首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 69 毫秒
1.
Staurosporine, a protein kinase and etoposide, a topoisomerase II inhibitor, are known to enhance apoptosis. The differential effects of these agents on T98G glioblastoma and SK-N-SH neuroblastoma, cell lines both derived from human tumors, have not been determined. We assessed cellular viability, DNA fragmentation and laddering, chromatin condensation, and Poly(ADP-ribose) polymerase (PARP) cleavage induced by these agents at a series of concentrations and times. In addition, to gain an understanding of the mechanism by which these agents work, we measured Protein Kinase C (PKC) activity. Staurosporine induced significant alterations in all apoptotic parameters tested in both cell lines. Etoposide induced apoptotic alterations similar to those caused by staurosporine in neuroblastoma but produced no detectable apoptotic changes in glioblastoma cells. Etoposide induced membrane but not cytosolic PKC activity in neuroblastoma but had no effect on PKC activity in glioblastoma. Our results show that the induction of apoptosis is cell type dependent. PKC activity appears to be crucial in the initiation of apoptosis.  相似文献   

2.
Poly (ADP-ribose) polymerase (PARP) is involved in various cellular functions, including DNA repair, the cell cycle and cell death. While PARP activation could play a critical role in repairing ischemic brain damage, PARP inactivation caused by caspase 3-cleavage may also be important for apoptotic execution. In this study we investigated the effects of transient global ischemia and kainic acid (KA) neurotoxicity, in gerbil and rat brains, respectively, on PARP gene expression and protein cleavage. PARP mRNA increased in the dentate gyrus of gerbil brains 4 h after 10 min of global ischemia, which returned to basal levels 8 h after ischemia. KA injection (10 mg/kg) also induced a marked elevation in PARP mRNA level selectively in the dentate gyrus of rat brains 1 h following the injection, which returned to basal levels 4 h after the injection. These observations provide the first evidence of altered PARP gene expression in brains subjected to ischemic and excitotoxic insults. Using both monoclonal and polyclonal antibodies to PARP cleavage products, little evidence of significant PARP cleavage was found in gerbil brains within the first 3 days after 10 min of global ischemia. In addition, there was little evidence of significant PARP cleavage in rat brains within 2 days after kainate (KA) injection. Though these findings show that caspase induced PARP cleavage is not substantially activated by global ischemia and excitotoxicity in whole brain, the PARP mRNA induction could suggest a role for PARP in repairing DNA following brain injury.  相似文献   

3.
Neurobehavioral changes have been described in workers occupationally exposed to styrene vapors. Alterations of neurotransmitters and loss of neurons have been observed in brains of styrene-exposed rats. However, the mechanisms of neuronal damage are not yet clearly understood. We have characterized the cellular alterations induced by the main reactive intermediate of styrene metabolism, styrene 7,8-oxide (SO) in the human neuroblastoma SK-N-MC cell line and primary culture of rat cerebellar granule cells (CGC). SK-N-MC cells exposed to SO (0.3-1 mM) displayed apoptotic morphology, together with chromatin condensation and DNA cleavage into high molecular weight fragments of regular size. These features were accompanied by the activation of class II caspases, as detected with the DEVD assay, by following the cleavage of the caspase-substrate poly (ADP-ribose) polymerase (PARP) and by detection of the active fragment of caspase-3. Pre-incubation of the cells with the caspase inhibitor z-VAD-fmk reduced the cellular damage induced by SO, suggesting that caspases play an important role in SO toxicity. Increased proteolysis by class II caspases was detected also in primary culture of CGC exposed to SO. In addition, the presence of the 150-kDa cleavage product of alpha-fodrin suggests a possible activation of calpains in SK-N-MC cells. Moreover, SO did not affect the level of expression of the p53 protein, even though it is known to cause DNA damage. The identified intracellular pathways affected by SO exposure provides end-points that can be used in future studies for the evaluation of the neurotoxic effect of styrene in vivo.  相似文献   

4.
J Harada  M Sugimoto 《Brain research》1999,842(2):311-323
Amyloid beta protein (Abeta) has been thought to participate in the neurodegeneration associated with Alzheimer's disease. We here report on caspase-3 activation by Abeta-treatment of cultured neurons. Treatment of rat primary cortical culture with Abeta 25-35, an active fragment of Abeta, induced neuronal death as determined by a decrease in neuron-specific microtubule-associated protein 2 (MAP2)-like immunoreactivity and by the release of cellular lactate dehydrogenase (LDH). Abeta 25-35 also induced elevation of caspase-3-like Ac-DEVD-MCA cleavage activity in advance of neuronal death with similar concentration-dependency for neuronal death. Inhibitor sensitivity of the Abeta-induced proteolytic activity was similar to that of human recombinant caspase-3. Cleavage of pro-caspase-3 and cleavage of its endogenous substrates, poly (ADP-ribose) polymerase (PARP) and alpha-fodrin, were produced by Abeta-treatment. A caspase-3 inhibitor, Ac-DEVD-CHO, prevented Abeta-induced DNA fragmentation and cleavage of alpha-fodrin, but not of PARP. Caspase inhibitor of broad specificity, Z-VAD-CH(2)-DCB, additionally prevented Abeta-induced cleavage of PARP and some early loss of cell membrane integrity measured by LDH release. However, Abeta-induced condensation of nuclear chromatin and most of the late disintegration of cell membranes were not prevented in the presence of these caspase inhibitors. These results suggest that activation of both caspase-3 and caspase(s) other than caspase-3 play distinct roles in Abeta-induced apoptosis of rat cortical neurons. Furthermore, in the presence of caspase inhibitors, Abeta-induced neuronal death still occurred with different morphological features.  相似文献   

5.
Apoptotic cell death is induced in SH-SY5Y neuroblastoma cells following exposure to the protein kinase inhibitors staurosporine (100 nM) and 1-(5-Isoquinolinesulfonyl)-2-methylpiperazine: H-7 (100 microM). This is associated with reduced levels of PARP 117 kDa and with the concomitant formation of PARP-cleaved products of 89 kDa that result from caspase-3 activation. The process is inhibited with DEVD-fmk, a potent caspase-3 (and caspase-8) inhibitor, thus indicating that staurosporine- and H-7-induced cell death in SH-SY5Y is mediated by caspase activation. Increased caspase-2- and caspase-3-like activities, but not caspase-9-like activity, were demonstrated by monitoring proteolysis of the corresponding colorimetric substrates. Caspase-2 activity peaked at 6 h, whereas caspase-3 peaked at 12 h in parallel with the maximal loss of cell viability. No modifications in the expression levels of Fas and Fas-L were observed by Western blotting. Furthermore, no activation of caspase-8 was elicited by colorimetric assays through the process of apoptosis of neuroblastoma cells. These findings indicate that the Fas/Fas-L-caspase-8 pathway of cell death signaling is not involved in staurosporine- and H-7-induced apoptosis in SH-SY5Y neuroblastoma cells.  相似文献   

6.
Previously, we demonstrated that the organochlorine pesticide dieldrin induces mitochondrial depolarization, caspase-3 activation and apoptosis in dopaminergic PC12 cells. We also demonstrated that protein kinase Cdelta (PKCdelta), a member of a novel PKC family of proteins, is proteolytically activated by caspase-3 to mediate apoptotic cell death processes. In the present study, we have further characterized the protective effect of the major mitochondrial anti-apoptotic protein Bcl-2 against dieldrin-induced apoptotic events in dopaminergic cells. Exposure to dieldrin (30-100 microM) produced significant cytotoxicity and caspase-3 activation within 3h in vector-transfected PC12 cells, whereas human Bcl-2-transfected PC12 cells were almost completely resistant to dieldrin-induced cytotoxicity and caspase-3 activation. Also, dieldrin (30-300 microM) treatment induced proteolytic cleavage of poly(ADP-ribose) polymerase (PARP), which was blocked by pretreatment with caspase-3 inhibitors Z-DEVD-FMK and Z-VAD-FMK. Additionally, dieldrin-induced chromatin condensation and DNA fragmentation were completely blocked in Bcl-2-overexpressed PC12 cells as compared to vector control cells. Together, these results clearly indicate that overexpression of mitochondrial anti-apoptotic protein protects against dieldrin-induced apoptotic cell death and further suggest that dieldrin primarily alters mitochondrial function to initiate apoptotic cell death in dopaminergic cells.  相似文献   

7.
Presenilins (PSs) are mutated in a majority of familial Alzheimer disease (FAD) cases. Mutated PSs may cause FAD by a number of pro-apoptotic mechanisms, or by regulating gamma-secretase activity, a protease involved in beta-amyloid precursor protein processing to the neurotoxic beta-amyloid peptide. Besides their normal endoproteolytic processing, PSs are substrates for caspases, being cleaved to alternative N-terminal and C-terminal fragments. So far little is known about the role of PSs cleavage in the apoptotic machinery. Here, we used SH-SY5Y neuroblastoma cells stably transfected with wild-type or exon 9 deleted presenilin 1 (PS1) in a time-course study after the exposure to the calcium ionophore A23187. During and after exposure to A 23187, intracellular calcium levels were higher in exon 9 deleted PS1 cells as compared with non-transfected and wild-type PS1 transfected cells. Cell death and the enrichment of apoptotic cells after A23187 exposure were increased by overexpression of exon 9 deleted PS1 as compared with the control cell lines. Wild-type PS1 cells were compared with exon 9 deleted PS1 cells and the temporal relationship between PS1 and other caspase substrates cleavages was analyzed. Exon 9 deleted PS1 cells exhibited a higher caspase-3 activation and a greater cleavage of PS1 and poly(ADP-ribose) polymerase (PARP) compared with wild-type PS1 cells. Exon 9 deleted PS1 cleavage occurred earlier than other caspase substrate cleavages (i.e., PARP and gelsolin), simultaneous with minimum detectable caspase-3 activation. Therefore, alternative cleavage of PS1 may play an important role for the regulation of the proteolytic cascade activated during apoptosis.  相似文献   

8.
Amyloid β protein (Aβ) has been thought to participate in the neurodegeneration associated with Alzheimer's disease. We here report on caspase-3 activation by Aβ-treatment of cultured neurons. Treatment of rat primary cortical culture with Aβ 25–35, an active fragment of Aβ, induced neuronal death as determined by a decrease in neuron-specific microtubule-associated protein 2 (MAP2)-like immunoreactivity and by the release of cellular lactate dehydrogenase (LDH). Aβ 25–35 also induced elevation of caspase-3-like Ac-DEVD-MCA cleavage activity in advance of neuronal death with similar concentration-dependency for neuronal death. Inhibitor sensitivity of the Aβ-induced proteolytic activity was similar to that of human recombinant caspase-3. Cleavage of pro-caspase-3 and cleavage of its endogenous substrates, poly (ADP-ribose) polymerase (PARP) and α-fodrin, were produced by Aβ-treatment. A caspase-3 inhibitor, Ac-DEVD-CHO, prevented Aβ-induced DNA fragmentation and cleavage of α-fodrin, but not of PARP. Caspase inhibitor of broad specificity, Z-VAD-CH2-DCB, additionally prevented Aβ-induced cleavage of PARP and some early loss of cell membrane integrity measured by LDH release. However, Aβ-induced condensation of nuclear chromatin and most of the late disintegration of cell membranes were not prevented in the presence of these caspase inhibitors. These results suggest that activation of both caspase-3 and caspase(s) other than caspase-3 play distinct roles in Aβ-induced apoptosis of rat cortical neurons. Furthermore, in the presence of caspase inhibitors, Aβ-induced neuronal death still occurred with different morphological features.  相似文献   

9.
Environmental exposure to mercurials continues to be a public health issue due to their deleterious effects on immune, renal and neurological function. Recently the safety of thimerosal, an ethyl mercury-containing preservative used in vaccines, has been questioned due to exposure of infants during immunization. Mercurials have been reported to cause apoptosis in cultured neurons; however, the signaling pathways resulting in cell death have not been well characterized. Therefore, the objective of this study was to identify the mode of cell death in an in vitro model of thimerosal-induced neurotoxicity, and more specifically, to elucidate signaling pathways which might serve as pharmacological targets. Within 2 h of thimerosal exposure (5 microM) to the human neuroblastoma cell line, SK-N-SH, morphological changes, including membrane alterations and cell shrinkage, were observed. Cell viability, assessed by measurement of lactate dehydrogenase (LDH) activity in the medium, as well as the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay, showed a time- and concentration-dependent decrease in cell survival upon thimerosal exposure. In cells treated for 24 h with thimerosal, fluorescence microscopy indicated cells undergoing both apoptosis and oncosis/necrosis. To identify the apoptotic pathway associated with thimerosal-mediated cell death, we first evaluated the mitochondrial cascade, as both inorganic and organic mercurials have been reported to accumulate in the organelle. Cytochrome c was shown to leak from the mitochondria, followed by caspase 9 cleavage within 8 h of treatment. In addition, poly(ADP-ribose) polymerase (PARP) was cleaved to form a 85 kDa fragment following maximal caspase 3 activation at 24 h. Taken together these findings suggest deleterious effects on the cytoarchitecture by thimerosal and initiation of mitochondrial-mediated apoptosis.  相似文献   

10.
Ischemic tolerance is a phenomenon in which exposure to a mild preconditioning stress results in resistance to a subsequent lethal ischemic insult. Here we investigated the role of poly(ADP-ribose) polymerase (PARP) in the development of ischemic tolerance by using organotypic rat hippocampal slices exposed to 30 min oxygen-glucose deprivation (OGD), which leads to selective injury of the CA1 subregion 24 h later. We developed models of pharmacological preconditioning by exposing slices to subtoxic concentrations of either N-methyl-D-aspartate (NMDA) or (S)-3,5-dihydroxyphenylglycine (DHPG) and then, 24 h later, to 30 min OGD. Under these conditions, we observed a significant reduction in OGD-induced CA1 damage. Exposure of slices to the PARP-1 and -2 inhibitors TIQ-A, PJ-34 and UPF 1069 during preconditioning prevented the development of OGD tolerance in a concentration-dependent manner. NMDA and DHPG preconditioning increased the activity of PARP, as detected by immunoblots using antibodies against the poly(ADP-ribose) polymer product, but was not associated with consumption of cellular NAD(+) or ATP. Neuroprotection induced by preconditioning was also prevented by the caspase inhibitor Z-VAD-FMK. The modest but significant increase in caspase-3/7 induced by preconditioning, however, was not associated with PARP-1 cleavage, as occurred with staurosporine. Finally, TIQ-A prevented the activation of ERK1/2 and Akt induced by NMDA preconditioning, suggesting that the protective mechanism evoked by PARP requires activation of these prosurvival mediators. Our results suggest that preconditioning with appropriate pharmacological stimuli may promote neuroprotective mechanisms triggered by the sublethal activation of two otherwise deleterious executioners such as PARP and caspase-3/7.  相似文献   

11.
12.
The activation of poly(ADP-ribose) polymerase (PARP) in the reperfused brain after ischemia has been assumed but never has been directly presented. Our studies indicate a different dynamic of PARP activity alteration in hippocampus during reperfusion after 3 and 10 min of transient forebrain ischemia in gerbils. The phasic stimulation of PARP activity was observed during reperfusion 15 min, 120 min, and 4 d after 3 min of ischemia with subsequent lowering of its activity close to control value on the seventh day of reperfusion. After 10 min of ischemic insult, PARP activity significantly increased from the third to the seventh day of reperfusion. The protein level of PARP was not significantly changed during reperfusion after 3 and 10 min of ischemia, with one exception: On the third day after 10 min of ischemia, PARP protein level was 28% lower compared to control; however, no enhancement of 85-kDa protein immunoreactivity was observed. These data indicate the lack of PARP cleavage in hippocampus of gerbils subjected to ischemia-reperfusion injury. The inhibitor of PARP, 3-aminobenzamide (3-AB) in a dose of 30 mg/kg b.w. (body weight) injected intravenously directly after 3 min of ischemia protects >60% of neuronal cells against death in the CA1 layer of hippocampus but has no effect after 10 min of ischemic episode. 3-AB decreased forebrain edema significantly after 3 and 10 min of ischemia. Our data indicate that PARP inhibitor(s) might offer a potent therapeutic strategy for short global ischemia. The combination of PARP inhibitor with potent antioxidant might enhance its ameliorating effect.  相似文献   

13.
目的  探讨大鼠局灶性脑缺血再灌注后多聚ADP核糖多聚酶 (PARP)不同时空的表达改变及其与凋亡的关系。方法  运用免疫组织化学和分子生物学技术观察大鼠局灶性脑缺血再灌注后PARP蛋白表达与降解、凋亡的时空动态改变。结果 (1)脑缺血再灌注诱导PARP蛋白表达增强 ,与凋亡的时间变化规律相似 ,但范围大于并涵盖凋亡的范围 ,凋亡分布区外侧的缺血区表达也明显增加。 (2 )同时 ,PARP蛋白出现降解 ,随着缺血或再灌注时间的延长 ,降解逐渐增强。结论 脑缺血 /再灌注损伤可诱导神经细胞DNA修复蛋白PARP的表达。以上结果提示 :轻度缺血时 ,PARP可修复受损DNA ,神经细胞耐受缺血而存活 ;缺血损害重时 ,PARP被降解 ,DNA修复机制受损 ,细胞凋亡程序启动。  相似文献   

14.
PEP-19 is a calmodulin-regulatory protein found specifically within neurons, though cellular functions of this protein have not been determined. In an effort to define potential effects of PEP-19, PC12 cell lines expressing this protein were generated and subjected to apoptotic stimuli. As measured by LDH release, cell death in PEP-19 expressing cells was 2- to 5-fold less following u.v. irradiation, and 2- to 4-fold less following staurosporine treatment than controls. Additionally, PEP-19-expressing cells displayed decreased DNA ladder formation, chromatin and condensation, caspase activation following staurosporine treatment. Overall, these results demonstrate that PEP-19 can inhibit apoptotic processes in PC12 cells, suggesting a potential regulatory mechanism for pathways leading to cell death.  相似文献   

15.
Experimental evidence suggests that the massive release of glutamate during experimental brain ischemia both directly and indirectly regulates downstream mechanisms of cell suicide. Cerebral ischemia was produced by distal, permanent occlusion of the middle cerebral artery (MCAO) in the rat. Sets of three animals and one sham-operated for each time-point were kept alive for 0-30 min, 1, 4, 12, 24, and 48 h, and 4 days. Additional animals were treated by local administration of a 10 microM (in 10 microl) cocktail of caspase inhibitors (YVAD-cmk, DEVD-fmk, IETD). Immunohistochemistry was performed on free-floating tissue sections with goat polyclonal antibodies to procaspase-1, -2, -3, -6, and -8. Some sections were processed for double-labeling procaspase immunohistochemistry and in situ end-labeling of nuclear DNA fragmentation (TUNEL method). Both immunohistochemistry and double-labeling procaspase immunohistochemistry and TUNEL method were carried out on formalin-fixed sections. For gel electrophoresis and Western blotting, we used antibodies to poly (ADP-ribose) polymerase (PARP), lamin B, and PKC-delta, as specific cleavage substrates of caspases. There was increased immunoreactivity ipsilaterally in the areas corresponding to the infarct and surrounding penumbra with the peak of immunoreactivity between 12 and 24 h for most of the procaspases. Procaspases were present early in the infarcted tissue neurones and their dendrites and axons. Additional procaspase expression occurred in astrocytes and microglial cells at different times following ischemia. Cells with positive in situ end-labeling of nuclear DNA fragmentation appeared in high number predominantly in the infarcted areas and at the edge of the infarction and colocalized with enhanced procaspase expression. These findings suggest increased procaspase expression in dying cells at the edge of the infarction. A major product of PARP degradation of about 89 kDa was found in the samples taken from the infarcted and penumbra areas. There was no difference in the intensity of the bands corresponding to lamin B or PKC-delta. Injection of procaspase inhibitors reduced the levels of major PARP products of 89 kDa and decreased the number of TUNEL-positive cells at 12 h post-MCAO. In conclusion, these results give support to further research on the use of caspase inhibitors as add-on therapeutic agents for the treatment of ischemia.  相似文献   

16.
Objective: Several studies reported that the levels of proinflammatory cytokines such as TNF-, IL-1β, IL-6, and IL-8 are elevated in the cerebrospinal fluid (CSF) of patients after subarachnoid hemorrhage (SAH). Cytokines in CSF may contribute to the development of vasospasm and cerebral ischemia. In the present study, we investigated the possible cytotoxic effects of these cytokines on cultured cerebral microvascular endothelial cells. Method: The effects of TNF-, IL-1β, IL-6, and IL-8 were tested using cell viability assay, DNA fragmentation analysis (DNA laddering), Western blot analysis (Anti-poly-(ADP-ribose) polymerase [PARP] antibody), and caspase-3 activity. Results: TNF- and IL-1β, but not IL-6 or IL-8, caused cell detachment in a dose-dependent manner (p<0.05). TNF- (200 pg/ml) and IL-1β (150 pg/ml) produced DNA ladders at 24–72 h. TNF- but not IL-1β cleaved the PARP from 116- to 85-kDa fragments and enhanced caspase-3 activity at 24–72 h after incubation with endothelial cells. Caspase-3 inhibitor at 10 μmol/l significantly prevented TNF--induced cell detachment (p<0.05). Discussion: TNF- induces apoptosis in cultured cerebral endothelial cells through the cleavage of caspase-3. IL-1β decreases the adherent cells, produces DNA ladders, but fails to cleave PARP or increase caspase-3 activity. IL-1β may induce apoptosis in cerebral endothelial cells through different pathway from that of TNF-.  相似文献   

17.
The effects of diallyl disulfide (DADS), a garlic-derived compound, on the viability of neuronal cells and cell signals, including phosphatidylinositol 3-kinase (PI3K)/Akt, glycogen synthase kinase-3 (GSK-3), cytochrome c, caspase-3, and poly(ADP-ribose) polymerase (PARP), were investigated in PC12 cells neuronally differentiated by nerve growth factor. To evaluate the toxicity of DADS itself, nPC12 cells were treated with several concentrations of DADS, and 3,(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and trypan blue stain revealed that the viability was not affected by low concentration of DADS, up to 20 microM, but it was decreased at higher than this concentration. The levels of free radicals and membrane lipid peroxidation were significantly increased in nPC12 cells when treated with more than 50 microM DADS, and treatment of PC12 cells with 100 microM DADS killed the cells by inhibiting PI3K/Akt and by promoting activation of GSK-3 and caspase-3, release of cytochrome c, and cleavage of PARP. To evaluate the protective effects of low concentration of DADS on oxidative stress-injured nPC12 cells, the viability of the cells (pretreated with DADS for 2 h vs. not pretreated) was evaluated 24 h after exposure to 100 microM H2O2 for 30 min. Compared to the cells treated with 100 microM H2O2 only, pretreatment of the cells with 20 microM DADS before exposure to 100 microM H2O2 increased the viability and induced activation of PI3K and Akt, inactivation of GSK-3, and inhibition of cytochrome c release, caspase-3 activation, and PARP cleavage. These results indicate that low concentration of DADS has neuroprotective effects by activating PI3K/Akt and by inhibiting GSK-3 activation, cytochrome c release, caspase-3 activation, and PARP cleavage, whereas high concentration is rather cytotoxic. Therefore, some specific optimum concentration of DADS may be a new potential therapeutic strategy for oxidative stress injured in vitro model of neurodegenerative diseases.  相似文献   

18.
Zinc levels are increased in brain areas severely affected by Alzheimer's disease (AD) pathologies. Zinc has both protective and neurotoxic properties and can stimulate both phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathways. Several kinases related to these pathways including protein kinase B (PKB), p70 S6 kinase (p70S6K), and extracellular signal-regulated kinase 1/2 (ERK1/2) are known cell survival factors and are overactivated in neurons bearing neurofibrillary tangles (NFTs) in AD. The present study aimed to determine whether anti-apoptotic effects of zinc are mediated via these signaling pathways. Zinc was used to treat SH-SY5Y neuroblastoma cells and effects investigated in relation to PKB, p70S6K, and ERK1/2 in the absence and presence of the pro-apoptotic agent staurosporine (STS). Cell damage was evaluated by measuring levels of DNA fragmentation as well as the WST-1 assay for cell viability. Results indicated that: (1) treatment with high doses of zinc (>/=400 microM) for short time periods (2 h reversed an increased DNA fragmentation due to U0126 inhibition of ERK1/2; (3) increased DNA fragmentation due to STS could be protected against by 100 microM zinc; (4) the protective effects of 100 microM zinc on STS-induced DNA fragmentation could be partially reversed by U0126. These results indicate that a zinc-induced anti-apoptotic response in SH-SY5Y cells likely occurs through ERK1/2.  相似文献   

19.
Elevated plasma levels of the sulfur-containing amino acid homocysteine increase the risk for atherosclerosis, stroke, and possibly Alzheimer's disease, but the underlying mechanisms are unknown. We now report that homocysteine induces apoptosis in rat hippocampal neurons. DNA strand breaks and associated activation of poly-ADP-ribose polymerase (PARP) and NAD depletion occur rapidly after exposure to homocysteine and precede mitochondrial dysfunction, oxidative stress, and caspase activation. The PARP inhibitor 3-aminobenzamide (3AB) protects neurons against homocysteine-induced NAD depletion, loss of mitochondrial transmembrane potential, and cell death, demonstrating a requirement for PARP activation and/or NAD depletion in homocysteine-induced apoptosis. Caspase inhibition accelerates the loss of mitochondrial potential and shifts the mode of cell death to necrosis; inhibition of PARP with 3AB attenuates this effect of caspase inhibition. Homocysteine markedly increases the vulnerability of hippocampal neurons to excitotoxic and oxidative injury in cell culture and in vivo, suggesting a mechanism by which homocysteine may contribute to the pathogenesis of neurodegenerative disorders.  相似文献   

20.
The activation of poly(ADP-ribose) polymerase (PARP) in the reperfused brain after ischemia has been assumed but never has been directly presented. Our studies indicate a different dynamic of PARP activity alteration in hippocampus during reperfusion after 3 and 10 min of transient forebrain ischemia in gerbils. The phasic stimulation of PARP activity was observed during reperfusion 15 min, 120 min, and 4 d after 3 min of ischemia with subsequent lowering of its activity close to control value on the seventh day of reperfusion. After 10 min of ischemic insult, PARP activity significantly increased from the third to the seventh day of reperfusion. The protein level of PARP was not significantly changed during reperfusion after 3 and 10 min of ischemia, with one exception: On the third day after 10 min of ischemia, PARP protein level was 28% lower compared to control; however, no enhancement of 85-kDa protein immunoreactivity was observed. These data indicate the lack of PARP cleavage in hippocampus of gerbils subjected to ischemia-reperfusion injury. The inhibitor of PARP, 3-aminobenzamide (3-AB) in a dose of 30 mg/kg b.w. (body weight) injected intravenously directly after 3 min of ischemia protects >60% of neuronal cells against death in the CA1 layer of hippocampus but has no effect after 10 min of ischemic episode. 3-AB decreased forebrain edema significantly after 3 and 10 min of ischemia. Our data indicate that PARP inhibitor(s) might offer a potent therapeutic strategy for short global ischemia. The combination of PARP inhibitor with potent antioxidant might enhance its ameliorating effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号