首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
We had previously shown that the hypothalamo-neurohypophyseal vasopressin secreting system is suppressed in aged rats. In the present study, using aged (26 months) male Fischer 344 (F344) rats, we showed that in contrast to vasopressin, oxytocin plasma concentration and hypothalamic content were unaltered in comparison with young (2-3 months) rats; however, based on data from our past and current studies, the neurohypophyseal concentrations of both hormones were found to be decreased in aged rats. We also compared the effect of aging on the oxytocin and vasopressin in secretory functions. Superfusion technique was employed to examine oxytocin and vasopressin release from isolated neural lobes of young (2-3 months) and old (26 months) male F344 and young (2-3 months), middle-aged (12 months) and old (30 months) Sprague-Dawley (SD) rats. Aging affected basal release of oxytocin and vasopressin in a differential manner. Expressed per gland, basal release of oxytocin increased in aged rats of both strains; whereas vasopressin release decreased in SD, and did not change in F344, old rats. The vasopressin responses to electrical stimulation, 56 mM K+ and initial traumatic release were decreased in aged rats; whereas oxytocin responses were either unaltered or decreased much less. All age-related changes were more pronounced in SD than in F344 rats. Thus, while the aging process is associated with a significant impairment in the vasopressin secretory function, the oxytocin secretory function is much less affected by that process. Significant strain differences were observed in the effects of aging on oxytocin and vasopressin release.  相似文献   

2.
Hearing function in the Fischer 344 (F344) albino inbred strain of rats deteriorates with aging faster than in other strains, in spite of the small hair cell loss in old F344 animals [Popelar, J., Groh, D., Pelanova, J., Canlon, B., Syka, J., 2005. Age-related changes in cochlear and brainstem auditory function. Neurobiol. Aging, in press.]. This study was aimed at elucidating the structural changes in the inner ear of this rat strain during aging. Cochlear histopathology was examined in 20-24-month-old F344 rats and compared with that of young F344 rats (4 months) and of old rats of the Long-Evans (LE) strain. Hematoxylin/eosin staining in aged F344 rats showed degenerative changes in the organ of Corti, consisting of a damaged layer of marginal cells, reduced vascularization of the stria vascularis and a distorted tectorial membrane detached from the organ of Corti. Age-related changes in collagen distribution were observed with Masson's trichrome staining in the spiral ligament of old F344 rats. The results of immunohistochemical staining for type II collagen revealed a marked decrease in collagen fibers in the area connecting the spiral ligament and stria vascularis and a decrease in area IV fibrocytes in old F344 but not in LE rats. These findings may contribute to an explanation of the substantial hearing loss found in old F344 rats.  相似文献   

3.
Glucocorticoid receptors (GR) regulate glial function, and changes in astrocyte gene expression are implicated in age-related pathology. We evaluated changes in astroglial GR expression in two strains of rats – Fisher 344 (F344; 4, 12 and 24 months) and F344/Brown Norway strain (F344/BN; 4, 12 and 30 months). In both strains basal levels of corticosterone were higher in the oldest groups of rats. Age-related increases in GR (+) astrocytes but not the percent of astrocytes expressing GR were observed in the hippocampus CA1 region in F344 rats. Age-related decreases in CA1 GR (+) astrocytes and the percentage of GR (+) astrocytes were observed in the F344/BN strain only. Similar strain-specific changes were observed in the dentate gyrus. In the hypothalamic paraventricular nucleus: (1) F344 rats exhibited significant decreases in the overall number of glial profiles with age, (2) F344/BN rats exhibited decreases in the numbers of GR (+) astrocytes with aging and (3) the proportion of GR (+) astrocytes decreased in older F344/BN, but not F344 rats. Overall, the data demonstrate age- and strain-related alterations in GR astrocytic expression that may explain unique phenotypic differences in brain function observed in both strains.  相似文献   

4.
The behavioral consequences of age-related changes in the auditory system were studied in Fischer 344 (F344) rats as a model of fast aging and in Long Evans (LE) rats as a model of normal aging. Hearing thresholds, the strength of the acoustic startle responses (ASRs) to noise and tonal stimuli, and the efficiency of the prepulse inhibition (PPI) of ASR were assessed in young-adult, middle-aged, and aged rats of both strains. Compared with LE rats, F344 rats showed larger age-related hearing threshold shifts, and the amplitudes of their startle responses were mostly lower. Both rat strains demonstrated a significant decrease of startle reactivity during aging. For tonal stimuli, this decrease occurred at an earlier age in the F344 rats: middle-aged F344 animals expressed similar startle reactivity as aged F344 animals, whereas middle-aged LE animals had similar startle reactivity as young-adult LE animals. For noise stimuli, on the other hand, a similar progression of age-related ASR changes was found in both strains. No significant relationship between the hearing thresholds and the ASR amplitudes was found within any age group. Auditory PPI was less efficient in F344 rats than in LE rats. An age-related reduction of the PPI of ASR was observed in rats of both strains; however, a significant reduction of PPI occurred only in aged rats. The results indicate that the ASR may serve as an indicator of central presbycusis.  相似文献   

5.
6.
Aging and the neuroendocrine regulation of reproduction and body weight   总被引:1,自引:0,他引:1  
Aging in men is associated with a decline in trophic factors such as testosterone (T), alterations in body composition and impaired energy and body weight regulation. We performed studies to investigate the mechanisms underlying age-related changes in the neuroendocrine control of testis function, body composition, food intake and body weight in the Brown Norway (BN) rat. We found that similar to aging men, male BN rats demonstrate both primary and secondary testicular failure with aging without confounding age-related tumors, hormonal changes and systemic illnesses. With aging, these animals have blunted circadian variations in luteinizing hormone (LH) and T, and decreased hypothalamic gonadotropin-releasing hormone (GnRH) synthetic capacity with preserved pituitary gonadotropin responses to GnRH. We found that aging male BN rats have increased peripheral and visceral adiposity associated with increased insulin and leptin levels, and decreased relative lean body mass and muscle mass. We found that these rats exhibit reduced food intake and body weight gain associated with decreased hypothalamic neuropeptide Y (NPY) gene expression in the arcuate nucleus (ARC), both during ad-libitum feeding and after a 72-h fast. Recently, we found that old male BN rats treated chronically with troglitazone, an insulin sensitizer, lowered high insulin and leptin levels, decreased body fat, and corrected the blunted food intake and body weight gain response to fasting without affecting basal ARC NPY gene expression. These findings suggested that hyperinsulinemia and/or hyperleptinemia associated with aging may contribute to the age-related impairment in energy and weight regulation. Our studies suggest that the aging male BN rat is an excellent model to investigate the mechanisms underlying the age-associated changes in the neuroendocrine control of body composition, energy intake and body weight.  相似文献   

7.
Epidemiological evidence suggests that some nutrients, like sodium and potassium, participate in age-related hypertension. A role for refined carbohydrates (CHO), principally sugar, in blood pressure regulation is not generally recognized. This may be unfortunate, since modern lifestyle is associated with large amounts of dietary refined CHO. We examined the effect of a high sugar diet on systolic blood pressure (SBP) in Fischer 344 rats (F344) and the F1-hybrid of this strain (F344/BN). These genotypes have been used to develop experimental models for studies on different aspects of aging. Age-dependent hypertension has not been reported in either strain. In fact, insensitivity to salt-induced hypertension has been found in F344 rats. Upon arrival at our laboratory, the mean difference in SBP between the youngest (4 months) and oldest (18 months) F344 and F1-hybrid rats was 10 mm Hg, the highest mean SBP was 123 mm Hg. These values remained relatively constant over the next month when both strains consumed a low sugar diet. Differently, a steady increase in SBP occurred in both strains when rats of all ages were fed a diet high in sucrose content, mean SBP increasing to over 170 mm Hg at termination of study. Older rats proved more sensitive initially to sugar-induced SBP elevations. Associated with rising SBP was evidence of Na retention. We conclude that a diet containing excess sugar can create a gradual elevation of SBP into a hypertensive range with aging of F344 and F1-hybrid rats. This contrasts with previous findings.  相似文献   

8.
The effect of aging was evaluated on norepinephrine content of the heart (ventricles) and spleen of 3- and 24-month-old F344 and Sprague-Dawley rats utilizing a sensitive radioenzymatic assay. To assess sympathetic nervous system activity, the decline in organ norepinephrine content was compared in young and old F344 rats 6 hours after blockade of norepinephrine synthesis with alpha-methyl-p-tyrosine, a tyrosine hydroxylase inhibitor. Three conditions were studied: (a) normal, (b) brief starvation (54 hours), and (c) cold exposure (6 hours, 4 degrees C). There was no significant age-related difference in steady state organ norepinephrine concentration. Based on the response to alpha-methyl-p-tyrosine, aging did not affect the rate of heart and spleen norepinephrine synthesis and, therefore, sympathetic nervous system impulse activity during normal or cold stress conditions. Starvation, however, did not suppress sympathetic nervous system activity to the heart in old animals, as it did in the young rats.  相似文献   

9.
One mechanism that may influence the quality of skeletal muscle proteins, and explain the age-related decline in contractility, is protein damage. Advanced glycation end-products (AGE) in vivo are useful biomarkers of damage. In this study, comparison of extensor digitorum longus (EDL) muscles from young (8 months), old (33 months), and very old (36 months) Fischer 344 Brown Norway F1 (F344BNF1) hybrid rats shows that muscles from the very old rats have a significantly higher percentage of myofibers that immunolabel intracellularly for AGE-antibody 6D12 compared to the younger age group. The AGE-modified proteins, determined in the semimembranosus muscles from young (9 months) and old (27 months) F344 rats, identified by matrix-assisted laser desorption ionization-time of flight mass spectrometry include creatine kinase, carbonic anhydrase III, beta-enolase, actin, and voltage-dependent anion-selective channel 1. Moreover, there is a significant increase in AGE modification of beta-enolase with age. These results identify a common subset of proteins that contain AGE and suggest that metabolic proteins are targets for glycation with aging.  相似文献   

10.
The effects of senescence on muscle characteristics and the insulin-like growth factor I (IGF-I) pathway were assessed in male and female BN/F344 rats. The mass and total ATPase activity of gastrocnemius and plantaris muscles were reduced with age and to a greater extent in males than in females. The mass and total ATPase activity of soleus muscle were not significantly altered with age. Circulating IGF-I was also significantly reduced with age, 60% in females and 21% in males. Circulating IGF-binding protein 3 (IGFBP-3) was reduced with age. In liver and gastrocnemius muscle, mRNAs for IGF-1, IGFBP-2, and IGFBP-3 were analyzed in young and aged males of two strains, BN/F344 and Sprague-Dawley. In BN/F344 rats, liver mRNAs were unchanged with age. Also in BN/F344 rats, muscle mRNAs for IGFBP-2, and IGFBP-3 displayed nonsignificant trends toward increase with age. In aged Sprague-Dawley males, liver mRNA for IGF-I was increased 15% and muscle mRNA for IGFBP-2 was increased 110%. Thus, different age-related changes in the growth hormone (GH)/IGF pathway occur in males and females between the sexes and strains. These changes may play a role in the muscle atrophy associated with senescence.  相似文献   

11.
The effect of aging on microvascular density and plasticity in the rodent hippocampus, a brain region critically important for learning and memory, was investigated in F344xBN rats. Capillary density and angiogenesis were measured in three regions of the hippocampus in young and old rats and in old rats administered growth hormone, a treatment that improves cognitive function in older animals. Animals were housed under control conditions or in hypoxic conditions (11% ambient oxygen levels) to stimulate vascular growth. Our results indicate that aging is not associated with a reduction in hippocampal capillary density. However, aged animals demonstrate a significant impairment in hypoxia-induced capillary angiogenesis compared to young animals. Growth hormone treatment to aged animals for 6 weeks did not alter hippocampal capillary density and did not ameliorate the age-related deficit in angiogenesis. We conclude that aging significantly reduces hippocampal microvascular plasticity, which is not improved with growth hormone therapy.  相似文献   

12.
BACKGROUND: Curcumin is well documented as an effective colonic chemopreventive agent in preclinical studies. Inhibition of arachidonic acid metabolism has been considered one of anticarcinogenic mechanisms of curcumin. We recently reported resistance of middle-aged F344 male rats to inhibition of azoxymethane (AOM)-induced colonic aberrant crypt foci (ACF) by curcumin (Nutr Cancer, 48, 37-43). It was important to confirm this finding and to find potential mechanisms responsible, as loss of preventive activity of curcumin due to aging was a novel finding, with important implications for human intervention trials. METHODS: To confirm our previous findings, and investigate arachidonic acid metabolism as a potential mechanism of age-related differences in response to curcumin, middle-aged F344 male rats were given AOM injections after being fed their experimental diets, 0.6% curcumin or control diet. Colonic ACF were evaluated and colonic levels of cyclooxygenase (COX)-1 and 2 mRNA and prostaglandin E2 (PGE2) were measured. Next, we investigated the short-term effect of AOM and curcumin on arachidonic acid metabolism in young rats. Six week-old rats were given injections of either AOM or untreated following their experimental diets. Colonic COX-1 and COX-2 mRNA as well as PGE2 levels were measured shortly after AOM treatment. Lastly, three different ages of F344 rats were treated with either AOM or saline, and colonic COX-1 and COX-2 mRNA levels were measured shortly after the injections to find if aging alters the effect of AOM on COX mRNA expression. RESULTS: In middle-aged rats, dietary curcumin did not reduce the number of ACF and surprisingly increased colonic levels of COX-2 mRNA. Colonic COX-2 and PGE2 levels were also significantly increased in young rats fed curcumin after AOM injections. Interestingly, AOM did not affect COX-2 but decreased COX-1 expression in all ages. CONCLUSIONS: Our study suggests that during initiation, AOM inhibits colonic COX-1 expression without affecting COX-2 and dietary curcumin may increase COX-2 expression to compensate AOM-induced reduction of COX-1 expression.  相似文献   

13.
The pathogenesis of parainfluenza 1 (Sendai) virus infection was compared among 25-day-old BN, F344, and LEW rats to identify a sensitive as well as a resistant inbred rat strain to Sendai virus-induced lung injury during early life. At 7 days after inoculation, BN rats had 65-fold higher (P less than .001) pulmonary viral titers and threefold higher (P less than .002) numbers of neutrophils in bronchoalveolar lavage fluid than did F344 rats. At 14 days after inoculation, when most virus-induced inflammation had been resolved, BN rats had a threefold greater (P less than .01) incidence of bronchioles with aggregates of lymphocytes and macrophages than did F344 rats. Control BN rats had higher numbers of bronchiolar eosinophils than did F344 or LEW rats. Although viral inoculation resulted in increased numbers of bronchiolar mast cells in all three strains at 14 days, bronchiolar mast cell density was greater (P less than .005) in virus-inoculated BN and LEW rats than in F344 rats. We conclude that BN rats are high responders and F344 rats are low responders to Sendai virus-induced bronchiolitis, pneumonia, and airway mastocytosis. These strain differences may be useful in elucidating important pathogenetic mechanisms in virus-induced airway injury and mastocytosis.  相似文献   

14.
Our previous studies demonstrated a significant decline in brain function and behavior in Fischer 344 (F344) rats with age. The present study was designed to test the hypothesis that dysregulation in calcium homeostasis (as assessed through 45Ca flux) may contribute to the increase in age-related vulnerability to oxidative stress in brain regions, and result in a deficit in behavior-mediated signaling. Crude membrane (P-2) and more purified synaptosomal fractions were isolated from the striatum, hippocampus, and frontal cortex of young (6 months) and old (22 months) F344 rats and were assessed for calcium flux and extracellular-regulated kinase activity 1 (ERK) under control and oxidative stress conditions induced by low dose hydrogen peroxide (final concentration 5 μM). The level of oxidative stress responses was monitored by measuring reactive oxygen species (ROS) and glutathione (GSH). The results showed a significant difference in oxidative stress responses between young and old rats in evaluated brain regions. Old rats showed higher sensitivity to oxidative stress than young rats. The present findings show the differential effects of oxidative stress on calcium flux in brain regions with age that are dependent upon the brain areas examined and the fraction assessed. The accumulation of ROS and the decrease in GSH in the frontal cortex were sufficient to decrease ERK activity in old rats. This is the first study, to our knowledge, that demonstrates age-related differential sensitivity to oxidative stress expressed as a function of behavior-mediated signaling and stress levels among different fractions isolated from brain regions controlling behavior.  相似文献   

15.
Aging is the main risk factor for coronary artery disease. One characteristic of aging coronary arteries is their enhanced contractile responses to endothelial vasoconstricting factors, which increase the risk of coronary vasospasm in older people. Because large-conductance voltage- and Ca(2+)-activated K(+) channels (MaxiK) are key regulators of vascular tone, we explored the possibility that this class of channels is diminished with increasing age. Using site-directed antibodies recognizing the pore-forming alpha subunit and electrophysiological methods, we demonstrate that the number of MaxiK channels is dramatically diminished in aged coronary arteries from old F344 rats. Channel density was reduced from 52+/-9 channels/pF (3 months old) to 18+/-5 channels/pF (25 to 30 months old), which represents a 65% reduction in the older population. Pixel intensity of Western blots was also diminished by approximately 50%. Moreover, the age-related decrease in the channel protein expression was also evident in humans, which showed approximately 80% reduction in 61- to 70-year-old subjects compared with 3- to 18-year-old youngsters and approximately 45% reduction compared with 19- to 56-year-old adults. In agreement with a reduction of MaxiK channel numbers in aging coronary arteries, old coronary arteries from F344 rats contract less effectively ( approximately 70% reduction) than young coronary arteries when exposed to the MaxiK channel blocker iberiotoxin. The contraction studies indicate that under physiological conditions, MaxiK channels are tonically active, serving as a hyperpolarizing force that opposes contraction. Thus, reduced expression of MaxiK channels in aged coronary arteries would lead to a decreased vasodilating capacity and increased risk of coronary spasm and myocardial ischemia in older people.  相似文献   

16.
Age-related changes in the hepatic sinusoid, called pseudocapillarization, may contribute to the pathogenesis of dyslipidemia. Caloric restriction (CR) is a powerful model for the study of aging because it extends lifespan. We assessed the effects of CR on the hepatic sinusoid to determine whether pseudocapillarization is preventable and hence a target for the prevention of age-related dyslipidemia. Livers from young (6 months) and old (24 months) CR and ad libitum fed (AL) F344 rats were examined using electron microscopy and immunohistochemistry. In old age, there was increased thickness of the liver sinusoidal endothelium and reduced endothelial fenestration porosity. In old CR rats, endothelial thickness was less and fenestration porosity was greater than in old AL rats. Immunohistochemistry showed that CR prevented age-related decrease in caveolin-1 expression and increase in peri-sinusoidal collagen IV staining, but did not alter the age-related increase of von Willebrand's factor. CR reduces age-related pseudocapillarization of the hepatic sinusoid and correlates with changes in caveolin-1 expression.  相似文献   

17.
Aging effects on the hypothalamic-pituitary-adrenocortical system have been studied primarily in the sedentary, environmentally deprived laboratory rat. Since it is known that chronic activation changes the responsiveness of the hypothalamic-pituitary-adrenocortical system, the present experiments were undertaken to determine whether age-related effects on this system would differ between sedentary and chronically stressed rats. Groups of 6- and 20-month-old F-344 rats were exposed to daily sessions of a 2-way shock-escape procedure over a 6-month period. When the rats were 12 (adult) and 26 months of age (old), pituitary-adrenocortical responses to an acute, novel stimulus were examined in young and old chronically stressed and age-matched control rats. Young and old control rats showed essentially the same corticosterone response to an acute motion stress. Chronic stress exposure increased the corticosterone response to the novel acute stressor in young but not in old rats. ACTH levels in response to acute stress were significantly reduced in old control rats compared to young control animals. Chronic stress did not change the ACTH acute stress response in young animals, whereas in old animals chronic stress elevated the ACTH responsiveness so that the old rats showed stress-induced ACTH levels that were comparable to the young animals. In conclusion, the effects of chronic stress on the function of the hypothalamic-pituitary-adrenocortical system are age-dependent, and environmental factors can significantly influence the progression of aging of the hypothalamic-pituitary-adrenal system.  相似文献   

18.
Presbycusis, as the deterioration of hearing ability occurring with aging, can be manifested not only in a shift of hearing thresholds, but also in a deterioration of the temporal processing of acoustical signals, which may in elderly people result in degraded speech comprehension. In this study we assessed the age-related changes in the temporal processing of acoustical signals in the auditory system of pigmented rats (Long Evans strain). The temporal resolution was investigated in young adult (3-4 months) and old (30-34 months) rats by behavioral and electrophysiological methods: the rats' ability to detect and discriminate gaps in a continuous noise was examined behaviorally, and the amplitude-rate function was assessed for the middle latency response (MLR) to clicks. A worsening of the temporal resolution with aging was observed in the results of all tests. The values of the gap detection threshold (GDT) and the gap duration difference limen (GDDL) in old rats increased about two-fold in comparison with young adult rats. The MLR to a click train in old rats exhibited a significantly faster reduction in amplitude with an increasing stimulation rate in comparison with young adult rats. None of the age-related changes in the parameters characterizing temporal resolution (GDT, GDDL and MLR to a click train) correlated with the degree of the age-related hearing loss. However, the age-related changes in MLR amplitude-rate function correlated with the age-related changes in GDDL, but not with the changes in GDT. The behavioral and electrophysiological data clearly show that aging in rats is accompanied with a pronounced deficit in the temporal processing of acoustical signals that is associated with the deteriorated function of the central auditory system.  相似文献   

19.
Background. Curcumin is well documented as an effective colonic chemopreventive agent in preclinical studies. Inhibition of arachidonic acid metabolism has been considered one of anticarcinogenic mechanisms of curcumin. We recently reported resistance of middle-aged F344 male rats to inhibition of azoxymethane (AOM)-induced colonic aberrant crypt foci (ACF) by curcumin (Nutr Cancer, 48, 37–43). It was important to confirm this finding and to find potential mechanisms responsible, as loss of preventive activity of curcumin due to aging was a novel finding, with important implications for human intervention trials. Methods. To confirm our previous findings, and investigate arachidonic acid metabolism as a potential mechanism of age-related differences in response to curcumin, middle-aged F344 male rats were given AOM injections after being fed their experimental diets, 0.6% curcumin or control diet. Colonic ACF were evaluated and colonic levels of cyclooxygenase (COX)-1 and 2 mRNA and prostaglandin E2 (PGE2) were measured. Next, we investigated the short-term effect of AOM and curcumin on arachidonic acid metabolism in young rats. Six week-old rats were given injections of either AOM or untreated following their experimental diets. Colonic COX-1 and COX-2 mRNA as well as PGE2 levels were measured shortly after AOM treatment. Lastly, three different ages of F344 rats were treated with either AOM or saline, and colonic COX-1 and COX-2 mRNA levels were measured shortly after the injections to find if aging alters the effect of AOM on COX mRNA expression. Results. In middle-aged rats, dietary curcumin did not reduce the number of ACF and surprisingly increased colonic levels of COX-2 mRNA. Colonic COX-2 and PGE2 levels were also significantly increased in young rats fed curcumin after AOM injections. Interestingly, AOM did not affect COX-2 but decreased COX-1 expression in all ages. Conclusions. Our study suggests that during initiation, AOM inhibits colonic COX-1 expression without affecting COX-2 and dietary curcumin may increase COX-2 expression to compensate AOM-induced reduction of COX-1 expression.  相似文献   

20.
Changes in the levels of calcium binding proteins are known to occur in different parts of the brain during aging. In our study we attempted to define the effect that aging has on the parvalbumin-expressing system of neurons in the higher parts of the central auditory system. Age-related changes in parvalbumin immunoreactivity were investigated in the inferior colliculus (IC), medial geniculate body (MGB) and auditory cortex (AC) in two rat strains, normally aging Long-Evans (LE) and fast aging Fischer 344 (F344). The results demonstrate that the changes in PV-immunoreactivity are strain-dependent with an increase in the number of PV-immunoreactive (PV-ir) neurons occurring in the inferior colliculus of old LE rats and a pronounced decline in the number of PV-ir neurons appearing in the auditory cortex of aged F344 animals. In some parts of the AC of old F344 animals no PV-ir neurons were present at all. The number of PV-ir neurons in the MGB in all examined animals was very low independent of the strain and age. The loss of PV-ir neurons in the auditory cortex of Fischer 344 rats with aging may contribute to the substantial deterioration of hearing function in this strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号