首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Factor H is a regulator of the alternative pathway of complement, and genetic studies have shown that patients with mutations in factor H are at increased risk for several types of renal disease. Pathogenic activation of the alternative pathway in acquired diseases, such as ischemic acute kidney injury, suggests that native factor H has a limited capacity to control the alternative pathway in the kidney. Here we found that an absolute deficiency of factor H produced by gene deletion prevented complement activation on tubulointerstitial cells after ischemia/reperfusion (I/R) injury, likely because alternative pathway proteins were consumed in the fluid phase. In contrast, when fluid-phase regulation by factor H was maintained while the interaction of factor H with cell surfaces was blocked by a recombinant inhibitor protein, complement activation after renal I/R increased. Finally, a recombinant form of factor H, specifically targeted to sites of C3 deposition, reduced complement activation in the tubulointerstitium after ischemic injury. Thus, although factor H does not fully prevent activation of the alternative pathway of complement on ischemic tubules, its interaction with the tubule epithelial cell surface is critical for limiting complement activation and attenuating renal injury after ischemia.  相似文献   

2.
Zheng X  Zhang X  Sun H  Feng B  Li M  Chen G  Vladau C  Chen D  Suzuki M  Min L  Liu W  Zhong R  Garcia B  Jevnikar A  Min WP 《Transplantation》2006,82(12):1781-1786
BACKGROUND: Ischemia/reperfusion (I/R) injury occurs in clinical kidney transplantation, which results in graft dysfunction and rejection. It has been documented that I/R injury is associated with complement activation and renal cell apoptosis. The purpose of this study was to develop a strategy to prevent I/R injury using small interfering RNA (siRNA) that target complement 3 (C3) and caspase 3 genes. METHODS: siRNA-expression vectors were constructed to target C3 and caspase 3 genes. Gene silencing efficacy was assessed using real-time polymerase chain reaction. In vivo gene silencing was performed by hydrodynamic injection with C3 and caspase 3 siRNA. Renal I/R injury was induced through clamping the renal vein and artery for 25 min. I/R injury was evaluated using kidney histopathology, blood urea nitrogen (BUN), serum levels of creatinine, and survival. RESULTS: Effective gene silencing was first confirmed in vitro. Notably upregulated expression of C3 and caspase 3 genes was observed from 2 to 48 hr after I/R injury, which were effectively and specifically inhibited by C3 and caspase 3 siRNA. In comparison with control mice, serum levels of creatinine and BUN were also significantly decreased in C3 and caspase 3 siRNA-treated mice. Furthermore, the therapeutic effect of siRNA was assessed in a severe, lethal I/R injury experiment, in which siRNA treatment significantly reduced mortality. Tissue histopathology showed an overall reduction in injury area in siRNA-treated mice. CONCLUSIONS: This is the first demonstration that renal I/R injury can be prevented through silencing the complement gene and apoptosis gene, highlighting the potential for siRNA-based clinical therapy.  相似文献   

3.
The pathophysiology of ischemia/reperfusion (I/R) injury is complex, and current knowledge of I/R injury in humans is incomplete. In the present study, human living-donor kidney transplantation was used as a highly reproducible model to systematically study various processes potentially involved in early I/R injury. Unique, direct measurements of arteriovenous concentration differences over the kidney revealed massive release of interleukin (IL)-6 in the first 30 minutes of graft reperfusion and a modest release of IL-8. Among the assessed markers of oxidative and nitrosative stress, only 15( S )-8- iso -PGF was released. When assessing cell activation, release of prothrombin factor 1 + 2 indicated thrombocyte activation, whereas there was no release of markers for endothelial activation or neutrophil activation. Common complement activation complex sC5b-9 was not released into the bloodstream, but was released into urine rapidly after reperfusion. To investigate whether IL-6 plays a modulating role in I/R injury, a mouse experiment of renal I/R injury was performed. Neutralizing anti-IL-6 antibody treatment considerably worsened kidney function. In conclusion, this study shows that renal I/R in humans is dominated by local IL-6 release. Neutralization of IL-6 in mice resulted in a significant aggravation of renal I/R injury.  相似文献   

4.
After kidney ischemia/reperfusion (I/R) injury, monocytes home to the kidney and differentiate into activated macrophages. Whereas proinflammatory macrophages contribute to the initial kidney damage, an alternatively activated phenotype can promote normal renal repair. The microenvironment of the kidney during the repair phase mediates the transition of macrophage activation from a proinflammatory to a reparative phenotype. In this study, we show that macrophages isolated from murine kidneys during the tubular repair phase after I/R exhibit an alternative activation gene profile that differs from the canonical alternative activation induced by IL-4–stimulated STAT6 signaling. This unique activation profile can be reproduced in vitro by stimulation of bone marrow-derived macrophages with conditioned media from serum-starved mouse proximal tubule cells. Secreted tubular factors were found to activate macrophage STAT3 and STAT5 but not STAT6, leading to induction of the unique alternative activation pattern. Using STAT3-deficient bone marrow-derived macrophages and pharmacologic inhibition of STAT5, we found that tubular cell-mediated macrophage alternative activation is regulated by STAT5 activation. Both in vitro and after renal I/R, tubular cells expressed GM-CSF, a known STAT5 activator, and this pathway was required for in vitro alternative activation of macrophages by tubular cells. Furthermore, administration of a neutralizing antibody against GM-CSF after renal I/R attenuated kidney macrophage alternative activation and suppressed tubular proliferation. Taken together, these data show that tubular cells can instruct macrophage activation by secreting GM-CSF, leading to a unique macrophage reparative phenotype that supports tubular proliferation after sterile ischemic injury.  相似文献   

5.
BACKGROUND: Studies in animal models have shown that the alternative pathway of complement is activated in the kidney after ischemia/reperfusion. In addition, mice deficient in complement factor B, a necessary component of the alternative pathway, are protected from ischemic acute renal failure. The purpose of this study was to determine whether alternative pathway activation also occurs during the development of ischemic acute tubular necrosis in the human kidney. METHODS: Biopsies were identified from nine patients with morphologically normal kidneys and seven patients with evidence of acute tubular necrosis by light microscopy. Immunofluorescence microscopy was used to quantify and localize the complement activation products C3d and C4d. The results were correlated with available clinical data. RESULTS: Similar to mice, small amounts of activated C3d were present along the tubular basement membrane in normal kidneys. However, kidneys from patients with acute tubular necrosis had C3d complement deposition along a significantly greater number of tubules, and many of the tubules were completely circumscribed. In contrast, C4d was not detectable, indicating that complement activation occurred primarily via alternative pathway activation. CONCLUSION: Complement activation occurs in human ischemic acute tubular necrosis. As in rodents, complement activation along the tubular basement membrane after ischemia appears to occur principally via the alternative complement pathway. Because of this, an inhibitor of the alternative pathway might limit complement activation and inflammation after ischemia/reperfusion, thereby protecting the kidney from ischemic acute renal failure.  相似文献   

6.
BACKGROUND: Although ischemia-reperfusion (I/R) injury represents a major problem in posttransplant organ failure, effective treatment is not available. The acute phase protein alpha-1-acid glycoprotein (AGP) has been shown to be protective against experimental I/R injury. The effects of AGP are thought to be mediated by fucose groups expressed on the AGP protein inhibiting neutrophil infiltration. However, the precise mechanism of protection remains to be established. We therefore studied the effects of exogenous human AGP (hAGP) in a mouse model of ischemic acute renal failure. METHODS: Mice were subjected to renal I/R and treated with hAGP, fucose-depleted hAGP, or control treated. Also, transgenic mice over-expressing rat AGP or wild-type controls were subjected to renal I/R. RESULTS: Treatment was with hAGP as well as fucose-depleted hAGP protected mice against I/R-induced acute renal failure. Surprisingly, AGP-over-expressing mice were not protected against I/R injury. Both natural and fucose-depleted hAGP inhibited the activation of the complement system, as determined by renal C3 deposition and influx of neutrophils measured by immunohistochemistry and myeloperoxidase-enzyme-linked immunoadsorbent assay. Tubular epithelial cell structure (actin cytoskeleton) and cell-cell interaction (tight-junction architecture) were completely preserved in AGP-treated mice. Also, epithelial caspase activation and apoptotic DNA cleavage were prevented by AGP treatment. CONCLUSIONS: Both natural and fucose-depleted hAGP protect against renal I/R injury by preservation of tubular epithelial structure and inhibition of apoptosis and subsequent inflammation. Therefore, hAGP can be regarded as a potential new therapeutic intervention in the treatment of acute renal failure, as seen after transplantation of ischemically injured kidneys.  相似文献   

7.
BACKGROUND: Complement has been implicated in the pathophysiology of renal ischemia-reperfusion (I/R) injury. However, the mechanism underlying complement-mediated renal I/R injury is thus far unknown. To investigate the involvement of complement in I/R injury, we studied the activation and deposition of complement in a murine model of renal I/R injury. Furthermore, we examined the effect of inhibition of complement-factor C5 on renal I/R injury. METHODS: Mice were subjected to 45 min of unilateral ischemia and subsequent contralateral nephrectomy and reperfusion for 2, 12, or 24 hr. Mice were control treated or treated with BB5.1, a monoclonal antibody that prevents cleavage of complement factor C5, thereby preventing C5a generation and formation of the membrane attack complex (MAC). RESULTS: Renal I/R induced extensive deposition of C3 early after reperfusion, whereas C6 and C9 deposition (MAC formation) occurred relatively late. I/R-induced complement deposition was mainly localized to tubular epithelium. Treatment with BB5.1 totally prevented MAC formation but also reduced C3 deposition. Inhibition of C5 strongly inhibited late inflammation, as measured by neutrophil influx and induction of the murine CXC chemokines macrophage inflammatory protein-2, KC, and lipopolysaccharide-induced CXC chemokine. Anti-C5 treatment furthermore abrogated late I/R-induced apoptosis, whereas early apoptosis was not affected. Moreover, BB5.1 treatment significantly protected against I/R-induced renal dysfunction. CONCLUSIONS: Renal I/R is followed by activation of the complement system and intrarenal deposition of C3 and MAC. Complement activation plays a crucial role in the regulation of inflammation and late apoptosis. Complement inhibition, by preventing C5 activation, abrogates late apoptosis and inflammation, being strongly protective against renal function loss.  相似文献   

8.
Chemokines play a major role in the recruitment of leukocytes in inflammation and in the regulation of T helper 1 (Th1)/Th2 immune responses. These mechanisms have been recognized to be important in the pathogenesis of renal ischemia-reperfusion (I/R) injury. The interaction of the CXC chemokine receptor 3 (CXCR3) receptor with its ligands is a key pathogenic pathway in promoting inflammation and in enhancing Th1 immune responses. After the induction of ischemia in the mouse model of renal ischemia, an increase in intrarenal expression of CXCR3 and its ligands was observed. Compared with the wild-type (WT) mice, CXCR3-deficient mice (CXCR3-/-) had significantly lower serum creatinine levels, better survival rate, and significantly less acute tubular necrosis and cellular infiltrates. In the kidney, intracellular staining of infiltrating cells that were recovered from kidneys revealed a lower percentage of CD4+IFN-gamma+ cells in the CXCR3-/- mice compared with the WT mice. Furthermore, adoptive transfer of WT CD3+ cells into CXCR3-/- mice before induction of I/R injury abrogated the protection of CXCR3-/- mice from I/R injury. It is concluded that CXCR3 plays an important role in orchestrating the recruitment of Th1 cells to the ischemic kidney and in mediating I/R injury and therefore may serve as a novel target for the therapy of I/R injury.  相似文献   

9.
The membrane forms of guanylyl cyclase (GC) serve as cell-surface receptors that synthesize the second messenger cGMP, which mediates diverse cellular processes. Rat kidney contains mRNA for the GC-G isoform, but the role of this receptor in health and disease has not been characterized. It was found that mouse kidney also contains GC-G mRNA, and immunohistochemistry identified GC-G protein in the epithelial cells of the proximal tubule and collecting ducts. Six hours after ischemia-reperfusion (I/R) injury, GC-G mRNA and protein expression increased three-fold and remained upregulated at 24 h. For determination of whether GC-G mediates I/R injury, a mutant mouse with a targeted disruption of the GC-G gene (Gucy2g) was created. At baseline, no histologic abnormalities were observed in GC-G(-/-) mice. After I/R injury, elevations in serum creatinine and urea were attenuated in GC-G(-/-) mice compared with wild-type controls, and this correlated with less tubular disruption, less tubular cell apoptosis, and less caspase-3 activation. Measures of inflammation (number of infiltrating neutrophils, myeloperoxidase activity, and induction of IL-6 and P-selectin) and activation of NF-kappaB were lower in GC-G(-/-) mice compared with wild-type mice. Direct transfer of a GC-G expression plasmid to the kidneys of GC-G(-/-) mice resulted in a dramatically higher mortality after renal I/R injury, further supporting a role for GC-G in mediating injury. In summary, GC-G may act as an early signaling molecule that promotes apoptotic and inflammatory responses in I/R-induced acute renal injury.  相似文献   

10.
Gene variants in the alternative pathway of the complement system strongly associate with atypical hemolytic uremic syndrome (aHUS), presumably by predisposing to increased complement activation within the kidney. Complement factor H (CFH) is the major regulator of complement activation through the alternative pathway. Factor H-deficient mice transgenically expressing a mutant CFH protein (Cfh(-/-).FHΔ16-20) that functionally mimics the CFH mutations reported in aHUS patients spontaneously develop thrombotic microangiopathy. To investigate the role of complement C5 activation in this aHUS model, we generated C5-deficient Cfh(-/-).FHΔ16-20 mice. Both C5-sufficient and C5-deficient Cfh(-/-).FHΔ16-20 mice had abnormal C3 deposition within the kidney, but spontaneous aHUS did not develop in any of the C5-deficient mice. Furthermore, although Cfh(-/-).FHΔ16-20 animals demonstrated marked hypersensitivity to experimentally triggered renal injury, animals with concomitant C5 deficiency did not. These data demonstrate a critical role for C5 activation in both spontaneous aHUS and experimentally triggered renal injury in animals with defective complement factor H function. This study provides a rationale to investigate therapeutic inhibition of C5 in human aHUS.  相似文献   

11.
C3 glomerulopathy refers to renal disorders characterized by abnormal accumulation of C3 within the kidney, commonly along the glomerular basement membrane (GBM). C3 glomerulopathy is associated with complement alternative pathway dysregulation, which includes functional defects in complement regulator factor H (FH). There is no effective treatment for C3 glomerulopathy. We investigated the efficacy of a recombinant mouse protein composed of domains from complement receptor 2 (CR2) and FH (CR2-FH) in two models of C3 glomerulopathy with either preexisting or triggered C3 deposition along the GBM. FH-deficient mice spontaneously develop renal pathology associated with abnormal C3 accumulation along the GBM and secondary plasma C3 deficiency. CR2-FH partially restored plasma C3 levels in FH-deficient mice 2 hours after intravenous injection. CR2-FH specifically targeted glomerular C3 deposits, reduced the linear C3 reactivity assessed with anti-C3 and anti-C3b/iC3b/C3c antibodies, and prevented further spontaneous accumulation of C3 fragments along the GBM. Reduction in glomerular C3d and C9/C5b-9 reactivity was observed after daily administration of CR2-FH for 1 week. In a second mouse model with combined deficiency of FH and complement factor I, CR2-FH prevented de novo C3 deposition along the GBM. These data show that CR2-FH protects the GBM from both spontaneous and triggered C3 deposition in vivo and indicate that this approach should be tested in C3 glomerulopathy.  相似文献   

12.
Li Y  Wu J  Shou Z  He Q  Zhang P  Han F  Li H  Chen J 《Nephrology (Carlton, Vic.)》2008,13(6):508-516
Aim: Granulocyte colony-stimulating factor (G-CSF) has been shown to exert protective effects in various tissues and experimental models of ischaemia-induced injury. However, the mechanism of renoprotective action in ischaemia/reperfusion (I/R) renal injury of G-CSF was unknown. Methods: Male C57BL/6J mice, subjected to renal ischaemia for 45 min, 48 h and 7 days reperfusion, were administered either saline, wortmannin, G-CSF, and G-CSF plus wortmannin 3 days prior to I/R. Saline-treated group served as the control. At 48 h and 7 days of reperfusion, the mice were killed. Results: Significantly, renal dysfunction and morphological injury were identified at 48 h and 7 days after I/R. Wortmannin pretreatment worsened the renal injury significantly. However, G-CSF pretreatment significantly attenuated renal injury, reduced the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling-positive ratio of renal tubular epithelial cells and inflammation cytokine expression in the kidney. Moreover, G-CSF pretreatment inhibited the expression of Bax and increased the expression of bcl-2 and p-Akt in the kidney. Wortmannin blunted the beneficial effects of G-CSF. Conclusion: The cytoprotective action of G-CSF against I/R injury seems to be associated with its anti-apoptotic action mediated by upregulation of p-Akt signal pathway.  相似文献   

13.
The role of poly(ADP-ribose) (PAR) glycohydrolase (PARG) in the pathophysiology of renal ischemia/reperfusion (I/R) injury is not known. Poly(ADP-ribosyl)ation is rapidly stimulated in cells after DNA damage caused by the generation of reactive oxygen and nitrogen species during I/R. Continuous or excessive activation of poly(ADP-ribose) polymerase-1 produces extended chains of ADP-ribose on nuclear proteins and results in a substantial depletion of intracellular NAD(+) and subsequently, ATP, leading to cellular dysfunction and, ultimately, cell death. The key enzyme involved in polymer turnover is PARG, which possesses mainly exoglycosidase activity but can remove olig(ADP-ribose) fragments via endoglycosidic cleavage. Thus, the aim of this study was to investigate whether the absence of PARG(110) reduced the renal dysfunction, injury, and inflammation caused by I/R of the mouse kidney. Here, the renal dysfunction and injury caused by I/R (bilateral renal artery occlusion [30 min] followed by reperfusion [24 h]) in mice lacking PARG(110), the major nuclear isoform of PARG, was investigated. The following markers of renal dysfunction and injury were measured: Plasma urea, creatinine, aspartate aminotransferase, and histology. The following markers of inflammation were also measured: Myeloperoxidase activity, malondialdehyde levels, and plasma nitrite/nitrate. The degree of renal injury and dysfunction caused by I/R was significantly reduced in PARG(110)-deficient mice when compared with their wild-type littermates, and there were no differences in any of the biochemical parameters measured between sham-operated PARG(110)(-/-) mice and sham-operated wild-type littermates. Thus, it is proposed that endogenous PARG(110) plays a pivotal role in the pathophysiology of I/R injury of the kidney.  相似文献   

14.
BACKGROUND: Generation of nitric oxide (NO) by inducible nitric oxide synthase (iNOS) may contribute to renal ischemia/reperfusion (I/R) injury. The aim of this study was to investigate the effects of GW274150, a novel, highly selective, potent and long-acting inhibitor of iNOS activity in rat and mouse models of renal I/R. METHODS: Rats were administered GW274150 (5 mg/kg intravenous bolus administered 30 minutes prior to I/R) and subjected to bilateral renal ischemia (45 minutes) followed by reperfusion (6 hours). Serum and urinary indicators of renal dysfunction, tubular and reperfusion injury were measured, specifically, serum urea, creatinine, aspartate aminotransferase (AST) and N-acetyl-beta-d-glucosaminidase (NAG) enzymuria. In addition, renal sections were used for histologic scoring of renal injury and for immunologic evidence of nitrotyrosine formation and poly [adenosine diphosphate (ADP)-ribose] (PAR). Nitrate levels were measured in rat plasma using the Griess assay. Mice (wild-type, administered 5 mg/kg GW274150, and iNOS-/-) were subjected to bilateral renal ischemia (30 minutes) followed by reperfusion (24 hours) after which renal dysfunction (serum urea, creatinine), renal myeloperoxidase (MPO) activity and malondialdehyde (MDA) levels were measured. RESULTS: GW274150, administered prior to I/R, significantly reduced serum urea, serum creatinine, AST, and NAG indicating reduction of renal dysfunction and injury caused by I/R. GW274150 reduced histologic evidence of tubular injury and markedly reduced immunohistochemical evidence of nitrotyrosine and PAR formation, indicating reduced peroxynitrite formation and poly (ADP-ribose) polymerase (PARP) activation, respectively. GW274150 abolished the rise in the plasma levels of nitrate (indicating reduced NO production). GW274150 also reduced the renal dysfunction in wild-type mice to levels similar to that observed in iNOS-/- mice subjected to I/R. Renal MPO activity and MDA levels were significantly reduced in wild-type mice administered GW274150 and iNOS-/- mice subjected to renal I/R, indicating reduced polymorphonuclear leukocyte (PMN) infiltration and lipid peroxidation. CONCLUSIONS: These results suggest that (1). an enhanced formation of NO by iNOS contributes to the pathophysiology of renal I/R injury and (2). GW274150 reduces I/R injury of the kidney. We propose that selective inhibitors of iNOS activity may be useful against renal dysfunction and injury associated with I/R of the kidney.  相似文献   

15.
BACKGROUND: Poly (ADP-ribose) polymerase (PARP), a nuclear enzyme activated by strand breaks in DNA, plays an important role in the development of ischemia/reperfusion (I/R) injury. The aim of this study was to investigate the effects of a water-soluble and potent PARP inhibitor, 5-aminoisoquinolinone (5-AIQ), on the renal injury and dysfunction caused by oxidative stress of the rat kidney in vitro and in vivo. METHODS: Primary cultures of rat renal proximal tubular cells, subjected to oxidative stress caused by hydrogen peroxide (H2O2), were incubated with increasing concentrations of 5-AIQ (0.01 to 1 mmol/L) after which PARP activation, cellular injury, and cell death were measured. In in vivo experiments, anesthetized male Wistar rats were subjected to renal bilateral ischemia (45 minutes) followed by reperfusion (6 hours) in the absence or presence of 5-AIQ (0.3 mg/kg) after which renal dysfunction, injury and PARP activation were assessed. RESULTS: Incubation of proximal tubular cells with H2O2 caused a substantial increase in PARP activity, cellular injury, and cell death, which were all significantly reduced in a concentration-dependent by 5-AIQ [inhibitory concentration 50 (IC50) approximately 0.03 mmol/L]. In vivo, renal I/R resulted in renal dysfunction, injury, and PARP activation, primarily in the proximal tubules of the kidney. Administration of 5-AIQ significantly reduced the biochemical and histologic signs of renal dysfunction and injury and markedly reduced PARP activation caused by I/R. CONCLUSION: This study demonstrates that 5-AIQ is a potent, water soluble inhibitor of PARP activity, which can significantly reduce (1) cellular injury and death caused to primary cultures of rat proximal tubular cells by oxidative stress in vitro, and (2) renal injury and dysfunction caused by I/R of the kidney of the rat in vivo.  相似文献   

16.
BACKGROUND: JAK/STAT signalling is one of the major pathways for cytokine signal transduction. However, the role of JAK/STAT in renal ischaemia/reperfusion (I/R) injury is not clear. The present study investigated the protection against renal I/R injury by in vivo inhibition of JAK2 activation. METHODS: Rats subjected to renal I/R were either treated with daily intraperitoneal injection of selective JAK2 inhibitor tyrphostin AG490 (10 mg/kg) or vehicle alone starting 4 h before, immediately after or until 3 h after I/R. Renal function, histology, infiltration of macrophages, apoptosis, expression of chemokines and adhesion molecules were assessed. RESULTS: AG490 treatment significantly inhibited the phosphorylation of JAK2 and its downstream molecule STAT1 and STAT3. Rats pretreated with AG490 exhibited improved renal function, attenuated histological lesions and reduced apoptosis of tubular epithelial cells. AG490 significantly inhibited renal expression of MCP-1 and ICAM-1 mRNA, as well as the expression of ICAM-1 protein, accompanied by decreased macrophage accumulation in the kidney. Immediate post-ischaemic treatment of AG490 also significantly ameliorated renal injury. However, delayed post-ischaemic treatment until 3 h after I/R failed to attenuate renal damage. CONCLUSIONS: This study demonstrated the involvement of JAK/STAT signalling in the pathogenesis of renal I/R injury, suggesting that JAK/STAT pathway may serve as a potential target for early intervention in ischaemic acute renal failure.  相似文献   

17.
Three days of fasting protects mice against lethal renal ischemia–reperfusion (I/R) injury. We hypothesize that the protection imposed by fasting is mediated by increased levels of corticosterone, induced by the stress of food deprivation. C57Bl/6 mice were fasted for 3 days after which serum corticosterone levels were determined. Mice underwent a bilateral adrenalectomy (ADX). Ten days later, they were either fasted or given a corticosterone receptor antagonist while fasting. Bilateral renal I/R injury was induced by clamping the artery and vein of the left and right kidney simultaneously for 37 min. Survival and kidney function were determined. Fasting significantly increased corticosterone levels. Only 8% of the ADX mice which were fasted prior to I/R injury survived, whereas all sham‐ADX operated mice survived I/R injury after fasting. After ADX and fasting, 70% of the mice subjected to sham I/R succumbed to the surgical procedure. After fasting with concomitant blockade of the glucocorticoid receptor all animals survived renal I/R. Three days of fasting protects against I/R injury and increases serum corticosterone levels. ADX renders mice incapable of withstanding subsequent abdominal surgery. Glucocorticoid receptor blockade does not interfere with the protective effects of fasting. Thus, the protection against renal I/R injury induced by preoperative fasting is mediated by corticosterone‐independent mechanisms.  相似文献   

18.
The response to tissue injury involves the coordination of inflammatory and repair processes. IL-6 expression correlates with the onset and severity of acute kidney injury (AKI), but its contribution to pathogenesis remains unclear. This study established a critical role for IL-6 in both the inflammatory response and the resolution of AKI. IL-6-deficient mice were resistant to HgCl2-induced AKI compared with wild-type mice. The accumulation of peritubular neutrophils was lower in IL-6-deficient mice than in wild-type mice, and neutrophil depletion before HgCl2 administration in wild-type mice significantly reduced AKI; these results demonstrate the critical role of IL-6 signaling in the injurious inflammatory process in AKI. Renal IL-6 expression and STAT3 activation in renal tubular epithelial cells significantly increased during the development of injury, suggesting active IL-6 signaling. Although a lack of renal IL-6 receptors (IL-6R) precludes the activation of classical signaling pathways, IL-6 can stimulate target cells together with a soluble form of the IL-6R (sIL-6R) in a process termed trans-signaling. During injury,serum sIL-6R levels increased three-fold, suggesting a possible role for IL-6 trans-signaling in AKI. Stimulation of IL-6 trans-signaling with an IL-6/sIL-6R fusion protein activated STAT3 in renal tubular epithelium and prevented AKI. IL-6/sIL-6R reduced lipid peroxidation after injury, suggesting that its protective effect may be largely mediated through amelioration of oxidative stress. In summary, IL-6 simultaneously promotes an injurious inflammatory response and, through a mechanism of trans-signaling, protects the kidney from further injury.  相似文献   

19.
Estrogens attenuate renal injury induced by ischemia/reperfusion (I/R), an effect that is related to nitric oxide production in the post-ischemic kidney. The compound 17beta-estradiol (E(2)-beta) acting via estrogen receptors (ERs) is known to activate endothelial nitric oxide synthase (eNOS) through the phosphatidylinositol-3 kinase (PI3K)/Akt pathway. We determined if this pathway contributes to the renoprotective effect of E(2)-beta in the uninephrectomized ischemia reperfusion rat model of acute renal injury. Treatment with E(2)-beta suppressed the I/R-induced increases in blood urea nitrogen, plasma creatinine, urine flow, and fractional excretion of sodium while augmenting creatinine clearance, renal blood flow, and urine osmolality, indicating attenuation of renal injury. Phosphorylation of Akt and eNOS protein was significantly increased 30-60 min after reperfusion in estradiol-treated compared to vehicle-treated rats. The protective effects of E(2)-beta and protein phosphorylation were reversed by the PI3K inhibitor wortmannin or the ER antagonist tamoxifen. Furthermore, the E(2)-beta-induced renoprotective effects were not seen in eNOS knockout mice with renal injury. We conclude that the E(2)-beta-induced renoprotective effect is due to activation of the PI3K/Akt pathway followed by increased eNOS phosphorylation in the post-ischemic kidney.  相似文献   

20.
Complement factor D is a serine protease essential for the activation of the alternative pathway and is expressed in the kidney, adipocytes, and macrophages. Factor D is found at relatively high levels in glomeruli suggesting that this component of the complement cascade could influence renal pathophysiology. In this study, we utilize mice with a targeted deletion of the activating complement factor D gene and compare these results to mice with targeted deletion of the inhibitory complement factor H gene. Eight-month-old mice with a deleted factor D gene spontaneously develop albuminuria and have reduced creatinine clearance due to mesangial immune complex glomerulonephritis. These mesangial deposits contain C3 and IgM. In contrast to the mesangial location of the immune deposits in the factor D-deficient mice, age-matched factor H-deficient mice develop immune deposits along the glomerular capillary wall. Our observations suggest that complement factor D or alternative pathway activation is needed to prevent spontaneous accumulation of C3 and IgM deposits within the mesangium. Our studies show that the complement factor D gene knockout mice are a novel model of spontaneous mesangial immune complex glomerulonephritis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号