h rest period after exercise, a drink of one of four solutions was given as 9×300 ml portions at 15 min intervals: control (C-drink), high potassium (K-drink), high sodium (Na-drink) or high sugar (S-drink). An exercise test (submaximal and supramaximal work) was performed before dehydration and after rehydration. Dehydration reduced plasma volume by 16%, a process reversed on resting even before fluid ingestion began, due to release of water accumulated in the muscles during exercise. After 2 h rehydration, plasma volume was above the initial resting value with all 4 drinks. The final plasma volumes after the Na-drink (+14%) and C-drink (+9%) were significantly higher than after the K- and S-drinks. The Na-drink favoured filling of the extracellular compartment, whereas the K- and S-drinks favoured intracellular rehydration. In spite of the higher than normal plasma volume after rehydration, mean heart rate during the submaximal test was 10 bpm higher after rest and rehydration than in the initial test, and was not different between the drinks. The amount of work which could be performed in the supramaximal test (105% ) was 20% less after exercise dehydration and subsequent rest and rehydration than before. This reduction was similar for all drinks, and may be due to a decreased muscle glycogen content (70% of initial) at the time of the second test. Danish National Institute of Occupational Health  相似文献   

2.
The purpose of the study was to characterize the effects of muscular contractions (the muscle pump) and body posture on cardiovascular responses during recovery from moderate exercise in the upright-sitting or supine positions. Heart rate (HR), stroke volume (SV), and cardiac output (CO) were measured in seven young male subjects at rest and during 10-min of cycle exercise at 60% of peak oxygen uptake This was followed by either complete rest for 5 min (inactive recovery) or cycling at for 5 min (active recovery) in the upright or supine positions. In the upright position, an initial rapid decrease in HR was followed by a gradual decrease in HR, and this response was similar when comparing inactive and active recoveries. Upright SV during inactive recovery decreased gradually to the pre-exercise resting level, whereas upright SV during active recovery remained significantly elevated. In contrast, in the supine position, the HR during active recovery decreased, but remained significantly higher than that during inactive recovery. Changes in supine SV were similar when comparing inactive and active recovery. Thus, maintenance of SV and HR resulted in significantly greater CO during active recovery than during inactive recovery, regardless of body position. HR was greater during supine active-recovery than during supine inactive-recovery, and there was no difference in SV. These data suggest that the muscle pump is less important in facilitating venous return and vagal resumption in the supine position as compared to the upright position.  相似文献   

3.
This investigation compares the cardiovascular responses of normal (n=10) and cardiac transplant (n=14) subjects to peak arm and leg exercise. It also tests the hypothesis that the higher heart rate (f c) in normal subjects during light (30 W) submaximal arm versus leg exercise is due to cardiac innervation. In cardiac transplant patients, power output, oxygen consumption ,f c and rate pressure product were 54%, 28%, 7%, and 8% lower during peak arm than leg exercise, respectively. In normal subjects, power output, ,f c and rate pressure product were 61%, 33%, 8%, and 11% lower during peak arm than leg exercise, respectively. In cardiac transplant patients there was no significant difference in absolutef c during submaximal arm and leg exercise. In normal subjects, absolutef c during arm and leg exercise was [mean (SD)] 97 (4) beats · min–1 and 92 (4) beats · min–1, respectively (P=0.07). Plasma noradrenaline was increased more during arm than leg exercise in both cardiac transplant and normal subjects. Maximal leg testing is useful when determining the capacity of cardiac transplant patients to perform arm work. The higher absolutef c reported by other investigators for normal subjects during submaximal arm versus leg exercise may be mediated by cardiac innervation.  相似文献   

4.
The occurrence of post-exercise hypotension after resistance exercise is controversial, and its mechanisms are unknown. To evaluate the effect of different resistance exercise intensities on post-exercise blood pressure (BP), and hemodynamic and autonomic mechanisms, 17 normotensives underwent three experimental sessions: control (C—40 min of rest), low- (E40%—40% of 1 repetition maximum, RM), and high-intensity (E80%—80% of 1 RM) resistance exercises. Before and after interventions, BP, heart rate (HR), and cardiac output (CO) were measured. Autonomic regulation was evaluated by normalized low- (LFR–Rnu) and high-frequency (HFR–Rnu) components of the R–R variability. In comparison with pre-exercise, systolic BP decreased similarly in the E40% and E80% (−6 ± 1 and −8 ± 1 mmHg, P < 0.05). Diastolic BP decreased in the E40%, increased in the C, and did not change in the E80%. CO decreased similarly in all the sessions (−0.4 ± 0.2 l/min, P < 0.05), while systemic vascular resistance (SVR) increased in the C, did not change in the E40%, and increased in the E80%. Stroke volume decreased, while HR increased after both exercises, and these changes were greater in the E80% (−11 ± 2 vs. −17 ± 2 ml/beat, and +17 ± 2 vs. +21 ± 2 bpm, P < 0.05). LFR–Rnu increased, while ln HFR–Rnu decreased in both exercise sessions. In conclusion: Low- and high-intensity resistance exercises cause systolic post-exercise hypotension; however, only low-intensity exercise decreases diastolic BP. BP fall is due to CO decrease that is not compensated by SVR increase. BP fall is accompanied by HR increase due to an increase in sympathetic modulation to the heart.  相似文献   

5.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号