首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Treatment of Plasmodium falciparum with the potent inhibitor dicyclohexylamine completely arrests in vitro cell proliferation of the chloroquine-susceptible P. falciparum strain NF54 and the R strain, which shows less sensivity to chloroquine. The average inhibitory concentration (IC50) values determined for both strains revealed different inhibition profiles. The IC50 value for the chloroquine-sensitive NF54 strain was 97 microM and 501 microM for the R strain. Monitoring polyamine pools after treatment with dicyclohexylamine leads to a significant decrease in the intracellular spermidine content, which was nearly reversed by supplementation with spermidine. Since spermidine is an important precursor for the biosynthesis of hypusine and homospermidine in eukaryotes, we studied the developmental effect on both P. falciparum strains of 1,7-diaminoheptane as an inhibitor of deoxyhypusine synthase (EC 1.1.1.249) in mammalian cells, and agmatine as a moderate inhibitor of homospermidine synthase (EC 2.5.1.44). Inhibition profiles with 1,7-diaminoheptane resulted in an IC50 value of 466 microM for the NF54 strain and 319 microM for the R strain. Spermidine pools changed significantly. Inhibition with agmatine caused a strong decrease in parasitemia for the chloroquine-susceptible NF54 strain, with a determined IC50 value of 431 microM and an IC50 value of 340 microM for the less chloroquine-susceptible R strain. Spermidine was not detectable after inhibition. The uncommon triamine homospermidine occurred in both P. falciparum strains. To our knowledge this is the first evidence of homospermidine in P. falciparum. The use of specific inhibitors of spermidine metabolism might be a novel strategy for the design of new antimalarials, and suggests the occurrence of both enzymes in the parasite.  相似文献   

2.
Eukaryotic translation initiation factor (eIF-5A) is a highly conserved and essential protein that contains the unique amino acid hypusine. The first step in the post-translational biosynthesis of hypusine, the transfer of an aminobutyl moiety from the polyamine substrate spermidine to the -amino group of a specific lysine residue in the eIF-5A precursor, is catalyzed by the enzyme deoxyhypusine synthase. A cDNA encoding a protein homologous to eIF-5A was isolated by plaque hybridization from a cDNA library of Plasmodium falciparum. The cloned cDNA contains an open reading frame encoding a protein of 161 amino acids, which shares a high sequence identity with other eukaryotic eIF-5A sequences. A phylogenetic tree constructed with eIF-5A from P. falciparum and 16 other eIF-5A sequences of eukaryotic and archaeal origin reveals that plasmodial eIF-5A together with other apicomplexan eIF-5A show a higher degree of homology to plant proteins than to animal and fungal sequences. The plasmodial eIF-5A gene was expressed as a six-histidine tagged fusion protein in Escherichia coli. Radioactive incorporation studies with [1,8-3H] spermidine indicated that this protein can serve as a substrate for human deoxyhypusine synthase. Results of quantitative real-time PCR studies with synchronized erythrocytic stages of P. falciparum revealed no significant induction or downregulation but only some variation in the expression level of plasmodial eIF-5A in ring, trophozoite and schizont stage.  相似文献   

3.
Characterization of spermidine synthase from Trypanosoma brucei brucei   总被引:1,自引:0,他引:1  
Spermidine synthase from Trypanosoma brucei brucei was characterized and found to be similar to spermidine synthase from other sources. The Km for putrescine was found to be 0.2 mM and the Km for decarboxylated S-adenosylmethionine 0.1 microM. The approximate molecular weight of the enzyme was 74 000 as determined by a combination of molecular sieve chromatography and sucrose density gradient centrifugation. Spermidine synthase activity was markedly inhibited in vitro by dicyclohexylamine (50% inhibition at 3 microM) and cyclohexylamine (50% inhibition at 15 microM); both being competitive inhibitors with respect to putrescine. S-Adenosyl-1,8-diamino-3-thiooctane, a nucleoside bisubstrate analog, was also a potent inhibitor of enzyme activity (50% inhibition at 25 microM). Administration of dicyclohexylamine to mice with trypanosomiasis resulted in no increase in survival time probably due to the lack of effect on trypanosome spermidine concentrations. Other possible inhibitors remain to be tested in vivo.  相似文献   

4.
A Plasmodium falciparum cDNA clone was isolated of which the insert is transcribed at high rates as a 1.4-kb mRNA in the sexual stages of the malaria parasite. The cDNA clone contains a copy of a non-interrupted gene which codes for a protein of 157 amino acids (Mr = 16607). This 16-kDa protein does not contain repetitive sequences and is characterised by a putative N-terminal signal sequence, a hydrophobic membrane anchor sequence and a highly hydrophilic C-terminal region suggesting that it is an integral membrane protein. Rabbit antisera raised against a synthetic peptide covering amino acids 31-47 of the 16-kDa protein and against recombinant fusion proteins recognised the 16-kDa antigen in protein extracts of gametocytes, macrogamete/zygotes and sporozoites by Western blot analysis. The rabbit antisera also reacted with gametes, gametocytes and sporozoites in a standard immunofluorescence assay. By immunoelectron microscopy using the protein A-gold method the 16-kDa protein could be clearly visualised on the surface of macrogametes and sporozoites, whereas the antigen was not detectable in the asexual erythrocytic stages of the parasite. The 16-kDa antigen of P. falciparum therefore might have the potential to elicit a dual protective immune response against the sporozoite and sexual stage parasites.  相似文献   

5.
We report here the isolation, sequence analysis, structure, and expression of the gene encoding the largest subunit of RNA polymerase III (RPIII) from Plasmodium falciparum. The P. falciparum RPIII gene consists of 5 exons and 4 introns, is expressed in all of the asexual erythrocytic stages of the parasite as a 8.5-kb mRNA, and is present in a single copy on chromosome 13. The predicted 2339 amino acid residue RPIII subunit contained 5 regions that were conserved between different eukaryotic RPIII subunits, and 4 variable regions that separated the conserved regions. Three of the variable regions were greatly enlarged in comparison to the corresponding variable regions in other RPIII subunits. Variable region C' represented nearly one-third of the P. falciparum RPIII subunit (750 amino acid residues), included a unique repeated decapeptide sequence, and had some homology with yeast DNA topoisomerase II. Noteworthy amino acid sequences and structures were identified in both the conserved regions and in the enlarged variable regions, and their possible role(s) as domains that regulate RPIII enzyme activity is discussed.  相似文献   

6.
7.
The intraerythrocytic malaria parasite depends on the surrounding medium for a supply of phospholipid precursors. Efficient inhibition (IC50 7-90 microM) of Plasmodium falciparum growth in vitro was achieved using modified fatty acids. The fatty acid analogues most effective in suppressing P. falciparum growth in culture were also the most active inhibitors of acyl-CoA synthetase from the monkey parasite P. knowlesi.  相似文献   

8.
Plasmodium falciparum, the causative agent of the most lethal form of human malaria, relies on de novo pyrimidine biosynthesis. A gene encoding orotate phosphoribosyltransferase (OPRT), the fifth enzyme of the de novo pathway catalyzing formation of orotidine 5'-monophosphate (OMP) and pyrophosphate (PP(i)) from 5-phosphoribosyl-1-pyrophosphate (PRPP) and orotate, was identified from P. falciparum (pfOPRT). The deduced amino acid sequence for pfOPRT was compared with OPRTs from other organisms and found to be most similar to that of Escherichia coli. The catalytic residues and consensus sequences for substrate binding in the enzyme were conserved among other organisms. The pfOPRT was exceptional in that it contained a unique insertion of 20 amino acids and an amino-terminal extension of 66 amino acids, making the longest amino acid sequence (281 amino acids with a predicted molecular mass of 33kDa). The cDNA of the pfOPRT gene was cloned, sequenced and functionally expressed in soluble form. The recombinant pfOPRT was purified from the E. coli lysate by two steps, nickel metal-affinity and gel-filtration chromatography. From 1l E. coli culture, 1.2-1.5mg of pure pfOPRT was obtained. SDS-PAGE revealed that the pfOPRT had a molecular mass of 33kDa and analytical gel-filtration chromatography showed that the enzyme activity eluted at approximately 67kDa. Using dimethyl suberimidate to cross-link neighboring subunits of the pfOPRT, it was confirmed that the native enzyme exists in a dimeric form. The steady state kinetics of initial velocity and product inhibition studies indicate that the enzyme pfOPRT follows a random sequential kinetic mechanism. Compounds aimed at the pfOPRT nexus may act against the parasite through at least two mechanisms: by directly inhibiting the enzyme activity, or be processed to an inhibitor of thymidylate synthase. This study provides a working system with which to investigate new antimalarial agents targeted against P. falciparum OPRT.  相似文献   

9.
Polyamine metabolism during cardiac hypertrophy   总被引:1,自引:0,他引:1  
Treatment with thyroxine for 7 days to produce myocardial hypertrophy led to an increase in the content of putrescine, spermidine, and spermine in the rat heart. The content of decarboxylated S-adenosylmethionine, the source of the aminopropyl groups needed for polyamine synthesis, was increased by the thyroxine treatment as were the activities of ornithine and S-adenosylmethionine decarboxylases. The enhanced S-adenosylmethionine decarboxylase activity measured in vitro was due to an increase in the amount of enzyme protein as measured by immunotitration with a specific antiserum. In vivo, decarboxylation of S-adenosylmethionine was, therefore, increased both by the increased amount of enzyme protein and by the elevated concentration of putrescine (which activates the enzyme) brought about by the enhanced ornithine carboxylase activity. Spermine synthase did not change significantly during the treatment and spermidine synthase increased only slightly. Therefore, the accumulation of polyamines was mediated predominantly via the increased availability of both putrescine and decarboxylated S-adenosylmethionine. Administration of 1,3-diamino-2-propanol led to a rapid reduction in the activity of ornithine decarboxylase in the heart, and continued exposure to this substance by its inclusion in the drinking water completely prevented the increase in concentration of putrescine and polyamines in response to thyroxine. However, cardiac hypertrophy as measured by the increase in cardiac mass was not prevented by such treatment with 1,3-diaminopropanol, showing that the increased content of polyamines was not essential for the hypertrophic response.  相似文献   

10.
Plasmodium falciparum encodes approximately 5300 proteins of which approximately 35% have repeats of amino acids, significantly higher than in other fully sequenced eukaryotes. The proportion of proteins with amino acid homorepeats varies from 4 to 54% amongst different functional classes of proteins. These homorepeats are dominated by asparagines, which are selected over lysines despite equivalent AT codon content. Surprisingly, asparagine repeats are absent from the variant surface antigen protein families of PfEMP1s, Stevors and Rifins. The PfEMP1 protein family is instead rich in recurrences of glutamates, similar to human cell surface proteins. Structural mapping of homorepeats suggests that these segments are likely to form surface exposed structures that protrude from the main protein cores. We also found an abundance of asparagine-rich prion-like domains in P. falciparum, significantly larger than in any other eukaryote. Domains rich in glutamines and asparagines have an innate predisposition to form self-propagating amyloid fibers, which are involved both in prion-based inheritance and in human neurodegenerative disorders. Nearly 24% (1302 polypeptides) of P. falciparum proteins contain prion-forming or prion-inducing domains, in comparison to Drosophila (approximately 3.4%) which to date showed the highest number of prion-like proteins. The unexpected properties of P. falciparum revealed here open new avenues for investigating parasite biology.  相似文献   

11.
We report the nucleotide sequence, derived amino acid sequence and expression profile of P-type ATPase 3 (PfATPase3) from Plasmodium falciparum. An open reading frame of 7362 nucleotides, interrupted by a single intron of 168 nt, encoded a protein product of 2394 amino acids with a predicted MW of 282791 Da. Hydropathy analysis of PfATPase3 revealed six amino-terminal and six carboxyl-terminal membrane spanning regions (M1-12) flanking a large hydrophilic domain with a smaller hydrophilic loop between M4 and M5. Based on a phylogenetic comparison of conserved domains present in P-type ATPases from other organisms, PfATPase3 resembled a Type-V ATPase for which the transport affinity is unknown. The PfATPase3 topology was interrupted by four regions, termed 'inserts', unique to malarial P-type ATPases, which were high in asparagine residues and charged amino acids (inserts I1-I4). Inserts I1 and I3 also contained repeated amino acid motifs. The number and composition of repeated amino acid motifs in insert I3 were variable in seven P. falciparum strains tested. PfATPase3 was 80.2% similar to the non-insert portions of P. yoelii ATPase3, although their inserts differed in length and composition. PfATPase3 mRNA was most abundant relative to beta-tubulin during the latter half of the erythrocytic cycle and was also present in gametocytes. Using affinity-purified antibody to a 14 amino acid PfATPase3 epitope, a 260 kDa protein was detected by Western analysis. Based on immunofluorescence, the PfATPase3 protein was located intracellularly in gametocytes and, to a lesser extent, in late erythrocytic stages.  相似文献   

12.
Thiamine pyrophosphate (TPP), the active form of vitamin B1, is an essential cofactor for several enzymes. Humans depend exclusively on the uptake of vitamin B1, whereas bacteria, plants, fungi and the malaria parasite Plasmodium falciparum are able to synthesise thiamine monophosphate (TMP) de novo. TMP has to be dephosphorylated prior to pyrophosphorylation in order to obtain TPP. In P. falciparum the phosphatase capable to catalyse this reaction has been identified by analysis of the substrate specificity. The recombinant enzyme accepts beside vitamin B1 also nucleotides, phosphorylated sugars and the B6 vitamer pyridoxal 5'-phosphate. Vitamin B1 biosynthesis is known to occur in the cytosol. The cytosolic localisation of this phosphatase was verified by transfection of a GFP chimera construct. Stage specific Northern blot analysis of the phosphatase clearly identified an expression profile throughout the entire erythrocytic life cycle of P. falciparum and thereby emphasises the importance of dephosphorylation reactions within the malaria parasite.  相似文献   

13.
The genome of the malaria parasite, Plasmodium falciparum, appears to contain the proteins necessary for a Type II dissociated fatty acid biosynthetic system. Here we report the functional characterization of two proteins from this system. Purified recombinant acyl carrier protein (ACP) and beta-ketoacyl-ACP synthase III (KASIII) from P. falciparum are soluble and active in a truncated form. Malarial ACP is activated by the addition of a 4'-phosphopantetheine prosthetic group derived from coenzyme A, generating holo-PfACP. Holo-PfACP is an effective substrate for the transacylase activity of PfKASIII, but substitution of a key active site cysteine in PfKASIII to alanine or serine abolishes enzymatic activity. During the schizont stage of parasite development, there is a significant up-regulation of the mRNAs corresponding to these proteins, indicating an important metabolic requirement for fatty acids during this stage.  相似文献   

14.
Succinate dehydrogenase (SDH), a Krebs cycle enzyme and complex II of the mitochondrial electron transport system was purified to near homogeneity from the human malarial parasite Plasmodium falciparum cultivated in vitro by FPLC on Mono Q, Mono S and Superose 6 gel filtration columns. The malarial SDH activity was found to be extremely labile. Based on Superose 6 FPLC, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and nondenaturing-PAGE analyses, it was demonstrated that the malarial enzyme had an apparent native molecular mass of 90 +/- 8 kDa and contained two major subunits with molecular masses of 55 +/- 6 and 35 +/- 4 kDa (n = 8). The enzymatic reaction required both succinate and coenzyme Q (CoQ) for its maximal catalysis with Km values of 3 and 0.2 microM, and k(cat) values of 0.11 and 0.06 min(-1), respectively. Catalytic efficiency of the malarial SDH for both substrates were found to be relatively low (approximately 600-5000 M(-1) s(-1)). Fumarate, malonate and oxaloacetate were found to inhibit the malarial enzyme with Ki values of 81, 13 and 12 microM, respectively. The malarial enzyme activity was also inhibited by substrate analog of CoQ, 5-hydroxy-2-methyl-1,4-naphthoquinone, with a 50% inhibitory concentration of 5 microM. The quinone had antimalarial activity against the in vitro growth of P. falciparum with a 50% inhibitory concentration of 0.27 microM and was found to completely inhibit oxygen uptake of the parasite at a concentration of 0.88 microM. A known inhibitor of mammalian mitochondrial SDH, 2-thenoyltrifluoroacetone. had no inhibitory effect on both the malarial SDH activity and the oxygen uptake of the parasite at a concentration of 50 microM. Many properties observed in the malarial SDH were found to be different from the host mammalian enzyme.  相似文献   

15.
L-Arginine is one of the precursor amino acids of polyamine biosynthesis in most living organisms including Leishmania parasites. L-Arginine is enzymatically hydrolyzed by arginase producing L-ornithine and urea. In Leishmania spp. and other trypanosomatids a single gene encoding arginase has been described. The product of this gene is compartmentalized in glycosomes and is the main source of L-ornithine for polyamine synthesis in these parasites. L-Ornithine is substrate of ornithine decarboxylase (ODC) - one of the key enzymes of polyamine biosynthesis and a validated target for therapeutic intervention - producing putrescine, which in turn is converted to spermidine by condensing with an aminopropyl group from decarboxylated S-adenosylmethionine. Unlike trypanosomatids, mammalian hosts have two arginases (arginase I and II), which have close structural and kinetic resemblances, but localize in different subcellular organelles, respond to different stimuli and have different immunological reactivity. Arginase I is a cytosolic enzyme, mostly expressed in the liver as a pivotal component of the urea cycle, providing in addition L-ornithine for polyamine synthesis. In contrast, arginase II localizes inside mitochondria and is metabolically involved in L-proline and L-glutamine biosynthesis. More striking is the role played by L-arginine as substrate for nitric oxide synthase (NOS2) in macrophages, the main route of clearance of many infectious agents including Leishmania and Trypanosoma cruzi. In infected macrophages L-arginine is catalysed by NOS2 or arginase, contributing to host defense or parasite killing, respectively. A balance between NOS2 and arginase activities is a crucial factor in the progression of the Leishmania infection inside macrophages. In response to T-helper type 2 (Th2) cytokines, resident macrophages induce arginase I inhibiting NO production from L-arginine, thereby promoting parasite proliferation. Conversely, the response to T-helper type 1 (Th1) cytokines is linked to NOS2 induction and parasite death. Moreover, induction of any of these enzymes is accompanied by suppression of the other. Specifically, arginase reduces NO synthesis by substrate depletion, and N(ω)-hydroxy-L-arginine, one of the intermediates of NOS2 catalysis, competitively inhibits arginase activity. In spite of abundant data concerning arginases in mammals as well their involvement in parasite killing, there are very few papers regarding the actual role of arginase in the parasite itself. This review is an update on the recent progress in research on leishmanial arginase including the role played by this enzyme in the establishment of infection in macrophages and the immune response of the host. A comparative study of arginases from other kinetoplatids is also discussed.  相似文献   

16.
Geldanamycin (GA), an antibiotic of the ansamycin family and an inhibitor of heat shock protein 90 (Hsp90), was previously shown to inhibit the malarial parasite, Plasmodium falciparum. Here we report that cyclosporin A (CsA), an inhibitor of parasitic cyclophilin (Cyp) and protein phosphatase 2B (calcineurin, CN), acted synergistically with GA to inhibit the erythrocytic growth of the parasite. Parasitic calcineurin associated with Hsp90 in vivo, and GA inhibited the association, but CsA had no effect. In a number of CsA-resistant (CsA(R)) P. falciparum clones mutations were detected in functionally significant amino acid residues of the catalytic and regulatory subunits of calcineurin (CnA and CnB, respectively) and in two out of three parasitic cyclophilins, namely Cyp19A and Cyp19B. No mutation was detected in the third cyclophilin, Cyp24. Further analysis of the mutant CnA revealed that its protein phosphatase activity was highly CsA-resistant in vitro. Similarly, one of the mutant Cyp19A proteins was purified and found to be unable to inhibit parasitic CN in the presence of CsA. Together, these results underscore the importance of the proper assembly and function of CN in plasmodial biology and suggest that the inhibition of CN can be a potential mechanism behind the CsA-sensitivity of the malaria parasite.  相似文献   

17.
Erythrocytic stages of the malaria parasite Plasmodium falciparum express four related papain-family cysteine proteases, termed falcipains. Falcipain-2 and falcipain-3 are food vacuole hemoglobinases, but determination of the specific roles of these and other falcipains has been incomplete. To better characterize biological roles, we attempted disruption of each falcipain gene in the same strain (3D7) of P. falciparum. Disruption of falcipain-1, falcipain-2, and falcipain-2' was achieved. In each case knockouts multiplied at the same rate as wild-type parasites. The morphologies of erythrocytic falcipain-1 and falcipain-2' knockout parasites were indistinguishable from those of wild-type parasites. In contrast, consistent with previous results, falcipain-2 knockout trophozoites developed swollen, hemoglobin-filled food vacuoles, indicative of a block in hemoglobin hydrolysis and were, compared to wild-type parasites, twice as sensitive to cysteine protease inhibitors and over 1000 times more sensitive to an aspartic protease inhibitor. The falcipain-3 gene could not be disrupted, but replacement with a tagged functional copy was readily achieved, strongly suggesting that falcipain-3 is essential to erythrocytic parasites. Our data suggest key roles for falcipain-2 and falcipain-3 in the development of erythrocytic malaria parasites and a complex interplay between P. falciparum cysteine and aspartic proteases.  相似文献   

18.
19.
Spermine and spermidine were found to be the principal polyamines in the bovine filarial parasiteSetaria cervi, whereas putrescine was observed in very low amounts. Studies conducted on the enzymes of polyamine biosynthesis revealed low activity for S-adenosyl-methionine decarboxylase, questionable and negligible activities for the decarboxylation of ornithine and arginine, and appreciable activity for ornithine aminotransferase. Uptake studies with radiolabeled putrescine, spermidine and spermine showed that these amines are rapidly taken up from the medium by an active uptake process. The uptake was temperature-sensitive and abolished at 0–4°C. The questionable presence of biosynthetic enzymes such as ornithine and arginine decarboxylase and, on the other hand, an effective uptake mechanism indicate that the parasite may depend on the host for its polyamine requirement, thereby indicating a possible target for chemotherapy.Communication No. 4114  相似文献   

20.
Phosphatidylinositol (PI) is a versatile lipid that not only serves as a structural component of cellular membranes, but also plays important roles in membrane anchorage of proteins and in signal transduction through distinct phosphorylated derivatives of the inositol head group. PI is synthesised by PI synthase from CDP-diacylglycerol and myo-inositol. The enzymatic activity in Plasmodium falciparum and P. knowlesi has previously been characterised at the biochemical level. Here we characterise the PI synthase gene of P. falciparum and P. knowlesi. The cDNA sequence identified a highly spliced gene consisting of nine exons and encoding a protein of 209 and 207 amino acids, respectively. High sequence conservation enabled the prediction of the PI synthase genes of P. berghei, P. chabaudi and P. vivax. All Plasmodium PI synthase proteins appear to be highly hydrophobic, although no consensus for the number and location of distinct transmembrane domains could be detected. The P. falciparum PI synthase (PfPIS) gene successfully complemented a Saccharomyces cerevisiae PIS1 deletion mutant, demonstrating its enzymatic function. Complementation efficiency was dramatically improved when hybrid constructs between N-terminal S. cerevisiae and C-terminal P. falciparum sequences were used. Determination of in vitro PIS activities of complemented yeast strains confirmed the enzymatic function of the Plasmodium protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号