共查询到20条相似文献,搜索用时 15 毫秒
1.
Shujun Shu Chunyang Sun Xinge Zhang Zhongming Wu Zhen Wang Chaoxing Li 《Acta biomaterialia》2010,6(1):210-217
Biodegradable hollow capsules encapsulating protein drugs were prepared via layer-by-layer assembly of water-soluble chitosan and dextran sulfate on protein-entrapping amino-functionalized silica particles and the subsequent removal of the silica. In order to enhance the encapsulated efficiency and decrease its burst release, we designed this new system to fulfill these two goals. Bovine serum albumin (BSA), which was used as model protein, was entrapped in the nanocapsules. This system demonstrated a good capacity for the encapsulation and loading of BSA. The burst release was decreased to less than 10% in phosphate-buffered saline within 2 h. No significant conformation change was noted from the released BSA in comparison with native BSA by using circular dichroism spectroscopy. Cell viability study suggested that the nanocapsules had good biocompatibility. The drug release kinetics mechanism is Fickian diffusion. These kinds of novel composite nanocapsules may offer a promising delivery system for water-soluble proteins and peptides. 相似文献
2.
Morille M Passirani C Dufort S Bastiat G Pitard B Coll JL Benoit JP 《Biomaterials》2011,32(9):2327-2333
With the goal of generating an efficient vector for systemic gene delivery, a new kind of nanocarrier consisting of lipid nanocapsules encapsulating DOTAP/DOPE lipoplexes (DNA LNCs) was pegylated by the?post-insertion of amphiphilic and flexible polymers. The aim of this surface modification was to create a long-circulating vector, able to circulate in the blood stream and efficient in transfecting tumoral cells after passive targeting by enhanced permeability and retention effect (EPR effect). PEG conformation, electrostatic features, and hydrophylicity are known to be important factors able to influence the pharmacokinetic behaviour of vectors. In this context, the surface structure characteristics of the newly pegylated DNA LNCs were studied by measuring electrophoretic mobility as a function of ionic strength in order to establish a correlation between surface properties and in vivo performance of the vector. Finally, thanks to this PEGylation, gene expression was measured up to 84-fold higher in tumor compared to other tested organs after intravenous injection. The present results indicate that PEGylated DNA LNCs are promising carriers for an efficient cancer gene therapy. 相似文献
3.
Arnaud Vonarbourg Catherine Passirani Léa Desigaux Emilie Allard Patrick Saulnier Olivier Lambert Jean-Pierre Benoit Bruno Pitard 《Biomaterials》2009,30(18):3197-3204
Most of DNA synthetic complexes result from the self-assembly of DNA molecules with cationic lipids or polymers in an aqueous controlled medium. However, injection of such self-assembled complexes in medium like blood that differ from that of their formulation leads to strong instability. Therefore, DNA vectors that have physico-chemical properties and structural organisation that will not be sensitive to a completely different medium in terms of ionic and protein composition are actively sought. To this end, the goal here was to discover and optimize a nanostructured system where DNA molecules would be encapsulated in nanocapsules consisting in an oily core and a shell covered by PEG stretches obtained through a nanoemulsion process in the absence of organic solvent. This encapsulation form of DNA molecules would prevent interactions with external hostile biological fluid. The results show the entrapment of lipoplexes into lipid nanocapsules, leading to the formation of neutral 110 nm-DNA nanocapsules. They were weakly removed by the immune system, displaying an increased blood half-life, and improved carcinoma cell transfection, in comparison to the parent lipoplexes. Our results demonstrate that the fabrication of nanocapsules encapsulating hydrophilic DNA in an oily core that meet criteria for blood injection is possible. 相似文献
4.
Kenia Pissinate Érica dos Santos Martins-Duarte Scheila Rezende Schaffazick Catiúscia Padilha de Oliveira Rossiane Cláudia Vommaro Sílvia Stanisçuaski Guterres Adriana Raffin Pohlmann Wanderley de Souza 《Parasitology research》2014,113(2):555-564
We propose an innovative product based on the nanoencapsulation of pyrimethamine (PYR), aiming an improvement of drug efficacy for the treatment of toxoplasmosis. The in vitro cytotoxicity effect of encapsulated PYR and PYR-colloidal suspension was concomitantly evaluated against LLC-MK2 lineage and mouse peritoneal macrophage showing that the cells had similar tolerance for both PYR encapsulated or in the aqueous suspension. CF1 mice acutely infected with tachyzoites of Toxoplasma gondii RH strain treated with different doses (5.0–10 mg/kg/day) of PYR-nanocapsules had survival rate higher than the animals treated with the same doses of non-encapsulated PYR. Thus, encapsulation of PYR improved the efficacy of this drug against an acute model of toxoplasmosis in mice and can be considered an alternative for reducing the dose of PYR, which, in turn, could also reduce the side effects associated to the treatment. 相似文献
5.
Crosslinked polysaccharide and composite polysaccharide capsules with diameters ranging from 200 nm to several microns and wall thicknesses of several tens of nanometers have been fabricated by interfacial polymerization of methacrylated N,N-diethylaminoethyl dextran (DdexMA) and DdexMA-vinyl terminated polylactide macromonomers (PLAM). In this method, chloroform droplets or PLAM-containing chloroform droplets were dispersed in water, on which water soluble DdexMA was polymerized to form closed shell structure. Their hollow nature was confirmed by confocal laser scanning microscopy and transmission electron microscopy. Dynamic light scattering revealed that these capsules possess good stability against coagulation during storage. Fourier transform infrared and elemental analysis found that the DdexMA capsules were actually composed of crosslinked DdexMA, while the DdexMA-PLAM capsules were composed of the crosslinked DdexMA-PLAM copolymers and PLAM. By dissolution of ibuprofen in the chloroform droplets, drug-loaded capsules were also fabricated. It was found that the loaded drug could be released again in a sustained manner for up to 100 h. The capsule walls had a prominent effect in slowing down the drug release rate, particularly for the DdexMA-PLAM capsules. 相似文献
6.
Demirkan A Amin N Isaacs A Jarvelin MR Whitfield JB Wichmann HE Kyvik KO Rudan I Gieger C Hicks AA Johansson Å Hottenga JJ Smith JJ Wild SH Pedersen NL Willemsen G Mangino M Hayward C Uitterlinden AG Hofman A Witteman J Montgomery GW Pietiläinen KH Rantanen T Kaprio J Döring A Pramstaller PP Gyllensten U de Geus EJ Penninx BW Wilson JF Rivadeneria F Magnusson PK Boomsma DI Spector T Campbell H Hoehne B Martin NG Oostra BA McCarthy M Peltonen-Palotie L Aulchenko Y Visscher PM Ripatti S 《European journal of human genetics : EJHG》2011,19(7):813-819
Serum concentrations of low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), triglycerides (TGs) and total cholesterol (TC) are important heritable risk factors for cardiovascular disease. Although genome-wide association studies (GWASs) of circulating lipid levels have identified numerous loci, a substantial portion of the heritability of these traits remains unexplained. Evidence of unexplained genetic variance can be detected by combining multiple independent markers into additive genetic risk scores. Such polygenic scores, constructed using results from the ENGAGE Consortium GWAS on serum lipids, were applied to predict lipid levels in an independent population-based study, the Rotterdam Study-II (RS-II). We additionally tested for evidence of a shared genetic basis for different lipid phenotypes. Finally, the polygenic score approach was used to identify an alternative genome-wide significance threshold before pathway analysis and those results were compared with those based on the classical genome-wide significance threshold. Our study provides evidence suggesting that many loci influencing circulating lipid levels remain undiscovered. Cross-prediction models suggested a small overlap between the polygenic backgrounds involved in determining LDL-C, HDL-C and TG levels. Pathway analysis utilizing the best polygenic score for TC uncovered extra information compared with using only genome-wide significant loci. These results suggest that the genetic architecture of circulating lipids involves a number of undiscovered variants with very small effects, and that increasing GWAS sample sizes will enable the identification of novel variants that regulate lipid levels. 相似文献
7.
Nanomaterials with the ability of sequestering target molecules hold great potential for a variety of applications. To ensure the stable sequestration, most of these nanomaterials have been traditionally designed with a clear boundary or compact structures and behave as closed systems. While this feature is beneficial to applications such as drug delivery, it may pose a challenge to applications where fast molecular transport from the environment to nanomaterials is critical. Thus, this study was aimed at exploring a nanomaterial with affinity DNA polymers and nanoparticles as an open system with function similar to jellyfish tentacles in sequestering target molecules from surroundings. The results show that this nanomaterial can effectively and rapidly sequester both small molecule drugs and large molecule biologics and resultantly mitigate their biological effects. Thus, this nanomaterial holds potential as a universal nanoscale antidote for drug removal and detoxification. While this nanomaterial was evaluated by using drug removal and detoxification as a model, the synthesis of periodically oriented affinity polymers on a nanoparticle with the capability of sequestering target molecules may be tuned for broad applications such as separation, sensing, imaging and drug delivery. 相似文献
8.
Evaluation of pegylated lipid nanocapsules versus complement system activation and macrophage uptake
Vonarbourg A Passirani C Saulnier P Simard P Leroux JC Benoit JP 《Journal of biomedical materials research. Part A》2006,78(3):620-628
This work consisted in defining the in vitro behavior of pegylated lipid nanocapsules (LNC) toward the immune system. LNC were composed of an oily core surrounded by a shell of lecithin and polyethylene glycol (PEG) known to decrease the recognition of nanoparticles by the immune system. The "stealth" properties were evaluated by measuring complement activation (CH50 technique and crossed-immunoelectrophoresis (C3 cleavage)) and macrophage uptake. These experiments were performed on 20-, 50-, and 100-nm LNC before and after dialysis. A high density of PEG at the surface led to very low complement activation by LNC with a slight effect of size. This size effect, associated to a dialysis effect in macrophage uptake, was due to differences in density and flexibility of PEG chains related to LNC curvature radius. Thanks to a high density, 660-Da PEG provided LNC a steric stabilization and a protective effect versus complement protein opsonization, but this protection decreased with the increase of LNC size, especially versus macrophage uptake. 相似文献
9.
10.
11.
12.
Design of targeted lipid nanocapsules by conjugation of whole antibodies and antibody Fab' fragments
Immunonanocapsules were synthesized by conjugation to lipid nanocapsules (LNC) of whole OX26 monoclonal antibodies (OX26 MAb) directed against the transferrin receptor (TfR). The TfR is overexpressed on the cerebral endothelium and mediates the transcytosis mechanism. Fab' fragments, known for their reduced interaction with the reticuloendothelial system, were also conjugated to LNC. This coupling was facilitated by the incorporation of lipid PEG(2000) functionalized with reactive-sulfhydryl maleimide groups (DSPE-PEG(2000)-maleimide) into LNC shells by a post-insertion procedure, developed initially for liposome pegylation. An interfacial model using the dynamic rising drop technique helped determine the parameters influencing the DSPE-PEG(2000)-maleimide insertion and the quality of the anchorage. Heat was essential to promote both an important and stable adsorption of DSPE-PEG(2000)-maleimide onto LNC. OX26 MAb were thiolated to react with maleimide functions whereas thiol residues on Fab' fragments were used directly. The number of ligands per nanocapsule was adjusted according to their initial quantity in the coupling reaction mixture, with densities from 16 to183 whole antibodies and between 42 and 173 Fab' fragments per LNC. The specific association of immunonanocapsules to cells overexpressing TfR was thus demonstrated, suggesting their ability to deliver drugs to the brain. 相似文献
13.
Zou J Saulnier P Perrier T Zhang Y Manninen T Toppila E Pyykkö I 《Journal of biomedical materials research. Part B, Applied biomaterials》2008,87(1):10-18
Hearing loss is a major public health problem, and its treatment with traditional therapy strategies is often unsuccessful due to limited drug access deep in the temporal bone. Multifunctional nanoparticles that are targeted to specified cell populations, biodegradable, traceable in vivo, and equipped with controlled drug/gene release may resolve this problem. We developed lipid core nanocapsules (LNCs) with sizes below 50 nm. The aim of the present study is to evaluate the ability of the LNCs to pass through the round window membrane and reach inner ear targets. FITC was incorporated as a tag for the LNCs and Nile Red was encapsulated inside the oily core to assess the integrity of the LNCs. The capability of LNCs to pass through the round window membrane and the distribution of the LNCs inside the inner ear were evaluated in rats via confocal microscopy in combination with image analysis using ImageJ. After round window membrane administration, LNCs reached the spiral ganglion cells, nerve fibers, and spiral ligament fibrocytes within 30 min. The paracellular pathway was the main approach for LNC penetration of the round window membrane. LNCs can also reach the vestibule, middle ear mucosa, and the adjacent artery. Nuclear localization was detected in the spiral ganglion, though infrequently. These results suggest that LNCs are potential vectors for drug delivery into the spiral ganglion cells, nerve fibers, hair cells, and spiral ligament. 相似文献
14.
《Biomaterials》2015
Several studies have shown the potential of biocompatible lipid nanocapsules as hydrophobic drug delivery systems. Understanding the factors that determine the interactions of these oil-in-water nanoemulsions with cells is a necessary step to guide the design of the most effective formulations. The aim of this study was to probe the ability of two surfactants with a markedly different nature, a non-ionic poloxamer, and a charged phospholipid, to prepare formulations with shells of different composition and different surface properties. Thus we determined their effects on the interaction with biological environments. In particular, we investigated how the shell formulation affected the adsorption of biomolecules from the surrounding biological fluids on the nanocapsule surface (corona formation). A complete physicochemical characterization including an isothermal titration calorimetry (ITC) study revealed that the use of poloxamer led to nanocapsules with a marked reduction in the number of protein-binding sites. Surface hydrophilicity and changes in corona formation strongly correlated to changes in uptake by cancer cells and by macrophages. Our results indicate that the nature and concentration of surfactants in the nanocapsules can be easily manipulated to effectively modulate their surface architecture with the aim of controlling the environmental interactions, thus optimizing functionality for in vivo applications. In particular, addition of surfactants that reduce protein binding can modulate nanoparticle clearance by the immune system, but also screens the desired interactions with cells, leading to lower uptake, thus lower therapeutic efficacy. The two effects need to be balanced in order to obtain successful formulations. 相似文献
15.
Redox-responsive nanocapsules for intracellular protein delivery 总被引:1,自引:0,他引:1
Direct delivery of proteins to the cytosol of cells holds tremendous potential in biological and medical applications. Engineering vehicles for escorting proteins to the cytosol in a controlled release fashion has thus generated considerable interest. We report here the preparation of redox-responsive single-protein nanocapsules for intracellular protein delivery. Through in situ interfacial polymerization, the target protein is noncovalently encapsulated into a positively-charged polymeric shell interconnected by disulfide-containing crosslinkers. The dissociation of the polymeric shell under reducing conditions and the subsequent release of protein were confirmed using cell-free assays in the presence of glutathione (GSH). The nanocapsules were demonstrated to be efficiently internalized into the cells and to release the protein in the reducing cytosol. Using the nanocapsule as a vehicle, we showed that active caspase 3 (CP-3) can be delivered and can induce apoptosis in a variety of human cancer cell lines, including HeLa, MCF-7 and U-87 MG. Our approach therefore presents an effective intracellular protein delivery strategy for therapeutic, diagnostic and reprogramming applications. 相似文献
16.
Ultrasound contrast agents (UCAs) have been investigated for echogenic intravenous drug delivery system. Due to the traditional UCAs with overlarge size (micro-scale), their reluctant accumulation in target organs and the instability have presented severe obstacles to the accurate response to the ultrasound and severely limited their further clinical application. Furthermore, elimination of drug carriers from the biologic system after their carrying out the diagnostic or therapeutic functions is one important aspect to be considered. The drug carriers with large sizes, avoiding renal filtration, will lead to increasing toxicity. In this present paper, we design and develop a new type of triple-stimuli responsive (ultrasound/pH/GSH) biodegradable nanocapsules, in which fill up with perfluorohexane, and the DOX-loaded PMAA with disulfide crosslinking forms the wall. These soft nanocapsules with uniform size of 300 nm can easily enter the tumor tissues via EPR effects. The PMAA shell has high DOX-loading content (36 wt%) and great drug loading efficiency (93.5%), the PFH filled can effectively enhance US imaging signal through acoustic droplet vaporization (ADV), ensuring diagnostic and image-guided therapeutic applications. What is more, the disulfide-crosslinked PMAA shell is biodegradable and thus safe for normal organisms. These merits enabled us optimize the balance of diagnostic, therapeutic and biodegradable functionalities in a multifunctional theranostic nanoplatform. 相似文献
17.
《Acta biomaterialia》2013,9(5):6686-6693
Attaching polysaccharides to the surface of nanoparticles offers the possibility of modifying the physicochemical and biological properties of the core particles. The surface of lipid nanocapsules (LNCs) was modified by post-insertion of amphiphilic lipochitosan (LC) or lipodextran (LD). Modelling of these LNCs by the drop tensiometer technique revealed that the positively charged LC made the LNC surface more rigid, whereas the neutral, higher MW LD had no effect on the surface elasticity. Both LNC-LC and LNC-LD activated the complement system more than the blank LNC, thus suggesting increased capture by the mononuclear phagocyte system. In vitro, the positively charged LNC-LC were more efficiently bound by the model HEK293(β3) cells compared to LNC and LNC-LD. Finally, it was observed that neither LC nor LD changed the in vivo biodistribution properties of LNCs in mice. These polysaccharide-coated LNCs, especially LNC-LC, are promising templates for targeting ligands (e.g. peptides, proteins) or therapeutic molecules (e.g. siRNA). 相似文献
18.
《Biomaterials》2015
An efficient nanomedical platform that can combine two-photon cell imaging, near infrared (NIR) light and pH dual responsive drug delivery, and photothermal treatment was successfully developed based on fluorescent porous carbon-nanocapsules (FPC-NCs, size ∼100 nm) with carbon dots (CDs) embedded in the shell. The stable, excitation wavelength (λex)-tunable and upconverted fluorescence from the CDs embedded in the porous carbon shell enable the FPC-NCs to serve as an excellent confocal and two-photon imaging contrast agent under the excitation of laser with a broad range of wavelength from ultraviolet (UV) light (405 nm) to NIR light (900 nm). The FPC-NCs demonstrate a very high loading capacity (1335 mg g−1) toward doxorubicin drug benefited from the hollow cavity structure, porous carbon shell, as well as the supramolecular π stacking and electrostatic interactions between the doxorubicin molecules and carbon shell. In addition, a responsive release of doxorubicin from the FPC-NCs can be activated by lowering the pH to acidic (from 7.4 to 5.0) due to the presence of pH-sensitive carboxyl groups on the FPC-NCs and amino groups on doxorubicin molecules. Furthermore, the FPC-NCs can absorb and effectively convert the NIR light to heat, thus, manifest the ability of NIR-responsive drug release and combined photothermal/chemo-therapy for high therapeutic efficacy. 相似文献
19.
The use of chemotherapeutic drugs in cancer therapy is often limited by problems with administration such as insolubility, inefficient biodistribution, lack of selectivity, and inability of the drug to cross cellular barriers. To overcome these limitations, various types of drug delivery systems have been explored, and recently, carbon nanotube (CNT) materials have also garnered attention in the area of drug delivery. In this study, we describe the preparation, characterization, and in vitro testing of a new ultra-short single-walled carbon nanotube (US-tube)-based drug delivery system for the treatment of cancer. In particular, the encapsulation of cisplatin (CDDP), a widely-used anticancer drug, within US-tubes has been achieved, and the resulting CDDP@US-tube material characterized by high-resolution transmission electron microscopy (HR-TEM), energy-dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and inductively-coupled optical emission spectrometry (ICP-OES). Dialysis studies performed in phosphate-buffered saline (PBS) at 37 °C have demonstrated that CDDP release from CDDP@US-tubes can be controlled (retarded) by wrapping the CDDP@US-tubes with Pluronic-F108 surfactant. Finally, the anticancer activity of pluronic-wrapped CDDP@US-tubes has been evaluated against two different breast cancer cell lines, MCF-7 and MDA-MB-231, and found to exhibit enhanced cytotoxicity over free CDDP after 24 h. These studies have laid the foundation for developing US-tube-based delivery of chemotherapeutics, with drug release mainly limited to within cancer cells only. 相似文献
20.
Wang G Mostafa NZ Incani V Kucharski C Uludağ H 《Journal of biomedical materials research. Part A》2012,100(3):684-693
A conjugate of distearoylphosphoethanolamine-polyethylene glycol with 2-(3-mercaptopropylsulfanyl)-ethyl-1,1-bisphosphonic acid (thiolBP) was synthesized and incorporated into micelles and liposomes to create mineral-binding nanocarriers for therapeutic agents. The micelles and liposomes were used to encapsulate the anticancer drug doxorubicin (DOX) and a model protein lysozyme (LYZ) by using lipid film hydration (LFH) and reverse-phase evaporation vesicle (REV) methods. The results indicated that the micelles and LFH-derived liposomes were better at DOX loading than the REV-derived liposomes, while the REV method was preferable for encapsulating LYZ. The affinity of the micellar and liposomal formulations to hydroxyapatite (HA) was assessed in vitro, and the results indicated that all the thiolBP-incorporated nanocarriers had stronger HA affinity than their counterparts without thiolBP. The thiolBP-decorated liposomes also displayed a strong binding to a collagen/HA composite scaffold in vitro. More importantly, thiolBP-decorated liposomes gave increased retention in the collagen/HA scaffolds after subcutaneously implantation in rats. The designed liposomes were able to entrap the bone morphogenetic protein-2 in a bioactive form, indicating that the proposed nanocarriers could deliver bioactive factors locally in mineralized scaffolds for bone tissue engineering. 相似文献