首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Methylphenidate is a psychostimulant which inhibits the dopamine transporter and produces dopamine overflow in the striatum, similar to the effects of cocaine. Excessive dopamine action is often associated with changes in gene expression in dopamine-receptive neurons. Little is known about methylphenidate's effects on gene regulation. We investigated whether a methylphenidate treatment regimen known to produce behavioural changes would alter gene expression in the striatum. Using in situ hybridization histochemistry, we assessed the effects of acute and repeated methylphenidate treatment on the expression of immediate-early genes (c-fos, zif 268) and neuropeptides (dynorphin, substance P, enkephalin) in adolescent rats. Acute methylphenidate treatment (0-10 mg/kg, i.p.) produced a dose-dependent increase in the expression of c-fos and zif 268. These effects were most pronounced in the dorsal striatum at middle to caudal striatal levels, and were found for doses as low as 2 mg/kg. Repeated treatment with methylphenidate (10 mg/kg/day, 7 days) increased the expression of dynorphin, which was highly correlated with the acute immediate-early gene response across different striatal regions. Moreover, after repeated methylphenidate treatment, cocaine-induced expression of c-fos and zif 268, as well as of substance P, was significantly attenuated throughout the striatum. These effects of repeated methylphenidate treatment mirror those produced by repeated treatment with cocaine or other psychostimulants and are considered to reflect drug-induced neuroadaptations. Thus, our findings demonstrate that acute and repeated methylphenidate treatment can produce molecular alterations similar to other psychostimulants.  相似文献   

6.
Chronic continuous cocaine treatment produces a unique pattern of locomotor activation over time. An initial, progressive increase in locomotion is indicative of sensitization. Unlike intermittent cocaine, this increase is subsequently reversed during the continuous exposure, and activity returns to pre-sensitization levels within days. To study the pharmacological mechanisms that underlie this phenomenon, osmotic minipumps containing cocaine or selective uptake inhibitors of dopamine (GBR 12909 or RTI-117), serotonin (fluoxetine), or norepinephrine (nisoxetine) were implanted into rats. Locomotor activity was measured for 1 h each day, beginning 4 h after pumps were implanted. In the cocaine group, activity was significantly elevated on the first day, peaked between the second and third days, then decreased to a plateau which remained significantly above control levels through 14 days. Peak activity in the GBR 12909 and RTI-117 animals occurred on the first day, followed by a significant decrease 24-48 h later, but not complete tolerance. Neither fluoxetine nor nisoxetine altered locomotor activity. The selective dopamine uptake inhibitors produced some of the effects of cocaine. The possibilities that cocaine interacts with the dopamine transporter in a qualitatively different manner from that of these selective dopamine uptake inhibitors, or that other monoamine systems are involved, are discussed.  相似文献   

7.
There have been many studies aimed at understanding the role that the dopamine transporter plays in cocaine abuse. Most studies suggest that inhibition of dopamine uptake by cocaine is the primary mechanism by which its behavioral effects are produced. Because of the strong relationship between binding to the dopamine transporter and the behavioral effects of cocaine, the dopamine transporter has on occasion been referred to as the cocaine binding site. Chronic studies using cocaine or selective inhibitors of dopamine, norepinephrine, or serotonin uptake suggest that while a selective dopamine uptake inhibitor can produce sensitization to cocaine, the long-lasting sensitized response to a cocaine challenge observed in cocaine-pretreated rats is due to cocaine’s action on a system other than, or in addition to, dopamine. Thus, while dopamine appears to be important for the behavioral effects of cocaine, it appears that neurochemical systems other than dopamine likely play a role in the behavioral effects of chronic cocaine.  相似文献   

8.
9.
A remarkable feature of dopamine functioning is that the concomitant activation of D1-like and D2-like receptors acts to intensify the expression of various dopamine-dependent effects, in particular the expression of the immediate-early genes, c-fos and zif268. Using non-peptide neurotensin receptor antagonists, including SR48692, we have determined that blockade of neurotensin receptors reduced the cooperative responses of direct acting D2-like (quinpirole) and partial D1-like (SKF38393) dopamine agonists on the expression of Fos-like antigens and zif268 mRNA. Pretreatment with SR48692 (3 and 10 mg/kg) reduced the number of Fos-like immunoreactive cells produced by the combined administration of SKF38393 (20 mg/kg) and quinpirole (1 mg/kg) in the caudate-putamen, nucleus accumbens, globus pallidus and ventral pallidum. High-affinity neurotensin receptors are likely to be involved in these D1-like/D2-like cooperative responses, as compounds structurally related to SR48692, SR48527 (3 mg/kg) and its (-)antipode, SR49711 (3 mg/kg), exerted a stereospecific antagonism in all selected brain regions. Pretreatment with SR48692 (10 mg/kg) also diminished Fos induction by the indirect dopamine agonist, cocaine (25 mg/kg), particularly at the rostral level of the caudate-putamen. In situ hybridization experiments in the caudate-putamen indicated that SR48692 (10 mg/kg) markedly reduced zif268 mRNA labelling produced by SKF38393 plus quinpirole in cells not expressing enkephalin mRNA, but was unable to affect the concomitant decrease of zif268 mRNA labelling in enkephalin-positive cells. Taken together, the results of the present study indicate that neurotensin is a key element for the occurrence of cooperative responses of D2-like and partial D1-like agonists on immediate-early gene expression.  相似文献   

10.
11.
BACKGROUND: The muscarinic agonist xanomeline has been shown to reduce antipsychotic-like behaviors in patients with Alzheimer's disease. Because atypical antipsychotic agents increase dopamine release in prefrontal cortex and induce immediate early gene expression in prefrontal cortex and nucleus accumbens, the effect of xanomeline was determined on these indices. METHODS: The effect of xanomeline on extracellular levels of monoamines in brain regions was determined using a microdialysis technique, and changes in expression of the immediate early genes c-fos and zif/268 in brain regions were evaluated using in situ hybridization histochemistry. RESULTS: Xanomeline increased extracellular levels of dopamine in prefrontal cortex and nucleus accumbens but not in striatum. Xanomeline increased expression of c-fos and zif/268 in prefrontal cortex and nucleus accumbens. There was no change in immediate early gene expression in striatum. CONCLUSIONS: Xanomeline increased extracellular levels of dopamine, which is similar to the effects of the atypical antipsychotics clozapine and olanzapine. The regional pattern of immediate early gene expression induced by xanomeline resembled that of atypical antipsychotic agents. Based on the antipsychotic-like activity of xanomeline in Alzheimer's patients and the similarity to atypical antipsychotic agents, we suggest that xanomeline may be a novel antipsychotic agent.  相似文献   

12.
13.
14.
The effect of the selective serotonin uptake inhibitor fluoxetine was examined on prodynorphin gene expression. Fluoxetine or vehicle was infused continuously for 7 d via osmotic minipumps into male rats. Northern blot analysis showed significant increases in prodynorphin gene expression in the hypothalamus (171% of controls) and significant decreases in the caudate putamen and nucleus accumbens (62% and 70% of controls, respectively). There were no significant changes in the hippocampus. Thus, chronic inhibition of serotonin uptake can regulate prodynorphin gene expression in the hypothalamus, caudate putamen, and nucleus accumbens. Fluoxetine effects were also evaluated in rats treated with p-chloroamphetamine (PCA), a neurotoxin that depletes serotonin. Because we previously reported that continuous infusion of cocaine for 7 d (which inhibits dopamine, serotonin, and norepinephrine uptake), or GBR 12909 (a selective dopamine uptake inhibitor), produced significant decreases in the hypothalamus and cocaine also produced a significant increase in prodynorphin gene expression in caudate putamen, regulation of prodynorphin gene expression by fluoxetine is suggested to be different from that by cocaine. Because neither a selective dopamine uptake inhibitor nor a selective serotonin uptake inhibitor produced the same effect as cocaine in the caudate putamen, this effect is likely regulated by the inhibition of norepinephrine uptake, by a combination of effects on two or three neurotransmitter transporters, or by a mechanism unrelated to transporter inhibition.  相似文献   

15.
We investigated whether the expression of the plasticity-associated gene, zif268, was associated with memories retrieved by exposure to a discrete stimulus that had been associated with cocaine, either self-administered or administered noncontingently. In the absence of drug, passive presentation of a cocaine-associated light stimulus induced changes in the expression of zif268 measured by in situ hybridization within a limbic cortical-ventral striatal circuit that was not only regionally selective but related to whether the rats had originally received response-contingent or noncontingent stimulus-drug pairings. In rats that had self-administered drug, the cocaine-conditioned stimulus (CS) increased zif268 expression in neurons of the ventral tegmental area, nucleus accumbens core and shell, and basal nucleus of the amygdala but not hippocampus, prelimbic area of the medial prefrontal cortex or amygdala central nucleus. The same CS that had been associated with cocaine administered noncontingently additionally increased zif268 mRNA levels in area Cg1 of the anterior cingulate cortex, ventral and lateral regions of the orbitofrontal cortex and lateral nucleus of the amygdala. Zif268 induction was related to the predictive relationship between the stimulus and cocaine as no changes were seen in cocaine-experienced rats that had received unpaired light and drug presentations during training. Thus, zif268 expression is increased by appetitively (drug) conditioned stimuli after Pavlovian learning. Zif268 may participate in the molecular mechanisms underlying the reconsolidation or re-encoding of Pavlovian stimulus-drug associations across a distributed limbic cortical-ventral striatal neural network and that may contribute to the basis of the enduring drug-seeking behaviour produced by environmental cues.  相似文献   

16.
Psychostimulants and other dopamine agonists produce molecular changes in neurons of cortico-basal ganglia-cortical circuits, and such neuronal changes are implicated in behavioural disorders. Methylphenidate, a psychostimulant that causes dopamine overflow (among other effects), alters gene regulation in neurons of the striatum. The present study compared the effects of acute and repeated methylphenidate treatment on cortical and striatal gene regulation in adolescent rats. Changes in the expression of the immediate-early genes zif 268 and homer 1a were mapped in 23 striatal sectors and 22 cortical areas that provide input to these striatal sectors, in order to determine whether specific corticostriatal circuits were affected by these treatments. Acute administration of methylphenidate (5 mg/kg, i.p.) produced modest zif 268 induction in cortical areas. These cortical zif 268 responses were correlated in magnitude with zif 268 induction in functionally related striatal sectors. In contrast, after repeated methylphenidate treatment (10 mg/kg, 7 days), cortical and striatal gene induction were dissociated. In these animals, the methylphenidate challenge (5 mg/kg) produced significantly greater gene induction (zif 268 and homer 1a) in the cortex. This enhanced response was widespread but regionally selective, as it occurred predominantly in premotor, motor and somatosensory cortical areas. At the same time, striatal gene induction was partly suppressed (zif 268) or unchanged (homer 1a). Thus, repeated methylphenidate treatment disrupted the normally coordinated gene activation patterns in cortical and striatal nodes of corticostriatal circuits. This drug-induced dissociation in cortical and striatal functioning was associated with enhanced levels of behavioural stereotypies, suggesting disrupted motor switching function.  相似文献   

17.
Cocaine binds to dopamine (DA), serotonin (5-HT) and norepinephrine (NE) transporters blocking the reuptake of these monoamines into presynaptic terminals. As previously reported, continuous infusion of cocaine for seven days or GBR 12909, a selective dopamine uptake inhibitor, produced significant decreases in prodynorphin (PDYN) gene expression in the hypothalamus. Cocaine also produced a significant increase in PDYN mRNA in the caudate putamen, whereas GBR12909 has no effect and the selective serotonin uptake inhibitor fluoxetine decreases PDYN mRNA in the same brain region. The effect of the selective norepinephrine uptake inhibitor nisoxetine was examined on PDYN gene expression. Nisoxetine or vehicle was infused continuously for 7 days via osmotic minipump into male rats. This treatment produced significant increases in PDYN gene expression in the hypothalamus (183% of control), nucleus accumbens (142% of control) and hippocampus (124% of control) and a significant decrease in the caudate putamen (69% of control). These data suggest that nisoxetine affects PDYN gene expression and support a role for NE in the mechanisms underlying the effects of chronic exposure to psychoactive drugs. Moreover, nisoxetine, as well as fluoxetine, decreases PDYN mRNA in the caudate putamen, in contrast to the up-regulation produced by cocaine. Thus, the inhibition of NE uptake alone cannot account for the cocaine-induced increase of PDYN gene expression. These findings suggest that PDYN gene expression regulation by cocaine in the caudate putamen might be due to a combination of effects on two or three monoamine transporters, or to a mechanism unrelated to transporters inhibition.  相似文献   

18.
19.
The psychostimulants cocaine and amphetamine increase expression of the immediate early gene (IEG) c-fos indirectly, via D1 dopamine receptor activation. To determine whether dopamine transporter substrates and inhibitors can affect c-Fos expression directly, we investigated their effects on c-Fos protein and c-fos mRNA in HEK-293 (HEK) cells transfected with the human dopamine transporter (hDAT). In untransfected HEK cells, methylphenidate and cocaine produced a small but statistically significant increase in c-Fos, whereas dopamine and amphetamine did not. In hDAT cells, DAT substrates (dopamine, amphetamine) increased c-Fos immunoreactivity 6- and 3-fold (respectively). The DAT inhibitors cocaine, methylphenidate, and bupropion also increased c-Fos approximately 3-fold in hDAT cells. If coincubated with dopamine, the inhibitors attenuated dopamine-induced c-Fos in hDAT cells. The magnitude of c-fos mRNA induction by substrates and inhibitors paralleled induction of c-Fos protein immunoreactivity. The results indicate that substrates or inhibitors of the DAT can trigger induction of IEG expression in the absence of D1 dopamine receptor. For substrates, IEG induction is DAT-dependent, but for certain DAT inhibitors the cellular response can be elicited in the absence of the DAT in HEK cells. Oxidative stress may partly, but not fully, account for the DA-induced c-Fos induction as an inhibitor of oxidative stress Trolox C, attenuated DA-induced c-Fos induction. Protein kinase C (PKC) may also partially account for c-Fos induction as a specific inhibitor of PKC Bisindolylmaleimide I (BIS) attenuated DA-induced c-Fos by 50%. DAT substrate and inhibitor effects on IEGs, other fos-related antigens, and possible mechanisms that contribute to c-Fos induction warrant investigation in presynaptic neurons as a potential contribution to the long-term effects of psychostimulants.  相似文献   

20.
The effect of binocular central retinal lesions on the expression of the immediate early genes c-fos and zif268 in the dorsal lateral geniculate nucleus (dLGN) and the visual cortex of adult cats was investigated by in situ hybridization and immunocytochemistry. In the deafferented region of the dLGN, the c-fos mRNA level was decreased within 3 days. The dimensions of the geniculate region showing decreased amounts of c-fos mRNA matched the predictions based on the lesion size and the retinotopic maps of Sanderson ([1971] J. Comp. Neurol. 143:101-118). We did not detect zif268 mRNA in the dLGN. At the cortical level, both c-fos and zif268 mRNA expression decreased in the sensory-deprived region of area 17. In addition, the portions of areas 18, 19, 21a, 21b, and 7, as well as the posterior medial lateral suprasylvian area, the posterior lateral lateral suprasylvian area, the ventral lateral suprasylvian area, and the dorsal lateral suprasylvian area corresponding to the retinal lesions also displayed decreased c-fos and zif268 mRNA levels. Immunocytochemistry revealed similar changes for Zif268 and Fos protein. Three days post lesion, the dimensions of the lesion-affected cortical loci exceeded the predictions in relation to the size of the retinal lesions and the available retinotopic maps. Longer postlesion survival times clearly resulted in a time-dependent restoration of immediate early gene expression from the border to the center of the lesion-affected cortical portions. Our findings represent a new approach for investigating the capacity of adult sensory systems to undergo plastic changes following sensory deprivation and for defining the topographic nature of sensory subcortical and cortical structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号