首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
States of glucocorticoid excess are associated with defects in chondrocyte function. Most prominently there is a reduction in linear growth but delayed healing of fractures that require endochondral ossification to also occur. In contrast, little is known about the role of endogenous glucocorticoids in chondrocyte function. As glucocorticoids exert their cellular actions through the glucocorticoid receptor (GR), we aimed to elucidate the role of endogenous glucocorticoids in chondrocyte function in vivo through characterization of tamoxifen-inducible chondrocyte-specific GR knockout (chGRKO) mice in which the GR was deleted at various post-natal ages. Knee joint architecture, cartilage structure, growth plates, intervertebral discs, long bone length and bone micro-architecture were similar in chGRKO and control mice at all ages. Analysis of fracture healing in chGRKO and control mice demonstrated that in metaphyseal fractures, chGRKO mice formed a larger cartilaginous callus at 1 and 2 week post-surgery, as well as a smaller amount of well-mineralized bony callus at the fracture site 4 week post-surgery, when compared to control mice. In contrast, chondrocyte-specific GR knockout did not affect diaphyseal fracture healing. We conclude that endogenous GC signaling in chondrocytes plays an important role during metaphyseal fracture healing but is not essential for normal long bone growth.  相似文献   

2.
Mini-abstractIn this study, we demonstrated that the use of zoledronic acid does not impair fracture healing, but results in superior callus size and resistance at the fracture site, which could be the consequence of a lower rate of bone turnover due to its anti-catabolic effect.ObjectiveTo investigate the effect of inhibition of bone remodeling by the bisphosphonate, zoledronic acid, on callus properties in an osteoporotic rat model of fracture healing.MethodsOvariectomized (OVX) rats were randomly divided into four treatment groups (n = 24 per group): saline control (CNT); and three systemic zoledronic acid-injected groups (0.1 mg/kg), administered 1 day (ZOLD1), 1 week (ZOLW1), and 2 weeks (ZOLW2) after fracture. Rats were killed at either 6 or 12 weeks postoperatively. Postmortem analyses included radiography, microcomputed tomography, histology, histomorphometry, biomechanical tests, and nanoindentation tests.ResultsTreatment with zoledronic acid led to a significant increase in trabecular bone volume within the callus, as well as in callus resistance, compared to those in the saline control rats; delayed administration (ZOLW2) reduced intrinsic material properties, including ultimate stress and elastic modulus, and microarchitecture parameters, including bone volume/total volume (BV/TV), trabecular thickness (Tb.Th), and connectivity density (Conn.D), compared with ZOLD1 at 12 weeks after surgery. OVX had a negative effect on the progression of endochondral ossification at 6 weeks. Zoledronic acid administration at an early stage following fracture may bind to early callus, and thus not affect subsequent callus formation and endochondral ossification, while delayed administration (ZOLW2) mildly suppresses bony callus remodeling.ConclusionThe superior results obtained with zoledronic acid (ZOLD1, ZOLW1, and ZOLW2) compared to CNT in terms of callus size and resistance could be the consequence of a lower rate of bone turnover at the fracture site due to the anti-catabolic effect of zoledronic acid. Mild suppression of callus remodeling by delayed administration did not impair the initial phase of the fracture healing process.  相似文献   

3.
The long prevailing view that obesity is generally associated with beneficial effects on the skeleton has recently been challenged. Apolipoprotein E (apoE) is known to influence both adipose tissue and bone. The goal of the current study was to examine the impact of apoE on the development of fat mass and bone mass in mice under conditions of diet-induced obesity (DIO).Four week-old male C57BL/6 (WT) and apoE-deficient (apoE?/?) mice received a control or a diabetogenic high-fat diet (HFD) for 16 weeks. The control-fed apoE?/? animals displayed less total fat mass and higher lumbar trabecular bone volume (BV/TV) than WT controls. When stressed with HFD to induce obesity, apoE?/? mice had a lower body weight, lower serum glucose, insulin and leptin levels and accumulated less white adipose tissue mass at all sites including bone marrow. While WT animals showed no significant change in BV/TV and bone formation rate (BFR), apoE deficiency led to a decrease of BV/TV and BFR when stressed with HFD. Bone resorption parameters were not affected by HFD in either genotype.Taken together, under normal dietary conditions, apoE-deficient mice acquire less fat mass and more bone mass than WT littermates. When stressed with HFD to develop DIO, the difference of total body fat mass becomes larger and the difference of bone mass smaller between the genotypes. We conclude that apoE is involved in an inverse regulation of bone mass and fat mass in growing mice and that this effect is modulated by diet-induced obesity.  相似文献   

4.
Hedgehog (Hh) signaling is critical in developmental osteogenesis, and recent studies suggest it may also play a role in regulating osteogenic gene expression in the post-natal setting. However, there is a void of studies directly assessing the effect of Hh inhibition on post-natal osteogenesis. This study utilized a cyclic loading-induced ulnar stress fracture model to evaluate the hypothesis that Hh signaling contributes to osteogenesis and angiogenesis during stress fracture healing. Immediately prior to loading, adult rats were given GDC-0449 (Vismodegib — a selective Hh pathway inhibitor; 50 mg/kg orally twice daily), or vehicle. Hh signaling was upregulated in response to stress fracture at 3 days (Ptch1, Gli1 expression), and was markedly inhibited by GDC-0449 at 1 day and 3 days in the loaded and non-loaded ulnae. GDC-0449 did not affect Hh ligand expression (Shh, Ihh, Dhh) at 1 day, but decreased Shh expression by 37% at 3 days. GDC-0449 decreased woven bone volume (− 37%) and mineral density (− 17%) at 7 days. Dynamic histomorphometry revealed that the 7 day callus was composed predominantly of woven bone in both groups. The observed reduction in woven bone occurred concomitantly with decreased expression of Alpl and Ibsp, but was not associated with differences in early cellular proliferation (as determined by callus PCNA staining at 3 days), osteoblastic differentiation (Osx expression at 1 day and 3 days), chondrogenic gene expression (Acan, Sox9, and Col2α1 expression at 1 day and 3 days), or bone resorption metrics (callus TRAP staining at 3 days, Rankl and Opg expression at 1 day and 3 days). To evaluate angiogenesis, vWF immunohistochemistry showed that GDC-0449 reduced fracture callus blood vessel density by 55% at 3 days, which was associated with increased Hif1α gene expression (+ 30%). Dynamic histomorphometric analysis demonstrated that GDC-0449 also inhibited lamellar bone formation. Lamellar bone analysis of the loaded limb (directly adjacent to the woven bone callus) showed that GDC-0449 significantly decreased mineral apposition rate (MAR) and bone formation rate (BFR/BS) (− 17% and − 20%, respectively). Lamellar BFR/BS in the non-loaded ulna was also significantly decreased (− 37%), indicating that Hh signaling was required for normal bone modeling. In conclusion, Hh signaling plays an important role in post-natal osteogenesis in the setting of stress fracture healing, mediating its effects directly through regulation of bone formation and angiogenesis.  相似文献   

5.
Type 1 diabetes mellitus (T1DM) patients have osteopenia and impaired fracture healing due to decreased osteoblast activity. Further, no adequate treatments are currently available that can restore impaired healing in T1DM; hence a significant need exists to investigate new therapeutics for treatment of orthopedic complications. Sclerostin (SOST), a WNT antagonist, negatively regulates bone formation, and SostAb is a potent bone anabolic agent. To determine whether SOST antibody (SostAb) treatment improves fracture healing in streptozotocin (STZ) induced T1DM mice, we administered SostAb twice weekly for up to 21 days post-fracture, and examined bone quality and callus outcomes at 21 days and 42 days post-fracture (11 and 14 weeks of age, respectively). Here we show that SostAb treatment improves bone parameters; these improvements persist after cessation of antibody treatment. Markers of osteoblast differentiation such as Runx2, collagen I, osteocalcin, and DMP1 were reduced, while an abundant number of SP7/osterix-positive early osteoblasts were observed on the bone surface of STZ calluses. These results suggest that STZ calluses have poor osteogenesis resulting from failure of osteoblasts to fully differentiate and produce mineralized matrix, which produces a less mineralized callus. SostAb treatment enhanced fracture healing in both normal and STZ groups, and in STZ + SostAb mice, also reversed the lower mineralization seen in STZ calluses. Micro-CT analysis of calluses revealed improved bone parameters with SostAb treatment, and the mineralized bone was comparable to Controls. Additionally, we found sclerostin levels to be elevated in STZ mice and β-catenin activity to be reduced. Consistent with its function as a WNT antagonist, SostAb treatment enhanced β-catenin activity, but also increased the levels of SOST in the callus and in circulation. Our results indicate that SostAb treatment rescues the impaired osteogenesis seen in the STZ induced T1DM fracture model by facilitating osteoblast differentiation and mineralization of bone.  相似文献   

6.
《BONE》2007,40(6):1226-1235
Fragility fractures, including neck of femur fractures, result from reductions in the amount, quality and architecture of bone. The aim of this study was to compare the cancellous bone structure, and static indices of bone turnover, in female patients, who had sustained fragility fracture at the femoral neck, with age-matched females without fragility fracture. Bone samples were taken from the intertrochanteric region of the proximal femur of female patients undergoing hip arthroplasty surgery for a subcapital fragility fracture of the femoral neck (#NOF) or from age-matched female control individuals at routine autopsy. Contiguous bone samples were analyzed for undecalcified histomorphometry and for mRNA expression. The histomorphometric data, which were normally distributed, indicated no difference between the mean values for any of the structural parameters in control and fracture samples. In particular, the bone volume (BV/TV) values were not different and did not change significantly with age in these cohorts of individuals aged > 65 years. The static indices of bone turnover, eroded surface (ES/BS) and osteoid surface (OS/BS), were positively correlated with age in the > 65-year-old control group (p < 0.055 and p < 0.03, respectively). The median values for these indices were not different between the fracture and control groups. However, both the median and the range of OS/BS values were increased for > 65-year-old controls compared with a group of younger females aged < 65 years, suggesting an increase in bone formation surface in older females in the proximal femur after 65 years of age. When the data were further interrogated, a reduction in the percentage osteoid surface to eroded surface quotient (OS/ES) was found for the fracture group compared with the age-matched control group suggesting a reduced adaptive modeling drift capability in the fracture group. In contiguous bone samples, increased median values for receptor activator of nuclear factor kappa β (RANK) and interleukin-6 (IL-6) mRNA expression were observed in the fracture group. Study of cultured human osteoblasts showed that recombinant human IL-6 (rhIL-6) inhibited osteoblast differentiation, as measured by an increase in the immature osteoblast marker, STRO-1 and concomitantly decreased expression of the osteoblast maturation marker, alkaline phosphatase. Importantly, cells cultured in the presence of IL-6 showed significantly less mineral deposition in vitro compared with control cultures. These data suggest that perturbations in bone formation surface, relative to resorption surface, are potentially important in producing bone in the proximal femur with increased propensity to fracture.  相似文献   

7.
Cathepsin K (CatK) is a cysteine protease, expressed predominantly in osteoclasts (OC) which degrades demineralized bone matrix. Novel selective inhibitors of CatK are currently being developed for the treatment of postmenopausal osteoporosis. Pharmacological inhibition of CatK reduces OC resorption activity while preserving bone formation in preclinical models. Disruption of the CatK gene in mice also results in high bone mass due to impaired bone resorption and elevated formation. Here, we assessed mid-shaft femoral fracture healing in 8–10 week old CatK knock-out (KO) versus wild type (WT) mice. Fracture healing and callus formation were determined in vivo weekly via X-ray, and ex vivo at days 14, 18, 28 and 42 post-fracture by radiographic scoring, micro-computed tomography (μCT), histomorphometry and terminal mechanical four point bend strength testing. Radiological evaluation indicated accelerated bone healing and remodeling for CatK KO animals based on increased total radiographic scores that included callus opacity and bridging at days 28 and 42 post-fracture. Micro-CT based total callus volume was similar in CatK KO and WT mice at day 14. Callus size in CatK KO mice was 25% smaller than that in WT mice at day 18, statistically significant by day 28 and exhibited significantly higher mineralized tissue volume and volumetric BMD as compared to WT by day 18 onward. Osteoclast surface and osteoid surface trended higher in CatK KO calluses at all time-points and osteoblast number was also significantly increased at day 28. Increased CatK KO callus mineral density was reflected in significant increases in peak load and stiffness over WT at day 42 post-fracture. Regression analysis indicated a positive correlation (r = 0.8671; p < 0.001) between callus BMC and peak load indicating normal mineral properties in CatK KO calluses. Taken together, gene deletion of cathepsin K in mice accelerated callus size resolution, significantly increased callus mineralized mass, and improved mechanical strength as compared to wild type mice.  相似文献   

8.
《Injury》2017,48(3):671-673
Local ionizing radiation causes damage to bone metabolism, it reduces blood supply and cellularity over time. Recent studies indicate that radiation promotes biological response outside the treatment field. The aim of this study was to investigate the effects of ionizing radiation on bone repair outside the irradiated field. Ten healthy male Wistar rats were used; and five animals were submitted to radiotherapy on the left femur. After 4 weeks, in all animals were created bone defects in the right and left femurs. Seven days after surgery, animals were euthanized. The femurs were removed and randomly divided into 3 groups (n = 5): Control (C) (right femur of the non-irradiated animals); Local ionizing radiation (IR) (left femur of the irradiated animals); Contralateral ionizing radiation (CIR) (right femur of the irradiated animals). The femurs were processed and embedded in paraffin; and bone histologic sections were evaluated to quantify the bone neoformation. Histomorphometric analysis showed that there was no significant difference between groups C (24.6 ± 7.04) and CIR (25.3 ± 4.31); and IR group not showed bone neoformation. The results suggest that ionizing radiation affects bone repair, but does not interfere in bone repair distant from the primary irradiated site.  相似文献   

9.
IntroductionAlthough it has been suggested that overweight and obese children have an increased risk of fracture, recent studies in post-menopausal women have shown that the relationship between obesity and fracture risk varies by fracture site. We therefore assessed whether adiposity and overweight/obesity prevalence differed by upper limb fracture site in children.MethodsHeight, weight, BMI, triceps and subscapular skinfold thickness (SFT) were measured in children aged 3–18 years with an acute upper limb fracture. Data was compared across three fracture sites (hand, forearm and upper arm/shoulder [UA]), and to published reference data.Results401 children (67.1% male, median age 11.71 years, range 3.54–17.27 years) participated. 34.2%, 50.6% and 15.2% had fractures of the hand, forearm and UA, respectively. Children with forearm fractures had higher weight, BMI, subscapular SFT and fat percentage z-scores than those with UA fractures (p < 0.05 for all). SFT and fat percentage z-scores were also higher in children with forearm fractures compared to hand fractures, but children with hand and UA fractures did not differ. Overweight and obesity prevalence was higher in children with forearm fractures (37.6%) than those with UA fractures (19.0%, p = 0.009). This prevalence was also higher than the published United Kingdom population prevalence (27.9%, p = 0.003), whereas that of children with either UA (p = 0.13) or hand fractures (29.1%, p = 0.76) did not differ. These differences in anthropometry and overweight/obesity prevalence by fracture site were evident in boys, but not present in girls.ConclusionMeasurements of adiposity and the prevalence of overweight/obesity differ by fracture site in children, and in particular boys, with upper limb fractures.  相似文献   

10.
Earlier studies have shown that the influence of fixation stability on bone healing diminishes with advanced age. The goal of this study was to unravel the relationship between mechanical stimulus and age on callus competence at a tissue level. Using 3D in vitro micro-computed tomography derived metrics, 2D in vivo radiography, and histology, we investigated the influences of age and varying fixation stability on callus size, geometry, microstructure, composition, remodeling, and vascularity. Compared were four groups with a 1.5-mm osteotomy gap in the femora of Sprague–Dawley rats: Young rigid (YR), Young semirigid (YSR), Old rigid (OR), Old semirigid (OSR). Hypothesis was that calcified callus microstructure and composition is impaired due to the influence of advanced age, and these individuals would show a reduced response to fixation stabilities. Semirigid fixations resulted in a larger ΔCSA (Callus cross-sectional area) compared to rigid groups. In vitro µCT analysis at 6 weeks postmortem showed callus bridging scores in younger animals to be superior than their older counterparts (p < 0.01). Younger animals showed (i) larger callus strut thickness (p < 0.001), (ii) lower perforation in struts (p < 0.01), and (iii) higher mineralization of callus struts (p < 0.001). Callus mineralization was reduced in young animals with semirigid fracture fixation but remained unaffected in the aged group. While stability had an influence, age showed none on callus size and geometry of callus. With no differences observed in relative osteoid areas in the callus ROI, old as well as semirigid fixated animals showed a higher osteoclast count (p < 0.05). Blood vessel density was reduced in animals with semirigid fixation (p < 0.05). In conclusion, in vivo monitoring indicated delayed callus maturation in aged individuals. Callus bridging and callus competence (microstructure and mineralization) were impaired in individuals with an advanced age. This matched with increased bone resorption due to higher osteoclast numbers. Varying fixator configurations in older individuals did not alter the dominant effect of advanced age on callus tissue mineralization, unlike in their younger counterparts. Age-associated influences appeared independent from stability. This study illustrates the dominating role of osteoclastic activity in age-related impaired healing, while demonstrating the optimization of fixation parameters such as stiffness appeared to be less effective in influencing healing in aged individuals.  相似文献   

11.
Glucocorticoids have a beneficial anti-inflammatory and immunosuppressive effect, but their use is associated with decreased bone formation, bone mass and bone quality, resulting in an elevated fracture risk. Exercise and sclerostin antibody (Scl-Ab) administration have both been shown to increase bone formation and bone mass, therefore the ability of these treatments to inhibit glucocorticoid-induced osteopenia alone or in combination were assessed in a rodent model. Adult (4 months-old) male Wistar rats were allocated to a control group (C) or one of 4 groups injected subcutaneously with methylprednisolone (5 mg/kg/day, 5 days/week). Methylprednisolone treated rats were injected subcutaneously 2 days/week with vehicle (M) or Scl-Ab-VI (M + S: 25 mg/kg/day) and were submitted or not to treadmill interval training exercise (1 h/day, 5 days/week) for 9 weeks (M + E, M + E + S). Methylprednisolone treatment increased % fat mass and % apoptotic osteocytes, reduced whole body and femoral bone mineral content (BMC), reduced femoral bone mineral density (BMD) and osteocyte lacunae occupancy. This effect was associated with lower trabecular bone volume (BV/TV) at the distal femur. Exercise increased BV/TV, osteocyte lacunae occupancy, while reducing fat mass, the bone resorption marker NTx, and osteocyte apoptosis. Exercise did not affect BMC or cortical microarchitectural parameters. Scl-Ab increased the bone formation marker osteocalcin and prevented the deleterious effects of M on bone mass, further increasing BMC, BMD and BV/TV to levels above the C group. Scl-Ab increased femoral cortical bone parameters at distal part and midshaft. Scl-Ab prevented the decrease in osteocyte lacunae occupancy and the increase in osteocyte apoptosis induced by M. The addition of exercise to Scl-Ab treatment did not result in additional improvements in bone mass or bone strength parameters. These data suggest that although our exercise regimen did prevent some of the bone deleterious effects of glucocorticoid treatment, particularly in trabecular bone volume and osteocyte apoptosis, Scl-Ab treatment resulted in marked improvements in bone mass across the skeleton and in osteocyte viability, resulting in decreased bone fragility.  相似文献   

12.
Post-natal osteogenesis after mechanical trauma or stimulus occurs through either endochondral healing, intramembranous healing or lamellar bone formation. Bone morphogenetic protein 2 (BMP2) is up-regulated in each of these osteogenic processes and is expressed by a variety of cells including osteoblasts and vascular cells. It is known that genetic knockout of Bmp2 in all cells or in osteo-chondroprogenitor cells completely abrogates endochondral healing after full fracture. However, the importance of BMP2 from differentiated osteoblasts and endothelial cells is not known. Moreover, the importance of BMP2 in non-endochondral bone formation such as intramembranous healing or lamellar bone formation is not known. Using inducible and tissue-specific Cre-lox mediated targeting of Bmp2 in adult (10–24 week old) mice, we assessed the role of BMP2 expression globally, by osteoblasts, and by vascular endothelial cells in endochondral healing, intramembranous healing and lamellar bone formation. These three osteogenic processes were modeled using full femur fracture, ulnar stress fracture, and ulnar non-damaging cyclic loading, respectively. Our results confirmed the requirement of BMP2 for endochondral fracture healing, as mice in which Bmp2 was knocked out in all cells prior to fracture failed to form a callus. Targeted deletion of Bmp2 in osteoblasts (osterix-expressing) or vascular endothelial cells (vascular endothelial cadherin-expressing) did not impact fracture healing in any way. Regarding non-endochondral bone formation, we found that BMP2 is largely dispensable for intramembranous bone formation after stress fracture and also not required for lamellar bone formation induced by mechanical loading. Taken together our results indicate that osteoblasts and endothelial cells are not a critical source of BMP2 in endochondral fracture healing, and that non-endochondral bone formation in the adult mouse is not as critically dependent on BMP2.  相似文献   

13.
Osteogenesis imperfecta (OI) is a heritable bone fragility disorder that is usually caused by mutations affecting collagen type I production in osteoblasts. Stimulation of bone formation through sclerostin antibody treatment (Sost-ab) has shown promising results in mouse models of relatively mild OI. We assessed the effect of once-weekly intravenous Sost-ab injections for 4 weeks in male Col1a1Jrt/+ mice, a model of severe dominant OI, starting either at 4 weeks (growing mice) or at 20 weeks (adult mice) of age. Sost-ab had no effect on weight or femur length. In OI mice, no significant treatment-associated differences in serum markers of bone formation (alkaline phosphatase activity, procollagen type I N-propeptide) or resorption (C-telopeptide of collagen type I) were found. Micro-CT analyses at the femur showed that Sost-ab treatment was associated with higher trabecular bone volume and higher cortical thickness in wild type mice at both ages and in growing OI mice, but not in adult OI mice. Three-point bending tests of the femur showed that in wild type but not in OI mice, Sost-ab was associated with higher ultimate load and work to failure. Quantitative backscattered electron imaging of the femur did not show any effect of Sost-ab on CaPeak (the most frequently occurring calcium concentration in the bone mineral density distribution), regardless of genotype, age or measurement location. Thus, Sost-ab had a larger effect in wild type than in Col1a1Jrt/+ mice. Previous studies had found marked improvements of Sost-ab on bone mass and strength in an OI mouse model with a milder phenotype. Our data therefore suggest that Sost-ab is less effective in a more severely affected OI mouse model.  相似文献   

14.
《Injury》2016,47(11):2484-2489
Many previous reports have indicated that atypical femur fractures (AFFs) are associated with the administration of bisphosphonates (BPs). A number of risk factors and hypotheses regarding the pathogenesis of AFFs have been reported to date. The purpose of the present study was to identify the factors associated with AFFs in Japanese individuals and to elucidate the association between bone metabolism and AFFs by evaluating bone turnover markers (BTMs). We prospectively reviewed all patients with femur fractures and identified the patients with AFFs and typical femur fractures (TFFs). We collected the demographic and clinical data that were relevant to the present study, namely age, gender, affected side, affected site, concomitant medical history, and comorbid conditions, and measured the levels of BTMs within 24 h after trauma. Welch’s test and Fisher’s exact probability test were used for the statistical analyses. A total of 338 patients, including 10 patients with AFFs and 328 patients with TFFs, were analyzed under the inclusion criteria. The use of BPs (p < 0.001) and collagen disease and chronic granulomatous disease (CD/CGD) (p = 0.025) were more frequently observed in patients with AFFs than in patients with TFFs, while the levels of BTMs, including N-terminal propeptides of type 1 procollagen (P1NP), isoform 5b of tartrate-resistant acid phosphatase (TRACP-5b) and undercarboxylated osteocalcin (ucOC) were significantly lower in patients with AFFs than in patients with TFFs. Furthermore, the level of TRACP-5b was found to be significantly lower in patients with atypical subtrochanteric fractures than in atypical diaphyseal fractures (p = 0.025). Moreover, the levels of P1NP (p = 0.016) and TRACP-5b (p = 0.015) were found to be significantly lower in patients with AFFs than in patients with TFFs in a subgroup analysis of BPs users. The use of BPs was considered to be a factor associated with AFFs. Our comparison of the BTMs in patients with AFFs and TFFs indicated that the severe suppression of bone turnover was associated with the pathogenesis of AFFs. The extent of the influence of suppressed turnover on the pathogenesis of AFFs may differ depending on the fracture site.  相似文献   

15.
IntroductionThe clinically known importance of patient sex as a major risk factor for compromised bone healing is poorly reflected in animal models. Consequently, the underlying cellular mechanisms remain elusive. Because mesenchymal stem cells (MSCs) are postulated to regulate tissue regeneration and give rise to essential differentiated cell types, they may contribute to sex-specific differences in bone healing outcomes.MethodsWe investigated sex-specific variations in bone healing and associated differences in MSC populations. A 1.5 mm osteotomy gap in the femora of 8 male and 8 female 12-month-old Sprague–Dawley rats was stabilized by an external fixator. Healing was analyzed in terms of biomechanical testing, bridging and callus size over time (radiography at 2, 4, and 6 weeks after surgery), and callus volume and geometry by μCT at final follow-up. MSCs were obtained from bone marrow samples of an age-matched group of 12 animals (6 per gender) and analyzed for numbers of colony-forming units (CFUs) and their capacity to differentiate and proliferate. The proportion of senescent cells was determined by β-galactosidase staining.ResultsSex-specific differences were indicated by a compromised mechanical competence of the callus in females compared with males (maximum torque at failure, p = 0.028). Throughout the follow-up, the cross-sectional area of callus relative to bone was reduced in females (p  0.01), and the bridging of callus was delayed (p2weeks = 0.041). μCT revealed a reduced callus size (p = 0.003), mineralization (p = 0.003) and polar moment of inertia (p = 0.003) in female animals. The female bone marrow contained significantly fewer MSCs, represented by low CFU numbers in both femora and tibiae (pfemur = 0.017, ptibia = 0.010). Functional characteristics of male and female MSCs were similar.ConclusionBiomechanically compromised and radiographically delayed bone formation were distinctive in female rats. These differences were concomitant with a reduced number of MSCs, which may be causative for the suboptimal bone healing.  相似文献   

16.
Bone remodelling suppressants like the bisphosphonates reduce bone loss and slow progression of structural decay. As remodelling removes damaged bone, when remodelling suppression is protracted, bone quality may be compromised predisposing to microdamage accumulation and atypical femoral fractures. The aim of this study was to determine whether teriparatide therapy assists in fracture healing and improves bone quality in patients with bisphosphonate associated atypical femoral fractures.A prospective study was conducted involving 14 consecutive patients presenting during 2 years with atypical femoral fracture. All patients were offered teriparatide therapy unless contraindicated. Age and sex matched control subjects without fragility fractures or anti-resorptive treatment were recruited. High resolution peripheral micro-computed tomography (HRpQCT) scans of the distal radius and distal tibia were analysed for their cortical bone tissue mineralisation density using new software (StrAx1.0, StrAxCorp, Australia) at baseline and 6 months after teriparatide.Administration of 20 μg of teriparatide subcutaneously daily for 6 months to 5 of the 14 patients was associated with 2–3 fold increase in bone remodelling markers (p = 0.01) and fracture healing. At the distal radius, the proportion of less densely mineralised bone increased by 29.5% (p = 0.01), and the proportion of older, more densely mineralised bone decreased by 16.2% (p = 0.03). Similar observations were made at the distal tibia. Of the nine patients managed conservatively or surgically, seven had poor fracture healing with ongoing pain, one sustained a contralateral atypical fracture and one had fracture union after 1 year. Teriparatide may assist in healing of atypical fractures and restoration of bone quality.  相似文献   

17.
In recent years, great interest in combined treatment of parathyroid hormone (PTH) with anti-resorptive therapy has emerged. PTH has been suggested to aid bridging of atrophic fractures and improve strength in closed fracture models. Bisphosphonate treatments typically result in a larger woven bone callus that is slower to remodel. The combination of both drugs has been demonstrated to be effective for the treatment of osteoporotic bone loss in many preclinical studies. However, the effect of combined treatment on fracture repair is still largely unexplored. In this study, we aimed to compare these drugs as single-agent and in combination in a murine closed fracture model. We wanted to assess potential differences in material properties, morphometry and in the development of the lacuno-canalicular network. A total of 40 female, 11-week-old wild type mice underwent a closed fracture on the midshaft of the tibia and were assigned to four groups (n = 8–10 per group). Beginning on post-operative day 8, animals received different subcutaneous injections. Group 1 received a single injection of saline solution and Group 2 of zoledronic acid (ZA). Group 3 received daily dosing of PTH. Group 4 received a dual treatment, starting with a single dose of ZA followed by daily injection of PTH. Three weeks after fracture, all animals were euthanized and tibiae were assessed using micro-computed tomography (micro-CT), high-resolution micro-CT (HR micro-CT), Raman spectroscopy, quantitative histomorphometry, and deconvolution microscopy (DV microscopy). Combined treatment showed a significant increase of 41% in bone volume fraction and a significant decrease of 61% in the standard deviation of the trabecular spacing compared to vehicle, both known to be strong predictors of callus strength. An analysis via HR micro-CT showed similar results on all groups for lacunar numerical density, whereas mean lacuna volume was found to be higher compared to vehicle in treated groups, but only PTH mono-treatment showed a significant increase compared to vehicle (+ 45%). Raman spectroscopy did not reveal detectable changes in material properties of the bone calluses. Sclerostin staining, tartrate resistant acid phosphatase (TRAP) staining and canalicular analysis with DV microscopy on a subset of samples did not display distinctive difference in any of the treatments.We therefore consider PTH + ZA treatment beneficial for bone healing. No clear negative effect on bone quality was detected during this study.  相似文献   

18.
《Injury》2016,47(12):2795-2799
IntroductionMinimally invasive plate osteosynthesis (MIPO) using locking plates has been used in distal femur fractures, but various problems, such as nonunion, malalignment, and implant failure, have been reported. Simple fractures sometimes have poorer outcomes than complex fractures. We studied elderly patients with simple fracture patterns who underwent open reduction followed by placement of a single positional screw to hold the reduced interfragmentary gap, and compared these cases with patients who underwent surgery using conventional MIPO techniques.Patients and methodsA retrospective analysis was conducted on 80 cases of patients with distal femur fractures and simple fracture patterns (33-A1, A2, and C1). The mean age was 74 (60–90) years, and the mean follow-up period was 14 (12–25) months. Group A included 40 patients who underwent conventional MIPO technique while Group B included 40 patients who had surgery using positional screws. Interfragmentary gaps in Group B were reduced using percutaneous reduction clamps, and cortical screws were inserted to sustain the reduction. Then, locking plates were inserted using conventional MIPO techniques.ResultsBony union was achieved in all 80 cases, mean initial callus formation was observed in 11 weeks (8–13 weeks), and radiological union was observed in 27 weeks (15–54 weeks). Time to initial callus formation was not different, but radiologic union was achieved in 30 weeks (18–54 weeks) for Group A and 25 weeks (15–41 weeks) for Group B (p = 0.006). No differences were seen in clinical function at 1 year (p = 0.580). Five cases of malalignment occurred in Group A (p = 0.021). The rate of union during the 1-year period was significantly higher in group B than in group A (p = 0.002).ConclusionsIn a distal femur fracture with a simple fracture pattern, using positional screws to sustain the reduced interfragmentary gap may achieve a more rapid union by reducing fracture gap. Though functional differences were not seen in follow-ups, patients can be expected to return to their normal lives earlier as union is achieved in a shorter time. Performing MIPO using positional screws to sustain the reduced interfragmentary gap after fracture reduction will be helpful in the treatment of simple femoral fracture.  相似文献   

19.
Jay J. Cao  Brian R. Gregoire  Hongwei Gao   《BONE》2009,44(6):1097-1104
Body mass has a positive effect on bone health. Whether mass derived from an obesity condition or excessive fat accumulation is beneficial to bone has not been established; neither have the mechanisms by which obesity affects bone metabolism. The aim of this study was to examine the effects of obesity on bone structure and osteoblastic expression of key markers involved in bone formation and resorption in a diet-induced obesity mouse model. Six-wk-old male C57BL/6 mice (n = 21) were assigned to two groups and fed either a control (10 kcal% energy as fat) or high-fat diet (HFD, 45 kcal% energy as fat) for 14 weeks. Bone marrow stromal/osteoblastic cells (BMSC) were cultured. Osteoprogenitor activity [alkaline phosphatase (ALP) positive colonies] and mineralization (calcium nodule formation) were determined. Gene expression was measured using quantitative real-time PCR. Bone structure of proximal and midshaft tibia was evaluated by micro-computed tomography. Mice fed the HFD were 31% heavier (P < 0.01) than those fed the control diet. There were more ALP positive colony forming units at d 14 and calcium nodules at d 28 of culture by BMSC from HFD mice than from control mice (P < 0.01). Receptor activator of NF-κB ligand (RANKL) mRNA levels and the ratio of RANKL to osteoprotegerin expression in HFD animals was higher (P < 0.01) than in control diet animals. Serum tartrate-resistant acid phosphatase levels were higher in HFD fed mice when compared to control diet fed mice (P < 0.05). There were no significant differences in tibial fat-free weight, length, and cortical parameters of midshaft between the two groups. Compared with control mice, tibial trabecular bone volume was reduced, and trabecular separation was increased in HFD mice. Trabecular number was lower (P < 0.05) and connectivity density tended to be less (P = 0.07) in HFD mice than in control mice. In conclusion, our data indicate that obesity induced by a high-fat diet decreases cancellous bone mass but has no effect on cortical bone mass in the tibia in mice.  相似文献   

20.
《BONE》2013,54(2):382-390
The association of a well-balanced diet with exercise is a key strategy to treat obesity. However, weight loss is linked to an accelerated bone loss. Furthermore, exercise is known to induce beneficial effects on bone. We investigated the impact of a well-balanced isoenergetic reducing diet (WBR) and exercise on bone tissue in obese rats. Sixty male rats had previously been fed with a high fat/high sucrose diet (HF/HS) for 4 months to induce obesity. Then, 4 regimens were initiated for 2 months: HF/HS diet plus exercise (treadmill: 50 min/day, 5 days/week), WBR diet plus exercise, HF/HS diet plus inactivity and WBR diet plus inactivity. Body composition and total BMD were assessed using DXA and visceral fat mass was weighed. Tibia densitometry was assessed by Piximus. Bone histomorphometry was performed on the proximal metaphysis of tibia and on L2 vertebrae (L2). Trabecular micro-architectural parameters were measured on tibia and L2 by 3D microtomography. Plasma concentration of osteocalcin and CTX were measured. Both WBR diet and exercise had decreased global weight, global fat and visceral fat mass (p < 0.05). The WBR diet alone failed to alter total and tibia bone mass and BMD. However, Tb.Th, bone volume density and degree of anisotropy of tibia were decreased by the WBR diet (p < 0.05). Moreover, the WBR diet had involved a significant lower MS/BS and BFR/BS in L2 (p < 0.05). Exercise had significantly improved BMD of the tibia possibly by inhibiting the bone resorption, as evidenced by no change in plasma osteocalcin levels, a decrease of CTX levels (p < 0.005) and trabecular osteoclast number (p < 0.05). In the present study a diet inducing weight and fat mass losses did not affected bone mass and BMD of obese rats despite alterations of their bone micro-architecture. The moderate intensity exercise performed had improved the tibia BMD of obese rats without any trabecular and cortical adaptation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号