共查询到17条相似文献,搜索用时 15 毫秒
1.
Jai-Sing Yang Guang-Wei Chen Te-Chun Hsia Heng-Chien Ho Chin-Chin Ho Meng-Wei Lin Song-Shei Lin Ru-Duan Yeh Siu-Wan Ip Hsu-Fung Lu Jing-Gung Chung 《Food and chemical toxicology》2009
In this study, we investigated the effects of DADS on human colon cancer cell line COLO 205 on cell cycle arrest and apoptosis in vitro. After 24 h treatment of COLO 205 cells with DADS, the dose- and time-dependent decreases of viable cells were observed and the IC50 was 22.47 μM. The decreased percentages of viable cells are associated with the production of ROS. Treatment of COLO 205 cells with DADS resulted in G2/M phase arrest and apoptosis occurrence through the mitochondrial-pathway (Bcl-2, Bcl-xL down-regulation and Bak, Bax up-regulation). DADS increased cyclin B, cdc25c-ser-216-9 and Wee1 but did not affect CDK1 protein and gene expression within 24 h of treatment. DADS-induced apoptosis was examined and confirmed by DAPI staining and DNA fragmentation assay. DADS promoted caspase-3, -8 and -9 activity and induced apoptosis were accompanied by increasing the levels of Fas, phospho-Ask1 and -JNK, p53 and decreasing the mitochondrial membrane potential which then led to release the cytochrome c, cleavage of pro-caspase-9 and -3. The COLO 205 cells were pre-treated with JNK inhibitor before leading to decrease the percentage of apoptosis which was induced by DADS. Inhibition of caspase-3 activation blocked DADS-induced apoptosis on COLO 205 cells. 相似文献
2.
3.
Emodin (1,3,8-trihydroxy-6-methylanthraquinone) is an active constituent of Rheum palmatum, and showed inhibitory activity on lipopolysaccharide-induced NO production in our previous study. However, the apoptosis-inducing activity of emodin has remained undefined. Among three structurally related anthraquinones, including emodin, physcion, and chrysophanol, emodin showed the most potent cytotoxic effects on HL-60 cells, accompanied by the dose- and time-dependent appearance of characteristics of apoptosis including an increase in DNA ladder intensity, morphological changes, appearance of apoptotic bodies, and an increase in hypodiploid cells. Emodin at apoptosis-inducing concentrations causes rapid and transient induction of caspase 3/CPP32 activity, but not caspase 1 activity, according to cleavage of caspase 3 substrates poly(ADP-ribose) polymerase and D4-GDI proteins, the appearance of cleaved caspase 3 fragments being detected in emodin- but not physcion- or chrysophanol-treated HL-60 cells. A decrease in the anti-apoptotic protein, Mcl-1, was detected in emodin-treated HL-60 cells, whereas other Bcl-2 family proteins including Bax, Bcl-2, Bcl-XL, and Bad remained unchanged. The caspase 3 inhibitor, Ac-DEVD-CHO, but not the caspase 1 inhibitor, Ac-YVAD-CHO, attenuated emodin-induced DNA ladders, associated with the blockage of PARP and D4-GDI cleavage. Free radical scavenging agents including NAC, catalase, SOD, ALL, DPI, L-NAME and PDTC showed no preventive effect on emodin-induced apoptotic responses, whereas NAC, CAT and PDTC prevented HL-60 cells from ROS (H(2)O(2))-induced apoptosis through inhibition of caspase 3 cascades. Induction of catalase, but not SOD, activity was detected in emodin-treated HL-60 cells by in gel activity assays, and H(2)O(2)-induced intracellular peroxide level was significantly reduced by prior treatment of emodin in HL-60 cells. Our experiments provide evidence that emodin is an effective apoptosis inducer in HL-60 cells through activation of the caspase 3 cascade, but that it is independent of ROS production. 相似文献
4.
Nana Asare Marit Låg Dominique Lagadic-Gossmann Mary Rissel Per Schwarze Jørn A. Holme 《Toxicology》2009
In this study, we show that the environmental pollutant, 3-nitrofluoranthene (3-NF) but not its amine form, 3-aminofluoranthene (3-AF), induces apoptosis as well as regulated necrosis with necroptotic features in Hepa1c1c7 cells. Upon exposure to 3-NF, both typical apoptotic and necrotic cells were observed. A large number of the cells exhibited a characteristic partial nuclear chromatin condensation. Cycloheximide completely attenuated 3-NF-induced cell death. Activation of caspase-8, -9, and -3 were observed. Moreover, Z-VAD-FMK decreased the apoptotic cells, whereas the number of propidium iodide (PI)-positive cells with partial chromatin condensation was reduced by Nec-1, an inhibitor of receptor interacting protein (RIP-1). Cyp1a1, but not nitric oxide synthase (NOS), appears to be involved in activation of 3-NF to reactive metabolites. Increase in the number as well as size of lysosomes, myelinosomes, and activation of autophagy were also observed. 3-NF induced phosphorylation of ERK1/2, JNK and p38 MAPKs. Interestingly, while inhibitors of ERK1/2 and JNK reduced apoptotic as well as necrotic cell death, the p38 inhibitor, SB202190 reduced only the necrotic cell death. Taken together, 3-NF elicits both apoptosis and a caspase-independent programmed cell death (PCD) with autophagic characteristics. Conversely, with 3-AF, no apparent cytotoxic effects besides a reduction in cell proliferation was observed. 相似文献
5.
6.
Jang BC Paik JH Jeong HY Oh HJ Park JW Kwon TK Song DK Park JG Kim SP Bae JH Mun KC Suh MH Yoshida M Suh SI 《Biochemical pharmacology》2004,68(2):263-274
Leptomycin B (LMB), which is originally isolated from Streptomyces, possesses anti-tumor properties in vivo and in vitro. Though it was previously reported that LMB induces cell cycle arrest and p53-mediated apoptosis in certain cancer cells, however, the mechanism by which LMB induces apoptosis remains poorly understood. Here, we investigated the mechanisms of apoptosis induced by LMB in U937 cells. Treatment with LMB concentration-dependently induced cytotoxicity and apoptosis in U937 cells that correlated temporally with activation of caspases and down-regulation of Mcl-1 and XIAP. LMB did not change the expressions of Bcl-2 or Bax. A broad spectrum caspase inhibitor, z-VAD-fmk, blocked caspase-3 activation and elevated the survival in LMB-treated U937 cells, suggesting that caspase-3 activation is critical for LMB-induced apoptosis. Interestingly, Bcl-2 overexpression that blocked cytochrome c release by LMB effectively attenuated the apoptotic response to LMB, suggesting that LMB-induced apoptosis is mediated through the mitochondrial pathway. Antioxidants or antioxidant enzymes had no effects on LMB-induced apoptosis. Data of flow cytometry analysis using 2',7'-dichlorofluorescein-diacetate further revealed no reactive oxygen species (ROS) generation by LMB, indicating that apoptosis induced by LMB is ROS-independent. However, the apoptotic response to LMB was not shown in U937 cells pretreated with the sulfhydryl group-containing antioxidant N-acetylcysteine (NAC). Further analysis suggested that NAC directly binds LMB and abolishes the apoptotic effects of LMB. Collectively, these findings suggest that LMB potently induces apoptosis in U937 cells, and LMB-induced apoptosis in U937 cells is related with cytochrome c release, activation of caspases, and selective down-regulation of Mcl-1 and XIAP. 相似文献
7.
Kyaw M Yoshizumi M Tsuchiya K Kirima K Suzaki Y Abe S Hasegawa T Tamaki T 《Biochemical pharmacology》2002,64(10):1521-1531
We previously found that human chymase cleaves big endothelins (ETs) at the Tyr(31)-Gly(32) bond and produces 31-amino acid ETs (1-31), without any further degradation products. In the present study, we investigated the effects of various antioxidants on the ET-1 (1-31)-induced change in intracellular signaling and proliferation of cultured rat aortic smooth muscle cells (RASMC). ET-1 (1-31) stimulated rapid and significant activation of the mitogen-activated protein (MAP) kinase family, i.e. extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun NH(2)-terminal kinase (JNK), and p38 MAPK, in RASMC to an extent similar to that of ET-1. All of the antioxidants examined, i.e. N-acetyl-L-cysteine (NAC), diphenyleneiodonium chloride (DPI), and L-(+)-ascorbic acid (ascorbic acid), inhibited both ET-1 (1-31)- and ET-1-induced JNK and p38 MAPK activation but not ERK1/2 activation. Electron paramagnetic resonance (EPR) spectroscopy measurements revealed that NAC, DPI, and ascorbic acid inhibited xanthine oxidase-induced superoxide (O(2)(.-)) generation in a cell-free system. ET-1 (1-31) in addition to ET-1 increased the generation of cellular reactive oxygen species (ROS) in RASMC. ET-1 (1-31)- and ET-1-induced cellular ROS generation was inhibited similarly by NAC, DPI, and ascorbic acid in RASMC. Gel-mobility shift analysis showed that ET-1 (1-31) and ET-1 caused an increase in activator protein-1 (AP-1)-DNA binding activity in RASMC that was inhibited by the above three antioxidants. ET-1 (1-31) increased [3H]thymidine incorporation into cells to an extent similar to that of ET-1. This ET-1 (1-31)-induced increase in [3H]thymidine incorporation was also inhibited by NAC and DPI, but not by ascorbic acid. These results suggest that antioxidants inhibit ET-1 (1-31)-induced RASMC proliferation by inhibiting ROS generation within the cells. The underlying mechanisms of the inhibition of cellular proliferation by antioxidants may be explained, in part, by the inhibition of JNK activation and the resultant inhibition of AP-1-DNA binding. 相似文献
8.
Anti-benzo[a]pyrene-7,8-diol-9,10-epoxide (BPDE) is a ubiquitous environmental pollutant contained in tobacco smoke, automobile exhausts and barbecued foods. The carcinogenicity of BPDE on animals has been well characterized, whereas its apoptotic effect is not well defined. A recent study has shown that BPDE-mediated apoptotic pathway has varying specificity across different cell lines. Squamous cell carcinoma (SCC) arises from bronchiolar epithelium cells, therefore, we set out to investigate the pulmonary toxicity and apoptotic effect of BPDE in human bronchiolar epithelium cells (16HBE). Our results show BPDE induces mitochondrial-mediated apoptosis in a dose-dependent manner in 16HBE cells. The cleavage of caspase-3,-9 and release of Cytochrome c (cyt c) was regulated during apoptotic stimulation. However, the opening of mitochondria permeability transition pore (mPTP) has not been detected. Furthermore, our data also indicate that the formation of reactive oxygen species (ROS), decline of mitochondrial membrane potential (ΔΨm), increasing p53 and decreasing c-Myc levels play important roles in response to BPDE toxicity. In conclusion, these results suggest that BPDE-mediated apoptosis occurs via caspase-9 dependent mitochondria pathway associated with ROS formation, loss of ΔΨm, up-regulation of p53 and down-regulation of c-Myc, but independent of the opening of mPTP in 16HBE cells. 相似文献
9.
Genipin, the aglycone of geniposide, exhibits anti-inflammatory and anti-angiogenic activities. Here we demonstrate that genipin induces apoptotic cell death in FaO rat hepatoma cells and human hepatocarcinoma Hep3B cells, detected by morphological cellular changes, caspase activation and release of cytochrome c. During genipin-induced apoptosis, reactive oxygen species (ROS) level was elevated, and N-acetyl-l-cysteine (NAC) and glutathione (GSH) suppressed activation of caspase-3, -7 and -9. Stress-activated protein kinase/c-Jun NH2-terminal kinase 1/2(SAPK/JNK1/2) but neither MEK1/2 nor p38 MAPK was activated in genipin-treated hepatoma cells. SP600125, an SAPK/JNK1/2 inhibitor, markedly suppressed apoptotic cell death in the genipin-treated cells. The FaO cells stably transfected with a dominant-negative c-Jun, TAM67, was less susceptible to apoptotic cell death triggered by genipin. Diphenyleneiodonium (DPI), an inhibitor of NADPH oxidase, inhibited ROS generation, apoptotic cell death, caspase-3 activation and JNK activation. Consistently, the stable expression of Nox1-C, a C-terminal region of Nox1 unable to generate ROS, blocked the formation of TUNEL-positive apoptotic cells, and activation of caspase-3 and JNK in FaO cells treated with genipin. Our observations imply that genipin signaling to apoptosis of hepatoma cells is mediated via NADPH oxidase-dependent generation of ROS, which leads to downstream of JNK. 相似文献
10.
Thioredoxin reductase (TR1) is a selenoprotein that is involved in cellular redox status control and deoxyribonucleotide biosynthesis. Many cancers, including lung, overexpress TR1, making it a potential cancer therapy target. Previous work has shown that TR1 knockdown enhances the sensitivity of cancer cells to anticancer treatments, as well as certain selenocompounds. However, it is unknown if TR1 knockdown produces similar effect on the sensitivity of human lung cancer cells. To further elucidate the role of TR1 in the mechanism of selenocompounds in lung cancer, a lentiviral microRNA delivery system to knockdown TR1 expression in A549 human lung adenocarcinoma cells was utilized. Cell viability was assessed after 48 hr treatment with the selenocysteine prodrug selenazolidines 2-butylselenazolidine-4(R)-carboxylic acid (BSCA) and 2-cyclohexylselenazolidine-4-(R)-carboxylic acid (ChSCA), selenocystine (SECY), methylseleninic acid (MSA), 1,4-phenylenebis(methylene)selenocyanate (p-XSC), and selenomethionine (SEM). TR1 knockdown increased the cytotoxicity of BSCA, ChSCA, and SECY but did not sensitize cells to MSA, SEM, or p-XSC. GSH and TR1 depletion together decreased cell viability, while no change was observed with GSH depletion alone. Reactive oxygen species generation was induced only in TR1 knockdown cells treated with the selenazolidines or SECY. These three compounds also decreased total intracellular glutathione levels and oxidized thioredoxin, but in a TR1 independent manner. TR1 knockdown increased selenazolidine and SECY-induced mitochondrial membrane depolarization, as well as DNA strand breaks and AIF translocation from the mitochondria. These results indicate the ability of TR1 to modulate the cytotoxic effects of BSCA, ChSCA and SECY in human lung cancer cells through mitochondrial dysfunction. 相似文献
11.
Yolanda Sánchez 《Biochemical pharmacology》2009,77(3):384-396
While it has been reported that genistein induces differentiation in multiple tumour cell models, the signalling and regulation of isoflavone-provoked differentiation are poorly known. We here demonstrate that genistein causes G2/M cycle arrest and expression of differentiation markers in human acute myeloid leukaemia cells (HL60, NB4), and cooperates with all-trans retinoic acid (ATRA) in inducing differentiation, while ATRA attenuates the isoflavone-provoked toxicity. Genistein rapidly stimulates Raf-1, MEK1/2 and ERK1/2 phosphorylation/activation, but does not stimulate and instead causes a late decrease in Akt phosphorylation/activation which is attenuated by ATRA. Both differentiation and G2/M arrest are attenuated by MEK/ERK inhibitors (PD98059, U0126) and ERK1-/ERK2-directed small interfering RNAs (siRNAs), and by the PI3K inhibitor LY294002, but not by the p38-MAPK inhibitor SB203580. Genistein stimulates p21waf1/cip1 and cyclin B1 expression, phosphorylation/activation of ATM and Chk2 kinases, and Tyr15-phosphorylation/inactivation of Cdc2 (Cdk1) kinase, and these effects are attenuated by MEK/ERK inhibitors, while LY294002 also attenuates ERK and ATM phosphorylation. Caffeine abrogates the genistein-provoked G2/M blockade and alterations in cell cycle regulatory proteins, and also suppresses differentiation. Finally, genistein causes reactive oxygen species (ROS) over-accumulation, but the antioxidant N-acetyl-l-cysteine fails to prevent ERK activation, G2/M arrest, and differentiation induction. By contrast, N-acetyl-l-cysteine and p38-MAPK inhibitor attenuate the apoptosis-sensitizing (pro-apoptotic) action of genistein when combined with the antileukaemic agent arsenic trioxide. In summary, genistein-induced differentiation in acute myeloid leukaemia cells is a ROS-independent, Raf-1/MEK/ERK-mediated and PI3K-dependent response, which is coupled and co-regulated with G2/M arrest, but uncoupled to the pro-apoptotic action of the drug. 相似文献
12.
Jin-Woo Jeong Cheng-Yun Jin Cheol ParkSu Hyun Hong Gi-Young KimYong Kee Jeong Jae-Dong LeeYoung Hyun Yoo Yung Hyun Choi 《Toxicology in vitro》2011,25(4):817-824
Cordycepin (3′-deoxyadenosin), a specific polyadenylation inhibitor, is the main functional component in Cordyceps militaris, one of the top three renowned traditional Chinese medicines. Cordycepin has been shown to possess many pharmacological activities including immunological stimulation, and anti-bacterial, anti-viral, and anti-tumor effects. However, the mechanisms underlying its anti-cancer mechanisms are not yet understood. In this study, the apoptotic effects of cordycepin were investigated in human leukemia cells. Treatment with cordycepin significantly inhibited cell growth in a concentration-dependent manner by inducing apoptosis but not necrosis. This induction was associated with generation of reactive oxygen species (ROS), mitochondrial dysfunction, activation of caspases, and cleavage of poly(ADP-ribose) polymerase protein. However, apoptosis induced by cordycepin was attenuated by caspase inhibitors, indicating an important role for caspases in cordycepin responses. Administration of N-acetyl-l-cysteine, a scavenger of ROS, also significantly inhibited cordycepin-induced apoptosis and activation of caspases. These results support a mechanism whereby cordycepin induces apoptosis of human leukemia cells through a signaling cascade involving a ROS-mediated caspase pathway. 相似文献
13.
Role of redox status on the activation of mitogen-activated protein kinase cascades by NSAIDs 总被引:1,自引:0,他引:1
High concentrations of non steroidal antiinflammatory drugs (NSAIDs) exert preventive effects against carcinogenesis. Their molecular mechanism of action remains to be elucidated. Based on previous reports with salicylate, we have made the hypothesis that various NSAIDs can activate the mitogen-activated protein kinases (MAPK). Moreover, we tested the idea that NSAIDs act by increasing the effects of oxidative stress. We report that in human colorectal carcinoma cells NSAIDs stimulated the three families of MAPK, extracellular regulated kinases, c-Jun N-terminal kinases, p38 MAPK and that this stimulation is prevented by N-acetyl cysteine. In cultured astrocytes, a biological system less sensitive to oxidative stress, we show that a short treatment by NSAIDs strongly activated the three MAP kinases in the presence of H(2)O(2). A 25 microM H(2)O(2), unable to stimulate by itself the MAP kinases, promote an almost complete activation of MAP kinases in the presence of NSAIDs. The activation of MAP kinases by H(2)O(2) and NSAIDs was suppressed by quinone reductase inhibitors, suggesting that "redox cycling" was involved in the activation mechanisms of MAP kinases by H(2)O(2) and NSAIDs. The mobility on SDS-PAGE of the apoptosis signal-regulating kinase, which activates C-Jun N-terminal kinases and p38 MAPK cascades, was reduced by H(2)O(2) and NSAIDs, suggesting, that H(2)O(2) and NSAIDs activated apoptosis signal-regulating kinase by increasing its state of phosphorylation. In conclusion, we demonstrate that various NSAIDs can activate the three families of MAP kinases and that this activation depends on the presence of reactive oxygenated species. These results give a new insight into the mechanism of the action of NSAIDs. 相似文献
14.
Chen DR Chen ST Wang TW Tsai CH Wei HH Chen GJ Yang TC Lin C Lin PH 《Toxicology letters》2011,202(3):244-252
Both 17β-estradiol-2,3-quinone (E2-2,3-Q) and 17β-estradiol-3,4-quinone (E2-3,4-Q) are reactive metabolites of estrogen that are thought to be responsible for the estrogen-induced genotoxicity. The aim of this study was to establish a methodology to analyze estrogen quinone-derived protein adducts and to measure the background levels of these adducts in human serum albumin (Alb) derived from female blood donors in Taiwan. Results from in vitro experiments confirmed that the production of estrogen quinone-derived adducts on serum Alb increased with increased concentration of estrogen quinones. Time-course experiments suggested that both E2-2,3-Q- and E2-3,4-Q-derived adducts rapidly reached maximum values at 10 min mark and remained constant thereafter for up to 24 h. Additionally, with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) pretreatment, the production of estrogen quinone-derived protein adducts was detected in human MCF-7 breast cancer cells exposed to estrogen. Co-treatment of a catechol-O-methyl transferase inhibitor further enhanced the production of estrogen quinone-derived adducts in all cases. When we investigated the levels of estrogen quinone-derived adducts in human serum Alb, cysteinyl adducts of E2-2,3-Q-1-S-Alb, E2-2,3-Q-4-S-Alb, and E2-3,4-Q-2-S-Alb were detected in all healthy female controls (n = 10) with median levels at 147 (range 14.1-533), 197 (range 30.0-777), and 65.6 (range 17.6-1360) (pmol/g), respectively. We noticed that levels of E2-2,3-Q-derived adducts were 2-fold greater than those of E2-3,4-Q-2-S-Alb in controls whereas levels of E2-3,4-Q-2-S-Alb were 2-fold higher than those of E2-2,3-Q-derived adducts in patients (n = 20). Additionally, levels of E2-2,3-Q-4-S-Alb correlated significantly with those of E2-3,4-Q-2-S-Alb (correlation coefficient r = 0.684-0.850, p < 0.05). Overall, we conclude that cumulative body burden of E2-3,4-Q is a significant predictor of breast cancer. 相似文献
15.
Arsenic trioxide (ATO) is an effective therapeutic agent for the treatment of acute promyelocytic leukemia, but successful application of this agent may occasionally require the use of sensitizing strategies. The present work demonstrates that the flavonoids quercetin and chrysin cooperate with ATO to induce apoptosis in U937 promonocytes and other human leukemia cell lines (THP-1, HL-60). Co-treatment with ATO plus quercetin caused mitochondrial transmembrane potential dissipation, stimulated the mitochondrial apoptotic pathway, as indicated by cytochrome c and Omi/Htra2 release, XIAP and Bcl-X(L) down-regulation, and Bax activation, and caused caspase-8/Bid activation. Bcl-2 over-expression abrogated cytochrome c release and apoptosis, and also blocked caspase-8 activation. Quercetin and chrysin, alone or with ATO, decreased Akt phosphorylation as well as intracellular GSH content. GSH depletion was regulated at the level of L-buthionine-(S,R)-sulfoximine (BSO)-sensitive enzyme activity, and N-acetyl-L-cysteine failed both to restore GSH content and to prevent apoptosis. Treatment with BSO caused GSH depletion and potentiated ATO-provoked apoptosis, but did not affect apoptosis induction by ara-C and cisplatin. As an exception, ATO plus quercetin failed to elicit Akt de-phosphorylation and GSH depletion in NB4 acute promyelocytic leukemia cells, and correspondingly exhibited low cooperative effect in inducing apoptosis in this cell line. It is concluded that GSH depletion explains at least in part the selective potentiation of ATO toxicity by quercetin, and that this flavonoid might be used to increase the clinical efficacy of the antileukemic drug. 相似文献
16.
17.
Tetrandrine, a constituent of Chinese herb Stephania tetrandra, causes cell death in prostate cancer, but the molecular mechanisms leading to apoptosis is not known. Here we demonstrated that tetrandrine selectively inhibits the growth of prostate cancer PC3 and DU145 cells compared to normal prostate epithelial PWR-1E cells. Tetrandrine-induced cell death in prostate cancer cells is caused by reactive oxygen species (ROS)-mediated activation of c-Jun NH2-terminal kinase (JNK1/2). JNK1/2-mediated proteasomal degradation of c-FLIPL/S and Bcl2 proteins are key events in the sensitization of prostate cancer cells to Fas- and mitochondria-mediated apoptosis by tetrandrine. Tetrandrine-induced JNK1/2 activation caused the translocation of Bax to mitochondria by disrupting its association with Bcl2 which was accompanied by collapse of mitochondrial membrane potential (MMP), cytosolic release of cytochrome c and Smac, and apoptotic cell death. Additionally, tetrandrine-induced JNK1/2 activation increased the phosphorylation of Bcl2 at Ser70 and facilitated its degradation via the ubiquitin-mediated proteasomal pathway. In parallel, tetrandrine-mediated ROS generation also caused the induction of ligand-independent Fas-mediated apoptosis by activating procaspase-8 and Bid cleavage. Inhibition of procaspase-8 activation attenuated the cleavage of Bid, loss of MMP and caspase-3 activation suggest that tetrandrine-induced Fas-mediated apoptosis is associated with the mitochondrial pathway. Furthermore, most of the signaling effects of tetrandrine on apoptosis were significantly attenuated in the presence of antioxidant N-acetyl-l-cysteine, thereby confirming the involvement of ROS in these events. In conclusion, the results of the present study indicate that tetrandrine-induced apoptosis in prostate cancer cells is initiated by ROS generation and that both intrinsic and extrinsic pathway contributes to cell death. 相似文献