首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although most pathogens use the mucosal routes for invasion, the majority of currently available vaccines are administered parenterally. Injectable vaccines induce good systemic immunity but often unsatisfactory mucosal immunity. A non-injectable mucosal vaccine, which can be self-administered intranasally, may provide both effective systemic and mucosal immunity and can be used for vaccination of large populations within a short period of time in case of a sudden epidemic. Here, we report on a new intranasal (i.n.) influenza vaccine, based on a novel polycationic sphingolipid, N-palmitoyl D-erythro-sphingosyl carbamoyl-spermine (ceramide carbamoyl-spermine = CCS), having combined carrier and adjuvant activities, which elicits, in mice, strong systemic (serum) and local (lung and nasal) humoral and cellular responses, and provides protective immunity. In a comparative study, we show that both unmodified commercial vaccine and vaccine formulated with neutral or anionic liposomes were poorly immunogenic upon i.n. administration. Of five vaccine formulations based on well-established monocationic lipids in the form of unsized liposomes, three (DC-Chol, DDAB, and DSTAP-based) resulted in low serum and local responses, while two others (DMTAP and DOTAP-based vaccines) induced both systemic and local vigorous Th1+Th2 immune responses. However, only the vaccine formulated with CCS was equivalent or superior to the commercial vaccine co-administered with cholera toxin as an adjuvant. Furthermore, the CCS-based influenza vaccine was highly efficacious following a single or a repeated (x2) i.n. or a single i.m. administration, without an added adjuvant, in both young (2 months) and old (18 months) mice. It elicited high titers of strain cross-reactive hemagglutination inhibition (HI) antibodies, and the high antibody titers and protective immunity persisted for at least 9 months. No systemic adverse effects, and only a mild local inflammatory response, were observed in mice and rabbits vaccinated i.n. with the CCS vaccine formulation. A similar approach may prove efficacious for i.n. vaccination against other pathogens.  相似文献   

2.
The development of pre-pandemic influenza A H5N1 vaccines that confer both antigen-sparing and cross-clade protection are a high priority given the limited worldwide capacity for influenza vaccine production, and the antigenic and genetic heterogeneity of circulating H5N1 viruses. The inclusion of potent adjuvants in vaccine formulations may achieve both of these aims. Here we show that the addition of JVRS-100, an adjuvant consisting of cationic liposome-DNA complexes (CLDC) to a clade 1-derived H5N1 split vaccine induced significantly higher virus-specific antibody than unadjuvanted formulations, with a >30-fold dose-sparing effect and induction of increased antigen-specific CD4+ T-cell responses in mice. All mice that received one dose of adjuvanted vaccine and subsequent H5N1 viral challenges exhibited mild illness, lower lung viral titers, undetectable spleen and brain viral titers, and 100% survival after either homologous clade 1 or heterologous clade 2 H5N1 viral challenges, whereas unadjuvanted vaccine recipients showed significantly increased weight loss, viral titers, and mortality. The protective immunity induced by JVRS-100 adjuvanted H5N1 vaccine was shown to last for over one year without significant waning. Thus, JVRS-100 adjuvanted H5N1 vaccine elicited enhanced humoral and T-cell responses, dose-sparing, and cross-clade protection in mice. CLDC holds promise as an adjuvant for human pre-pandemic inactivated H5N1 vaccines.  相似文献   

3.
We recently showed that lipid assemblies comprised of a novel polycationic sphingolipid (ceramide carbamoyl-spermine, CCS) are an effective adjuvant/carrier when complexed with cholesterol (CCS/C) for influenza and other vaccines administered parenterally and intranasally (i.n.) in mice. Here we expand these studies to ferrets, an established model of influenza infection. We also address the question of why the CCS/C-based liposomal vaccine (also known as VaxiSome™) in mice is superior to vaccines based on liposomes of other lipid compositions (neutral, anionic or cationic). Ferrets immunized i.n. with CCS/C-influenza vaccine produced significantly higher hemagglutination inhibition (HI) antibody titers compared to ferrets immunized intramuscularly with the unadjuvanted influenza vaccine, indicating that the CCS/C-based vaccine is very immunogenic. Furthermore, the i.n. adjuvanted vaccine was shown to significantly reduce the severity of influenza virus infection in ferrets following homologous viral challenge as determined by weight loss, temperature rise and viral titer. No adverse reactions were observed. Pharmacokinetic and biodistribution studies following i.n. administration in mice of CCS/C-based vaccine showed that both the lipids and antigens are retained in the nose and lung for at least 24 h, and it appears that this retention correlates with the superior immunogenicity elicited by the adjuvanted vaccine formulation. The CCS lipid also increases production of cytokines (mainly IFN gamma, IL-2 and IL-12) and co-stimulatory molecules’ expression, which might further explain the robust adjuvantation of this liposome-based vaccine.  相似文献   

4.
In order to study the influence of antigen composition, spatial organization of antigen and the route of administration, four cell culture-derived, inactivated, nonadjuvanted influenza vaccine formulations, i.e. whole inactivated virus (WIV), split, subunit and virosome vaccines were prepared from a single antigen batch. We directly compared the immunogenicity and efficacy of these vaccine formulations after intramuscular (i.m.) or intranasal (i.n.) administration in mice. Prime and boost vaccination were followed by a potentially lethal homologous aerosol challenge. For all vaccines, the i.m. route induced higher serum humoral immune responses as compared to the i.n. route and protected all mice against challenge at a dose of 5 microg. Upon i.n. immunization only WIV and split vaccines induced detectable IgG titers and partial protection against challenge but only very low HI titers were induced in almost all mice. WIV induced mainly IgG2a/c titers via both routes, whereas split vaccine induced exclusively IgG1 titers via both routes. Subunit and virosome vaccines induced exclusively IgG1 via the i.m. route. Mucosal sIgA levels were only detected after i.n. vaccination with WIV. Furthermore, vaccines containing all viral components (WIV and split vaccine) induced higher serum HI titers and serum antibody titers than subunit and virosome vaccines. The differences in magnitude and quality of immune responses of split and WIV, having the same composition, are likely related to their distinct spatial organization. In conclusion, the direct comparison between WIV, split, subunit and virosomes, shows that the differences in immune responses between these well known influenza vaccines can be explained by both the composition and particulate structure of these vaccine formulations.  相似文献   

5.
A dose-dependent, vaccine-induced protection of aged and young Balb/c mice against lethal influenza A virus challenge has been demonstrated. Low dose formalin-inactivated influenza A virus vaccine was protective in young mice, but not in aged mice, while a higher dose was protective in both. Administration of low dose vaccine with IL-2 liposomes conferred protection comparable to the high dose in aged mice. Serum neutralizing antibody responses were stimulated by vaccine in a dose-dependent manner while IL-2 liposomes significantly enhanced responses in the low dose paralleled protection in young but not in aged mice. Lung interferon levels paralleled lung virus titres in young but not in aged mice. CTL responses in infected mice were generally higher in young than aged mice. These results demonstrate efficacy of IL-2 liposomes as an adjuvant for influenza virus vaccines in the aged.  相似文献   

6.
We optimized the immunogenicity of adjuvanted seasonal influenza vaccine based on commercial split influenza virus as an antigen (hemagglutinin = HA) and on a novel polycationic liposome as a potent adjuvant and efficient antigen carrier (CCS/C-HA vaccine). The vaccine was characterized physicochemically, and the mechanism of action of CCS/C as antigen carrier and adjuvant was studied. The optimized CCS/C-HA split virus vaccine, when administered intramuscularly (i.m.), is significantly more immunogenic in mice, rats and ferrets than split virus HA vaccine alone, and it provides for protective immunity in ferrets and mice against live virus challenge that exceeds the degree of efficacy of the split virus vaccine. Similar adjuvant effects of optimized CCS/C are also observed in mice for H1N1 swine influenza antigen. The CCS/C-HA vaccine enhances immune responses via the Th1 and Th2 pathways, and it increases both the humoral responses and the production of IL-2 and IFN-γ but not of the pro-inflammatory factor TNFα. In mice, levels of CD4+ and CD8+ T-cells and of MHC II and CD40 co-stimulatory molecules are also elevated. Structure–function relationship studies of the CCS molecule as an adjuvant/carrier show that replacing the saturated palmitoyl acyl chain with the mono-unsaturated oleoyl (C18:1) chain affects neither size distribution and zeta potential nor immune responses in mice. However, replacing the polyalkylamine head group spermine (having two secondary amines) with spermidine (having only one secondary amine) reduces the enhancement of the immune response by ∼50%, while polyalkylamines by themselves are ineffective in improving the immunogenicity over the commercial HA vaccine. This highlights the importance of the particulate nature of the carrier and the polyalkylamine secondary amines in the enhancement of the immune responses against seasonal influenza. Altogether, our results suggest that the CCS/C polycationic liposomes combine the activities of a potent adjuvant and efficient carrier of seasonal and swine flu vaccines and support further development of the CCS/C-HA vaccine.  相似文献   

7.
Huang Y  Anderson R 《Vaccine》2002,20(11-12):1586-1592
The radiation-resistant bacterium, Deinococcus radiodurans contains a variety of phospho-, glyco- and phosphoglycolipids, the structures of which appear to be largely unique in nature. We show here that such lipids are immunogenic when administered as liposomes intranasally in mice, as evidenced by the induction of serum antibodies which recognize D. radiodurans lipids but not other lipids by thin layer chromatographic immunostaining. By modifying a liposomal vaccine against respiratory syncytial virus (RSV) we find that vaccine efficacy is markedly enhanced by the inclusion of lipids isolated from D. radiodurans. Using dioleoylphosphatidylcholine (DOPC) or D. radiodurans lipids, liposomes were prepared which encapsulated a soluble fragment of the RSV G protein (G(128-188)) fused with a portion of the bacterial thioredoxin (Trx) protein. Mice immunized intranasally with D. radiodurans liposomes showed markedly greater protection against RSV challenge over mice immunized with DOPC liposomes. Enhanced vaccine efficacy was achieved using liposomes prepared from either whole D. radiodurans lipids or from a single isolated phosphoglycolipid previously identified as alpha-galactosylphosphatidylglyceroylalkylamine (lipid 7). Mice immunized and protected against RSV challenge were free of pulmonary eosinophilic infiltration, an undesirable consequence of many RSV vaccines. The results provide further support for liposome-based vaccines for RSV and underline the importance of lipid composition in liposome formulations.  相似文献   

8.
The commonly used inactivated or split influenza vaccines induce only induce minimal T cell responses and are less effective in preventing heterologous virus infection. Thus, developing cross-protective influenza vaccines against the spread of a new influenza virus is an important strategy against pandemic emergence. Here we demonstrated that immunization with heat shock protein gp96 as adjuvant led to a dramatic increased antigen-specific T cell response to a pandemic H1N1 split vaccine. Notably, gp96 elicited a cross-protective CD8+ T cell response to the internal conserved viral protein NP. Although the split pH1N1vaccine alone has low cross-protective efficiency, adding gp96 as an adjuvant effectively improved the cross-protection against challenge with a heterologous virus in mice. Our study reveals the novel property of gp96 in boosting the T cell response against conserved epitopes of influenza virus and its potential use as an adjuvant for human pre-pandemic inactivated influenza vaccines against different viral subtypes.  相似文献   

9.
《Vaccine》2016,34(20):2362-2370
The H7N9 influenza virus caused significant mortality and morbidity in humans during an outbreak in China in 2013. A recombinant H7N9 influenza seed with hemagglutinin (HA) and neuraminidase (NA) gene segments from A/Zhejiang/DTID-ZJU01/2013(H7N9) and six internal protein gene segments from A/Puerto Rico/8/34(H1N1; PR8) were generated using reverse genetics. We sought to determine the immunogenic, protective properties, and mechanisms of a split avian influenza A/H7N9 vaccine mixed with MF59 adjuvant in comparison to vaccines that included other adjuvant. BALB/c mice were vaccinated with two doses of different amounts and combinations of this novel A/ZJU01/PR8/2013 split vaccine with adjuvant. Mice were subsequently challenged with A/Zhejiang/DTID-ZJU01/2013(H7N9) by intranasal inoculation. We verified that MF59 enhanced the HI, MN, and IgG antibody titers to influenza antigens. Compared with alum, MF59 could more potentially induce humoral immune responses and Th2 cytokine production after virus infection, while both MF59 and alum can slightly increase NK cell activity. This split H7N9 influenza vaccine with MF59 adjuvant could effectively induce antibody production and protect mice from H7N9 virus challenge. We have selected this vaccine for manufacture and future clinical studies to protect humans from H7N9 virus infection.  相似文献   

10.
Mazumder S  Ravindran R  Banerjee A  Ali N 《Vaccine》2007,25(52):210-8781
The difficulty in making successful vaccines against leishmaniasis is partly due to lack of an appropriate adjuvant. Non-coding plasmid DNA (pDNA) bearing immunostimulatory sequences (ISS) is a potent activator of innate immunity, and can thus act as an adjuvant with vaccine antigen. We therefore evaluated the efficacy of pDNA and soluble leishmanial antigens (SLA) to protect against challenge with Leishmania donovani infection. We demonstrate that immunomodulatory activity of pDNA, which potentiated a Th1 immune responses, led to enhanced protection with SLA. Importantly, adding cationic liposomes as vehicle to the antigen, with pDNA either complexed or entrapped within, significantly increased the potentiating effect of pDNA. Further, comparison of the two vaccine formulations demonstrated an impressive increase in the protective efficacy up to two folds when both antigen and pDNA were within the vehicle. Thus, these studies establish the utility of non-coding pDNA bearing ISS as strong promoters of vaccine potency of liposomal antigens especially when co-entrapped with the antigen in cationic liposomes.  相似文献   

11.
The effectiveness of single dose, intranasally delivered vaccines comprising detergent-disrupted inactivated influenza virus (split virus) and ISCOMATRIX™ adjuvant was examined in mice. Vaccines formulated with adjuvant required 10- to 100-fold less split virus antigen to induce pulmonary protection following viral challenge when compared to vaccines containing split virus alone. Furthermore, those formulated with ISCOMATRIX™ adjuvant elicited specific antibody in serum, saliva, vaginal, nasal and lung fluids when delivered to the entire respiratory tract. No specific antibody was detected in serum or mucosal samples, however, when the same vaccines were delivered using a procedure that restricted the inoculum to the nasal passages. Good protective responses can thus be achieved with only a single intranasal inoculation of influenza vaccine formulated with adjuvant, providing the vaccine can access sites of immune induction in the lower respiratory tract.  相似文献   

12.
《Vaccine》2017,35(4):586-595
Influenza is an acute respiratory disease and a major health problem worldwide. Since mucosal immunity plays a critical role in protection against influenza virus infection, mucosal immunization is considered a promising vaccination route. However, except for live-attenuated vaccines, there are no effective killed or recombinant mucosal influenza vaccines to date. Outer membrane vesicles (OMVs) are nano-sized vesicles produced by gram-negative bacteria, and contain various bacterial components capable of stimulating the immune system of the host. We generated an OMV with low endotoxicity (fmOMV) by modifying the structure of the lipid A moiety of lipopolysaccharide and investigated its effect as an intranasal vaccine adjuvant in an influenza vaccine model. In this model, fmOMV exhibited reduced toll-like receptor 4-stimulating activity and attenuated endotoxicity compared to that of native OMV. Intranasal injection of the vaccine antigen with fmOMV significantly increased systemic antibody and T cell responses, mucosal IgA levels, and the frequency of lung-resident influenza-specific T cells. In addition, the number of antigen-bearing CD103+ dendritic cells in the mediastinal lymph nodes was significantly increased after fmOMV co-administration. Notably, the mice co-immunized with fmOMV showed a significantly higher protection rate against challenge with a lethal dose of homologous or heterologous influenza viruses without adverse effects. These results show the potential of fmOMV as an effective mucosal adjuvant for intranasal vaccines.  相似文献   

13.
Cox RJ  Hovden AO  Brokstad KA  Szyszko E  Madhun AS  Haaheim LR 《Vaccine》2006,24(44-46):6585-6587
Recently the urgency of developing a pandemic influenza vaccine has lead to the re-evaluation of the use of whole virus vaccine. We have compared the humoral immune response and the protective efficacy of whole and split influenza virus vaccines in mice. Whole virus vaccine was more immunogenic particularly after the first dose of vaccine, generally eliciting higher numbers of systemic antibody secreting cells and an earlier and higher neutralising antibody response. Immunisation with one dose of whole virus vaccine more effectively reduced viral shedding upon non-lethal homologous viral challenge, but two doses of split virus vaccine was most effective at limiting viral replication and this was correlated with high influenza specific serum IgG concentrations. The two vaccine formulations induced different T helper profiles particularly after one dose of vaccine; split virus vaccine induced a type 2 bias response, whereas whole virus vaccine elicited a dominant type 1 response.  相似文献   

14.
The development of safe and effective vaccines for avian influenza viruses is a priority for pandemic preparedness. Adjuvants improve the efficacy of vaccines and may allow antigen sparing during a pandemic. We have previously shown that influenza virus-like particles (VLPs) comprised of HA, NA, and M1 proteins represent a candidate vaccine for avian influenza H9N2 virus [Pushko P, Tumpey TM, Fang Bu, Knell J, Robinson R, Smith G. Influenza virus-like particles comprised of the HA, NA, and M1 proteins of H9N2 influenza virus induce protective immune responses in BALB/c mice. Vaccine 2005;23(50):5751-9]. In this study, an H9N2 VLP vaccine and recombinant HA (rH9) vaccine were evaluated in three animal models. The H9N2 VLP vaccine protected mice and ferrets from challenge with A/Hong Kong/1073/99 (H9N2) virus. Novasome adjuvant improved immunogenicity and protection. Positive effect of the adjuvant was also detected using the rH9 vaccine. The results have implications for the development of safe and effective vaccines for avian influenza viruses with pandemic potential.  相似文献   

15.
Avian influenza H7 viruses have transmitted from poultry to man causing human illness and fatality, highlighting the need for pandemic preparedness against this subtype. We have developed and tested the first cell-based human vaccine against H7 avian influenza virus in a phase I clinical trial. Sixty healthy volunteers were intramuscularly vaccinated with two doses of split H7N1 virus vaccine containing 12 μg or 24 μg haemagglutinin alone or with aluminium hydroxide adjuvant (300 μg or 600 μg, respectively). The vaccine was well tolerated in all subjects and no serious adverse events occurred. The vaccine elicited low haemagglutination inhibition and microneutralisation titres, although the addition of aluminium adjuvant augmented the antibody response. We found a higher number of antibody secreting cells and an association with IL-2 production in subjects with antibody response. In conclusion, our study shows that producing effective H7 pandemic vaccines is as challenging as has been observed for H5 vaccines.  相似文献   

16.
Recent cases of avian influenza H7N9 have caused great concerns that virus may become transmittable between humans. It is imperative to develop an effective vaccine to fight against the pandemic potential of this H7N9 influenza virus to protect human from the disease. This study aims to investigate an optimized formulation for the development of H7N9 vaccines. Various doses of H7N9 inactivated whole or split-virus antigens (0.5, 1.5, or 3 μg based on hemagglutinin content) combined with squalene-based adjuvant (AddaVAX), aluminum hydroxide Al(OH)3 or without adjuvant were evaluated for the efficacy of H7N9 vaccine regiments in mice. With either H7N9 whole or split-virus based vaccines, AddaVAX-adjuvanted formulations were the most immunogenic in eliciting significant humoral immune response against H7N9 virus and exhibited strong cross-reactive response in hemagglutination inhibition (HAI) and viral-neutralization assays against H7N7 virus as well. In contrast, formulations with Al(OH)3 or without adjuvant were less immunogenic and elicited lower titers of HAI and microneutralization assays against both viruses. Dose-sparing experiments suggested that the formulation with as low as 0.004 μg of split or whole virus vaccine antigens together with 50% AddaVAX provided sufficient sero-protective HAI titers and achieved essential virus-neutralizing antibody titers against H7-subtype influenza viruses in mice. Protection experiments demonstrated that the formulation of 0.004 μg to 0.5 μg of split-virion vaccines with AddaVAX conferred full protection against viral challenge up to 100 LD50 of wild-type H7N9 virus, with 0% survival in placebo group. Taken together, our study demonstrates that squalene-based adjuvant can significantly enhance the protective efficacy of H7N9 virus vaccine and provides a useful strategy to confront the potential pandemic outbreaks of H7N9 virus.  相似文献   

17.
Podda A 《Vaccine》2001,19(17-19):2673-2680
Elderly people and subjects with underlying chronic diseases are at increased risk for influenza and related complications. Conventional influenza vaccines provide only limited protection in the elderly population. In order to enhance the immune response to influenza vaccines, several adjuvants have been evaluated. Among these, an oil in water adjuvant emulsion containing squalene, MF59, has been combined with subunit influenza antigens and tested in clinical trials in comparison with non-adjuvanted conventional vaccines. Data from a clinical database of over 10000 elderly subjects immunised with this adjuvanted vaccine (Fluad, Chiron Vaccines, Siena, Italy) demonstrate that, although common postimmunisation reactions are more frequent in recipients of the adjuvanted vaccine, this vaccine is well tolerated, also after re-immunisation in subsequent influenza seasons. Immunogenicity analyses demonstrate a consistently higher immune response with statistically significant increases of postimmunisation geometric mean titres, and of seroconversion and seroprotection rates compared to non-adjuvanted subunit and split influenza vaccines, particularly for the A/H3N2 and the B strains. The higher immunogenicity profile of the MF59-adjuvanted vaccine is maintained also after subsequent immunisations. An even higher adjuvant effect was shown in subjects with low pre-immunisation titre and in those affected by chronic underlying diseases. In conclusion, the addition of MF59 to subunit influenza vaccines enhances significantly the immune response in elderly subjects without causing clinically important changes in the safety profile of the influenza vaccine.  相似文献   

18.
Trivalent avian influenza (AIV) antigens (H4N8, H5N2 and H7N3), mixed with positively charged, negatively charged and neutral avridine-containing liposomes, and oil-emulsion were subcutaneously administered to 6-week-old turkeys. Charged liposomal avridine adjuvant, either positive or negative, produced a better antibody response than uncharged liposomal avridine or oil-emulsion adjuvants when used in a trivalent avian influenza vaccine. The antibody response to the different antigens was generally greater to the positively charged adjuvanted vaccine compared with the negatively or neutral charged or oil-emulsion adjuvanted vaccines and these differences were significant (P less than 0.05) with the three antigens. The results suggest that the positively charged liposomal avridine plays a significant role as adjuvant to the AIV antigens.  相似文献   

19.
We evaluated the priming effect of an H5N1 pandemic vaccine in a mouse model to investigate strategies for influenza pandemic vaccination. For priming, an alum-adjuvanted inactivated whole H5N1 vaccine (NIBRG-14, clade 1) was used. As booster vaccines, several formulations of Indo05/05/2005(H5N1)PR8-IBCDC-RG2 vaccines (clades 2–1) were evaluated, including split, whole, alum-adjuvanted split, and alum-adjuvanted whole vaccines.  相似文献   

20.
DNA vaccines have been able to induce partial protection against infection with Leishmania in mice, but it is still necessary to increase their efficacy. In the present study we evaluated aluminium phosphate as an adjuvant of different formulations and doses of DNA vaccines against L. mexicana in BALB/c mice. Aluminium phosphate had no effect on the humoral response induced by a high dose (100 microg) DNA vaccine, but slightly increased the cellular response and the protection against infection. It also allowed a non-immunoprotective low dose (20 microg) DNA vaccine encoding L. mexicana GP63 and Leishmania donovani NH36 to become protective. Aluminium phosphate may thus be an effective, low cost and safe adjuvant for DNA vaccines, and the vaccine formulation described here may be an excellent candidate for further vaccine development against Leishmania.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号