首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
When the lactose (lac) permease of Escherichia coli is expressed from the lac promoter at relatively low rates, deletion of amino acid residues 2-8 (delta 7) or 2-9 (delta 8) from the hydrophilic N terminus has a relatively minor effect on the ability of the permease to catalyze active lactose transport. Activity is essentially abolished, however, and the permease is hardly detected in the membrane when two additional amino acid residues are deleted (delta 10), and mutants deleted of residues 2-23 (delta 22) or 2-39 (delta 38) also exhibit no activity and are not inserted into the membrane. Dramatically, when the defective deletion mutants are overexpressed at high rates via the T7 promoter, delta 10 and delta 22 are inserted into the membrane in a stable form and catalyze active lactose transport in a highly significant manner, whereas delta 38 is hardly detected in the membrane and exhibits no activity. Interestingly, a fusion protein consisting of delta 38 and the ompA leader peptide is inserted into the membrane but exhibits no transport activity. The results indicate that the N-terminal hydrophilic domain of lac permease and the N-terminal half of the first putative transmembrane alpha-helix are not mandatory for either membrane insertion or transport activity.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
-Screening of an expression human liver cDNA library resulted in the isolation of several cDNA clones homologous to sterol regulatory element-binding protein-1 (SREBP-1) that recognize the regulatory element AIIAB and AIIK of the human apoA-II promoter. DNaseI footprinting of the apoA-II promoter using SREBP-1 (1 to 460) expressed in bacteria identified 5 overall protected regions designated AIIAB (-64 to -48), AIICD (-178 to -154), AIIDE (-352 to -332), AIIHI (-594 to -574), and AIIK (-760 to -743). These regions contain inverted E-box palindromic or direct repeat motifs and bind SREBP-1 with different affinities. Transient cotransfection experiments in HepG2 cells showed that SREBP-1 transactivated the -911/29 apoA-II promoter 3.5-fold as well as truncated apoA-II promoter segments that contain 1, 2, 3, or 4 SREBP binding sites. Mutagenesis analysis showed that transactivation by SREBP was mainly affected by mutations in element AIIAB. Despite the strong transactivation of the apoA-II promoter by SREBP-1 we could not demonstrate significant changes on the endogenous apoA-II mRNA levels of HepG2 cells after cotransfection with SREBP-1 or in the presence or absence of cholesterol and 25-OH-cholesterol. An SREBP-1 mutant lacking the amino-terminal activation domain bound normally to its cognate sites and repressed the apoA-II promoter activity. Repression was also caused by specific amino acid substitutions of Leu, Val, or Gly for Lys359, which affected DNA binding. Repression by the DNA binding-deficient mutants was abolished by deletion of the amino-terminal activation domain (1 to 90) of SREBP-1. Overall, the findings suggest that the wild-type SREBP-1 can bind and transactivate efficiently the apoA-II promoter in cell culture. SREBP-1 mutants lacking the activation domain bind to their cognate sites and directly repress the apoA-II promoter whereas mutants defective in DNA binding indirectly repress the apoA-II promoter activity, possibly by a squelching mechanism.  相似文献   

15.
16.
17.
18.
19.
20.
Butyrate-inducible elements in the human gamma-globin promoter   总被引:3,自引:0,他引:3  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号