首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Feeding rats a purified diet containing peanut oil with a low alpha-linolenic acid [18:3(n-3)] content resulted in lower amounts of (n-3) polyunsaturated fatty acids, mainly docosahexaenoic acid [22:6(n-3)], greater amounts of docosapentaenoic acid [22:5(n-6)] in uterus phospholipids, and altered postnatal uterus development when compared with rats fed a diet containing peanut and rapeseed oils. Maximal differences in uterine growth, as measured by uterine weight, protein and DNA content, occurred between d 24 and 30 postpartum and disappeared near the end of sexual development (d 40). The induction of the progesterone receptor was not affected, and serum estradiol concentrations were not significantly reduced in deficient animals. Moreover, growth response of the uterus to low doses of 17 beta-estradiol (less than 5 micrograms/kg) was significantly reduced in ovariectomized animals fed the diet containing only peanut oil. However, the maximal response of the uterus, observed with higher 17 beta-estradiol doses (5-50 micrograms/kg), was not affected. Because the two diets used differed in the content of alpha-linolenic acid, it is likely that alpha-linolenic acid deficiency in animals fed the diet containing only peanut oil was the cause of the affected uterine development.  相似文献   

2.
Docosahexaenoic acid [DHA, 22:6(n-3)] is enriched in brain membrane phospholipids and is important to brain development and function through its influence on neurite outgrowth and neurotransmitter secretion. Fusion of intracellular vesicles with the plasma membrane involving SNARE [soluble N-ethylmaleimide-sensitive fusion (NSF) protein attachment protein receptor] protein assembly, membrane fusion, and then disassembly are events common in membrane extension and neurotransmitter release. We determined whether feeding an (n-3) fatty acid-deficient diet, known to reduce brain phospholipid DHA, alters SNARE protein and SNARE complex expression or protein nitrosylation in the hippocampus of rats. Female rats were fed diets with 1.3 or 0.02% energy (n-3) alpha-linolenic acid from 2 wk before gestation then throughout gestation and lactation (n = 8/diet), and the male offspring were weaned to the maternal diet. Hippocampus phospholipid fatty acids and SNARE proteins were determined in male offspring at 90 d of age. Hippocampus phospholipid DHA was lower and (n-6) docosapentaenoic acid [DPA, 22:5(n-6)] was higher in the (n-3) fatty acid-deficient rats compared with the control group (P < 0.05). Multiplex Western blots using antibodies to syntaxin, synaptosome-associated protein of 25kDa (SNAP-25), and complexin II, showed higher ternary SNARE complexes but no differences in syntaxin, SNAP-25, or complex II expression in hippocampus of the (n-3) fatty acid-deficient rats compared with the control group (P < 0.05). S-nitrosylation of syntaxin was also significantly lower in the (n-3) fatty acid-deficient rats than in the control group. These studies suggest that altered SNARE complex binding or disassembly could be important in explaining the diverse cellular events associated with altered tissue DHA.  相似文献   

3.
Most previous studies have focused on improved reference memory and recovery of whole brain docosahexaenoic acid [DHA, 22:6(n-3)] levels in DHA-deficient animals supplemented with fish oil (FO) or switched to an adequate DHA-enriched diet. The aims of this study were to determine whether reference and working memory performance can be enhanced in control male rats and improved in (n-3) fatty acid-deficient male rats given an FO supplement and whether brain DHA accumulation, deficiency, and recovery are region specific. From the embryo to postnatal d 140, 4 groups of rats were fed a nonpurified or sunflower oil-based (n-3) fatty acid-deficient diet alone or supplemented with (n-3) fatty acids from FO representing approximately 0.3% of the energy source. The male rats were tested at postnatal d 102-130 for spatial learning memory performance in the Morris water maze. The fatty acid composition of different brain regions was analyzed by GC. Rats fed the (n-3) fatty acid-deficient diet showed significantly poorer reference and working memory, and FO supplementation partially rescued both memory performances. Furthermore, FO supplementation during brain development and adulthood in normal rats resulted in significant enhancement of both memories. Following dietary DHA repletion, the hippocampus and olfactory bulbs accumulated more DHA, were more resistant to dietary DHA deprivation, and showed better DHA recovery than the visual cortex, frontal cortex, and cerebellum. These results suggest that DHA is critical for the development and maintenance of learning memory performance.  相似文献   

4.
This study examined the effects of diets deficient (D) in linoleic [18:2(n-6)] and linolenic acid [18:3(n-3)] at 0.8 and 0.05% energy, respectively, or adequate (C) in 18:2(n-6) and 18:3(n-3) at 8.3 and 0.8% energy, respectively, without (-) or with (+) 0.2% energy arachidonic [20:4(n-6)] and 0.16% energy docosahexaenoic [22:6(n-3)] acid in piglets fed from birth to 18 d. Frontal cortex dopaminergic and serotoninergic neurotransmitters and phospholipid fatty acids were measured. Piglets fed the D- diet had significantly lower frontal cortex dopamine, 3,4-dihydroxyphenylacetic (DOPAC), homovanillic acid (HVA), serotonin and 5-hydroxyindoleacetic acid (5-HIAA) concentrations than did piglets fed the C- diets. Frontal cortex dopamine, norepinephrine, DOPAC, HVA, serotonin and 5-HIAA were higher in piglets fed the D+ compared to those fed the D- diet (P < 0.05) and not different between piglets fed the D+ and those fed the C- diets or the C- and C+ diets. Piglets fed the D- diet had lower frontal cortex phosphatidylcholine (PC) and phosphatidylinositol (PI) 20:4(n-6) and PC and phosphatidylethanolamine (PE) 22:6(n-3) than did piglets fed the C- diet (P < 0.05). Piglets fed the D+ diet had higher frontal cortex PC and PI 20:4(n-6) and PC, PE, PS and PI 22:6(n-3) than did piglets fed the D- diet. These studies show that dietary essential fatty acid deficiency fed for 18 d from birth affects frontal cortex neurotransmitters in rapidly growing piglets and that these changes are specifically due to 20:4(n-6) and/or 22:6(n-3).  相似文献   

5.
Melatonin (MEL) plays an essential role in physiologic functions associated with darkness. We examined the effects of docosahexaenoic acid (DHA)-enriched phospholipids from pig brains (BPL) or hen eggs (EPL), as sources of DHA, on lipid FA composition of pineal membranes and daytime and nighttime concentrations of 6-sulfatoxymelatonin (aMT6) in adult male control and (n-3)-deficient rats fed BPL and EPL diets for 5 wk. In two experiments, at 3 wk of age, rats were divided into subgroups and fed semipurified diets containing either peanut oil [(n-3)-deficient group] or peanut plus rapeseed oil (control group) and two dietary formulas containing either 3.5 g/100 g diet of BPL (Experiment 1) or 5.0 g/100 g diet of EPL (Experiment 2). BPL and EPL diets provided approximately 200 mg of DHA/100 g diet. During the daytime, aMT6 concentrations were not significantly different among groups. Conversely, the (n-3)-deficient rats had significantly lower nighttime aMT6 concentrations than the control rats. BPL and EPL did not affect urinary nighttime aMT6 concentration in the control group, whereas (n-3)-deficient + BPL or EPL groups exhibited significantly higher nighttime aMT6 concentrations than the (n-3)-deficient group (76 and 110%, respectively). The level of DHA was significantly higher in the pineal glands of control rats than in (n-3)-deficient rats. In rats fed EPL and BPL, the level of DHA reached a plateau, between 10 and 11 mg/100 mg total fatty acids in control + BPL or EPL and (n-3)-deficient + BPL or EPL groups. These findings suggest that new DHA-enriched formulas may be used as an efficient alternative source of (n-3) polyunsaturated fatty acids to normalize MEL secretion.  相似文献   

6.
鱼油对小鼠脑磷脂中脂肪酸组成的影响   总被引:5,自引:0,他引:5  
昆明种小鼠随机分成两组,对照组和鱼油组,按小鼠处死时间,对照组分三个亚组,鱼油组分四个亚组。取小鼠脑组织,采用气相色谱法测其脑磷脂中脂肪酸组成,考察鱼油中n一3系多不饱和脂肪酸对小鼠大脑的影响,结果表明:鱼油可使小鼠脑重增加(P<0.05),使脑磷脂中饱和脂肪酸,单不饱和脂肪酸和n一6系多不饱和脂肪酸水平降低,使n一3系多不饱和脂肪酸水平上升(P<0.05)。停用鱼油两周后,其脑磷脂中脂肪酸水平与对照组的水平接近,即鱼油对脑磷脂中脂肪酸组成的影响作用逐渐减弱。由此推论,在人脑早期形成发育过程中,适时、适量、持续补充人体必需n一3系多不饱和脂肪酸是必要的。  相似文献   

7.
Feeding rats diets containing oils that have a low alpha-linolenic acid [18:3(n-3)] content, such as sunflower oil, results in reduced amounts of docosahexaenoic acid [22:6(n-3)] in all brain cells and organelles compared to rats fed a diet containing soybean oil or rapeseed oil. During the period of cerebral development there is a linear relationship between the n-3 fatty acid content of the brain and that of food until alpha-linolenic acid represents approximately 200 mg/100 g food [0.4% of the total dietary energy for 18:3(n-3)]. Beyond that point brain levels reach a plateau. Similar values are also found for other organs. The level of 22:6(n-3) in membranes is little affected by the dietary quantity of linoleic acid [18:2(n-6)] if 18:3(n-3) represents approximately 0.4% of energy. In membranes from rats fed diets containing sunflower oil, Na+, K(+)-ATPase activity in nerve terminals was 60%, 5'-nucleotidase in whole brain homogenate was 80%, and 2',3'-cyclic nucleotide 3'-phosphodiesterase was 88% of that in membranes from rats fed diets containing soybean oil. A diet low in alpha-linolenic acid leads to anomalies in the electroretinogram, which partially disappear with age. It has little effect on motor activity, but it seriously affects learning tasks as measured with the shuttle box test. Rats fed a diet low in alpha-linolenic acid showed an earlier mortality in response to an intraperitoneal injection of a neurotoxin, triethyltin, than did rats fed a normal soybean oil diet.  相似文献   

8.
This study investigated the effects of docosahexaenoic acid (DHA)-rich phospholipid supplementation on behavior, electroretinogram and phospholipid fatty acid (PUFA) composition in selected brain regions and retina in old mice. Two groups of mice were fed a semisynthetic balanced diet or a diet deficient in alpha-linolenic acid. At the age of 8 months, half of each diet group was supplemented with DHA. In the open field, no differences in motor or exploratory activities were observed between the four diet groups. In the light/dark test of anxiety, the time spent in the light compartment was significantly higher in both supplemented groups than in control and deficient groups. Learning performance in the Morris water maze was significantly impaired in deficient old mice, but was completely restored by the phospholipid supplementation. The electroretinogram showed a significant alteration of a- and b-wave amplitudes in control compared to deficient mice. Phospholipid supplementation induced a significant increase of b-wave amplitude in both control and deficient groups and restored normal fatty acid composition in brain regions and retina in deficient mice. DHA-rich phospholipids may improve learning ability, visual function and reverse biochemical modifications in old mice fed an n-3 polyunsaturated fatty acid-deficient diet; they also may improve visual function in old mice fed a balanced diet.  相似文献   

9.
Three experimental diets with varied n-6-to-n-3 fatty acid ratios (120, 40 and 8) were prepared by a suitable blending of safflower oil containing 72.5% linoleic (18:2 n-6) acid and non-detectable levels of alpha-linolenic (18:3 n-3) acid, and soybean oil having 56.1% linoleic (18:2 n-6) acid and 7.9% alpha-linolenic (18:3 n-3) acid. These diets were fed to weanling female Wistar/NIN (inbred) rats for 16 wk to assess the impact of altered dietary n-6-to-n-3 fatty acid ratio on erythrocyte membrane (EMS) cholesterol, phospholipids, fatty acid composition and activities of membrane-bound enzymes such as Na+,K+-ATPase, Ca2+, Mg2+-ATPase and acetylcholinesterase. Activities of total and ouabain-sensitive-ATPases were significantly higher in the erythrocyte membranes of rats fed diets with a n-6-to-n-3 fatty acid ratio of 40 compared to other groups, whereas the erythrocyte membrane-bound acetylcholinesterase was significantly different among the three groups. The highest and lowest activities for this enzyme were observed in the dietary groups with n-6-to-n-3 fatty acid ratios of 8 and 40 respectively. However, the EMS of rats fed diets with a n-6-to-n-3 fatty acid ratio of 40 alone had significantly higher Ca2+,Mg2+-ATPase compared to those of other two groups. Significant increases were observed in absolute amounts of cholesterol, phospholipids and molar ratio of cholesterol to phospholipids in the EMS of rats fed a diet with a very high 18:2 n-6-to-18:3 n-3 fatty acid ratio (120) as compared to those from the dietary group with 18:2 n-6-to-18:3 n-3 fatty acid ratio (40), which had the lowest levels of cholesterol, phospholipids and cholesterol-to-phospholipid molar ratio. On the other hand, the EMS from rats fed a diet with a very low n-6-to-n-3 fatty acid ratio (8) had significantly lower cholesterol and higher proportions of stearic (18:0), oleic (18:1 n-9), eicosapentaenoic (20:5 n-3), and docosahexaenoic acids, and a higher ratio of docosahexaenoic (22:6 n-3) acid-to-a-linoleic (18:3 n-3) acid compared to the EMS from a very high n-6-to-n-3 fatty acid ratio of 120. Although these changes in EM fatty acid profiles were expected of the respective dietary regimens, the observed changes in the activities of membrane-bound enzymes could have resulted from their interaction with membrane cholesterol, phospholipids and fatty acyl chains.  相似文献   

10.
(n-3) PUFA deficiency and repletion effects on bone mechanical properties have not been examined. The primary research aim was to evaluate whether changes in the fatty acid composition of bone tissue compartments previously reported to influence bone formation rates would affect bone modeling and mechanical properties. In this investigation, three groups of rats were studied, second generation (n-3)-deficient, (n-3)-repleted, and a control (n-3)-adequate. The (n-3)-adequate diet contained alpha-linolenic acid [LNA, 18:3(n-3), 2.6% of total fatty acids] and docosahexaenoic acid [DHA, 22:6(n-3), 1.3% of total fatty acids]. Fatty acid composition of the hindlimb tissues (bone and muscle) of chronically (n-3)-deficient rats revealed a marked increase in (n-6) PUFA [20:4(n-6), 22:4(n-6), and 22:5(n-6)] and a corresponding decrease in (n-3) PUFA [18:3(n-3), 20:5(n-3), 22:5(n-3) and 22:6(n-3)]. Measurement of bone mechanical properties (energy to peak load) of tibiae showed that (n-3) deficiency diminished structural integrity. Rats repleted with (n-3) fatty acids demonstrated accelerated bone modeling (cross-sectional geometry) and an improved second moment in tibiae compared with control (n-3)-adequate rats after 28 d of dietary treatment. This study showed that repletion with dietary (n-3) fatty acids restored the ratio of (n-6)/(n-3) PUFA in bone compartments and reversed compromised bone modeling in (n-3)-deficient rats.  相似文献   

11.
BACKGROUND: Several findings in humans support the hypothesis of links between n-3 polyunsaturated fatty acid (PUFA) status and psychiatric diseases. OBJECTIVE: The involvement of PUFAs in central nervous system function can be assessed with the use of dietary manipulation in animal models. We studied the effects of chronic dietary n-3 PUFA deficiency on mesocorticolimbic dopamine neurotransmission in rats. DESIGN: Using dual-probe microdialysis, we analyzed dopamine release under amphetamine stimulation simultaneously in the frontal cortex and the nucleus accumbens. The messenger RNA (mRNA) expression of vesicular monoamine transporter(2) and dopamine D(2) receptor was studied with the use of in situ hybridization. The protein expression of the synthesis-limiting enzyme tyrosine 3-monooxygenase (tyrosine 3-hydroxylase) was studied with the use of immunocytochemistry. RESULTS: Dopamine release was significantly lower in both cerebral areas in n-3 PUFA-deficient rats than in control rats, but this effect was abolished in the frontal cortex and reversed in the nucleus accumbens by reserpine pretreatment, which depletes the dopamine vesicular storage pool. The mRNA expression of vesicular monoamine transporter(2) was lower in both cerebral areas in n-3 PUFA-deficient rats than in control rats, whereas the mRNA expression of D(2) receptor was lower in the frontal cortex and higher in the nucleus accumbens in n-3 PUFA-deficient rats than in control rats. Finally, tyrosine 3-monooxygenase immunoreactivity was higher in the ventral tegmental area in n-3 PUFA-deficient rats than in control rats. CONCLUSIONS: Our results suggest that the mesolimbic dopamine pathway is more active whereas the mesocortical pathway is less active in n-3 PUFA-deficient rats than in control rats. This provides new neurochemical evidence supporting the effects of n-3 PUFA deficiency on behavior.  相似文献   

12.
Docosahexaenoic acid [22:6(n-3)] is enriched in brain membrane phospholipids and essential for brain function. Neurogenesis during embryonic and fetal development requires synthesis of large amounts of membrane phospholipid. We determined whether dietary (n-3) fatty acid deficiency during gestation alters neurogenesis in the embryonic rat brain. Female rats were fed diets with 1.3% energy [(n-3) control] or 0.02% energy [(n-3) deficient], from alpha-linolenic acid [18:3(n-3)], beginning 2 wk before gestation. Morphometric analyses were performed on embryonic day 19 to measure the mean thickness of the neuroepithelial proliferative zones corresponding to the cerebral cortex (ventricular and subventricular zones) and dentate gyrus (primary dentate neuroepithelium), and the thickness of the cortical plate and sectional area of the dentate gyrus. Phospholipids and fatty acids were determined by HPLC and GLC. Docosahexaenoic acid was 55-65% lower and (n-6) docosapentaenoic acid [22:5(n-6)] was 150-225% higher in brain phospholipids at embryonic day 19 in the (n-3) deficient (n = 6 litters) than in the control (n = 5 litters) group. The mean thickness of the cortical plate and mean sectional area of the primordial dentate gyrus were 26 and 48% lower, respectively, and the mean thicknesses of the cortical ventricular zone and the primary dentate neuroepithelium were 110 and 70% higher, respectively, in the (n-3) deficient than in the control embryonic day 19 embryos. These studies demonstrate that (n-3) fatty acid deficiency alters neurogenesis in the embryonic rat brain, which could be explained by delay or inhibition of normal development.  相似文献   

13.
14.
The present study examined: (i) age-induced regional changes in fatty acid composition of brain phospholipids; (ii) alpha-linolenic acid deficiency-induced regional depletion and recovery of DHA in the brain. DHA and arachidonic acid (AA) did not distribute evenly in the brain. In weaning and adult rats, the region with the highest DHA percentage was the cortex whereas the medulla had the lowest DHA percentage. In the aged rats, both the cortex and cerebellum were the regions with the highest DHA percentage whereas in the neonatal rats, the striatum had the greatest percentage of DHA, and the hypothalamus and hippocampus had the least percentage of DHA. Regarding AA, the hippocampus was the region that had the highest percentage whereas the medulla was the region with the lowest percentage except for the neonatal rats, whose cerebellum, hypothalamus, striatum and midbrain had AA percentage lower than hippocampus and cortex. DHA was not proportionally depleted in various regions of brain when the rats were maintained on an n-3-deficient diet for two generations. The results demonstrated that the cortex, hippocampus, striatum, cerebellum and hypothalamus had DHA depleted by >71 %, whereas the midbrain and medulla had only 64 and 57 % DHA depleted, respectively. The most important observation was that the diet reversal for 12 weeks resulted in complete DHA recovery in all regions except for the medulla where the recovery was only 62 %. It was concluded that the location of DHA, n-3 deficiency-induced DHA depletion and reversibility of DHA deficiency across the brain were region-specific.  相似文献   

15.
The effect of nicotinic acid on synthesis of cerebroside was studied during brain development. Nicotinic acid concentration in the whole brain and liver of rats fed on nicotinic acid-deficient diet for 10 days after weaning was lower than that of animals fed on nicotinic acid-supplemented diet. The cerebroside concentration was markedly lower and the total lipid concentration was slightly lower in the brain of nicotinic acid-deficient animals than in those receiving nicotinic acid-supplemented diet. Therefore, the ratio of cerebrosides to total lipids of nicotinic acid-deficient rats was significantly lower than that of nicotinic acid-supplemented rats. In nicotinic acid-deficient rats, the ratio of long-chain to short-chain fatty acid (C20-24/C14-18) was decreased in the nonhydroxy fatty acid fraction. Moreover, the ratio of synthesis of cerebrosides with hydroxy fatty acid to nonhydroxy fatty acid of nicotinic acid-deficient rats was higher than that of rats fed on nicotinic acid-supplemented diet. These observations suggest that nicotinic acid affects the synthesis of cerebrosides with nonhydroxy fatty acid.  相似文献   

16.
There were no statistically significant differences in final body weight or in food intake among groups of rats fed for 7 wk various fats of animal origin (lard fat and cod liver oil) or vegetable origin (corn, soybean and canola oils); the fats were fed as 10% of the diet (by wt) and were of varied fatty acid composition. Nevertheless, the mean weights of the kidneys from cod liver oil-fed animals were significantly higher than those of all other dietary groups. Platelets of rats from the groups receiving the animal fat contained significantly lower levels of linoleic acid, 18:2(n-6) [a precursor of arachidonic acid, 20:4(n-6)], than did platelets from rats receiving the fat of vegetable origin. Although the soybean-, canola- and cod liver oil-fed animals received substantial quantities of (n-3) fatty acids [alpha-linolenic acid, 18:3(n-3); eicosapentaenoic acid, 20:5(n-3); and docosahexaenoic acid, 22:6(n-3)], only the platelets of the latter two groups contained detectable levels of these fatty acids along with their products of elongation/desaturation/retroconversion. Platelets of the cod liver oil-fed group contained significantly less arachidonic acid, a major precursor of eicosanoids, than did those from all other dietary groups. However, platelet arachidonic levels also varied markedly among the other dietary groups. Diet-induced fatty acid changes observed in platelets of various dietary groups may influence platelet responses, including secretion, aggregation and biosynthesis of eicosanoids.  相似文献   

17.
Brain docosahexaenoic acid (DHA, 22:6n-3) levels are associated with learning memory performance, but it is not known the mechanism of DHA on enhancing memory effect. The aim of this study was to examine effect of brain DHA levels on cytoskeleton expression. Rats were fed a chow or sunflower oil-based n-3 fatty acid-deficient diet supplemented with or without fish oil starting from embryo and through postnatal day 140. The various DHA levels were from 5.0% to 15.6% of total fatty acids in hippocampus, 3.9% to 13.7% in visual cortex, and 5.3% to 14.4% in olfactory bulbs. The expression of the cytoskeleton markers tyrosine tubulin, acetylated tubulin, and beta-actin in the hippocampus, visual cortex and olfactory bulb was not affected by brain DHA levels.  相似文献   

18.
Some impairments related to membrane function were found in linoleic acid-deficient rats and the effects of fish oil feeding were investigated. In linoleic acid-deficient rats, glucose transport into erythrocytes was decreased. The concentrations of plasma free fatty acids were significantly reduced in the animals. Further, epinephrine-stimulated lipase was remarkably less sensitive to epinephrine in the deficient rat than in the corn oil-fed control rat. However, these impairments were relieved by fish oil feeding. Therefore, the impairments may be ascribed to the decrease of arachidonic acid as a polyunsaturated fatty acid in membrane phospholipids, since n-3 polyunsaturated fatty acids appear to take the place of arachidonic acid.  相似文献   

19.
Rats were fed a purified diet containing either 1.5% sunflower oil [940 mg linoleic acid [18:2(n-6)]/100 g diet; 6 mg alpha-linolenic acid [18:3(n-3)]/300 g diet] or 1.9% soybean oil [940 mg 18:2(n-6)/100 g diet; 130 mg 18:3(n-3)/100 g diet]. In all cases and tissues examined 22:6(n-3) was lower and 22:5(n-6) was higher in rats fed sunflower oil than in rats fed soybean oil. Levels of 22:4(n-6) and 20:4(n-6) were largely unaffected. Expressed as a percentage of that in soybean oil-fed rats, 22:6(n-3) in sunflower oil-fed rats was as follows: neurons, 49; astrocytes, 47; oligodendrocytes, 10; lung, 27; testes, 32; retina, 36; liver, 35 and kidneys, 45. Ten wk after the change in diet of 60-d-old rats from one containing sunflower oil to one containing soybean oil, the fatty acid composition of the brain cells had not reached control values, e.g., that obtained in animals continuously fed soybean oil; 22:6(n-3) was 77, 65 and 80% of control levels for astrocytes, oligodendrocytes and neurons, respectively. In contrast, the recovery measured by the decay of 22:5(n-6) was complete within 10 wk. For 22:6(n-3), it took approximately 2 wk for liver and kidney to recover to the control value, 3 wk for lung, 6 wk for retina and 10 wk for testes. The decrease of 22:5(n-6) was rapid: the control values were reached within 2 wk for kidney, liver and lung and within 6 wk for retina.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Rats raised on n-3 essential fatty acid deficient diets demonstrate spatial memory deficits. To investigate neuroanatomical correlates of these deficits, morphological analysis of the hippocampus were carried out. Adult, female rats were raised for three generations on n-3 deficient or n-3 supplemented diets. Two n-3 deficient diets contained adequate linoleic acid (LA), or high linoleic acid (high LA), and two supplemented diets contained LA supplemented with alpha-linolenic acid (+LNA), or linoleic supplementation with alpha-linolenic and docosahexaenoic acids (+LNA/DHA). The total fatty acid composition of the hippocampus revealed a profound loss (90%) in docosahexaenoic acid (DHA) in the hippocampi of LA and high LA animals compared to those on +LNA and +LNA/DHA diets with a reciprocal increase in docosapentaenoic acid (DPAn-6) in all phospholipid species. The volume, density, total number, and cell body size of neurons in CA1-3, granular and hilar layers of the hippocampus were measured at septal and temporal locations using unbiased stereology. No differences were detected in any of these measures except for in cell body size; CA1 pyramidal neurons in the LA group were significantly (p < 0.04) smaller than neurons in the +LNA/DHA group at the septal location.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号