首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The left hippocampus and related structures mediate verbal memory function. The mechanism underlying preserved verbal memory function in patients with left hippocampal damage is unknown. Temporal lobe epilepsy, a common disease, is frequently the consequence of a characteristic hippocampal pathology termed hippocampal sclerosis, which may also affect the amygdala. In this setting, mapping the sites of memory function is a vital component of planning for surgical treatment for epilepsy. Using event-related functional magnetic resonance imaging, we studied 24 right-handed nonamnesic patients with left hippocampal sclerosis and 12 normal controls, performing a verbal encoding task. The patients were subdivided into two groups according to presence or absence of additional left amygdala pathology. Analysis of the data employed a two-level random-effects design, examining the main effects of subsequent memory in each group, as well as the differences between the groups. Additional effects of emotionality of the remembered words were also examined. Verbal memory encoding involved activation of left hippocampus in normals, but was associated with reorganisation to right hippocampus and parahippocampal gyrus in the patients. The additional presence of left amygdala sclerosis resulted in reorganisation for encoding of emotional verbal material to right amygdala. Retained verbal memory function in the presence of left medial temporal lobe pathology is mediated by recruitment of a parallel system in the right hemisphere consistent with adaptive functional reorganisation. The findings indicate a high degree of plasticity in medial temporal lobe structures.  相似文献   

2.
Increasing evidence suggests a role for the hippocampus not only in long-term memory (LTM) but also in relational working memory (WM) processes, challenging the view of the hippocampus as being solely involved in episodic LTM. However, hippocampal involvement reported in some neuroimaging studies using "classical" WM tasks may at least partly reflect incidental LTM encoding. To disentangle WM processing and LTM formation we administered a delayed-match-to-sample associative WM task in an event-related fMRI study design. Each trial of the WM task consisted of four pairs of faces and houses, which had to be maintained during a delay of 10s. This was followed by a probe phase consisting of three consecutively presented pairs; for each pair participants were to indicate whether it matched one of the pairs of the encoding phase. After scanning, an unexpected recognition-memory (LTM) task was administered. Brain activity during encoding was analyzed based on WM and LTM performance. Hence, encoding-related activity predicting WM success in the absence of successful LTM formation could be isolated. Furthermore, regions critical for successful LTM formation for pairs previously correctly processed in WM were analyzed. Results showed that the left parahippocampal gyrus including the fusiform gyrus predicted subsequent accuracy on WM decisions. The right anterior hippocampus and left inferior frontal gyrus, in contrast, predicted successful LTM for pairs that were previously correctly classified in the WM task. Our results suggest that brain regions associated with higher-level visuo-perceptual processing are involved in successful associative WM encoding, whereas the anterior hippocampus and left inferior frontal gyrus are involved in successful LTM formation during incidental encoding.  相似文献   

3.
Demanding cognitive tasks are sometimes carried out under stressful conditions. Several studies indicate that whereas severe stress impairs performance, moderate stress can enhance cognitive performance. In this study, we investigated how moderate stress influences the neural systems supporting working memory. We embedded an N-back working memory task in a moderately stressful context, as indicated by our physiological stress measures, and probed phasic and tonic human brain activity using two fMRI-techniques: conventional blood oxygen level dependent fMRI and arterial spin labeling (ASL). The results showed that the stress induction, as compared to the neutral control condition, led to slightly faster reaction times without changes in accuracy. In general, working memory processing was associated with increased activity in a frontoparietal network and reduced activity in the medial temporal lobe (MTL). The stress induction led to enhanced reduction of phasic MTL responses, specifically the hippocampus and amygdala. In addition, ASL showed that stress increased tonic amygdala activity, while tonic hippocampal activity was unaffected. These findings suggest that the influence of stress on MTL deactivation during working memory processing is task-related rather than a general consequence of the stressful state. The temporal suspension of hippocampal processing in favor of more task relevant processes may allow subjects to maintain normal performance levels under moderate stress.  相似文献   

4.
In a previous functional magnetic resonance imaging (fMRI) study, we suggested that in left medial temporal lobe epilepsy (LTLE) poor verbal episodic memory performances were sustained by abnormal neocortical and mesiotemporal activations. In the present study, we attempted to examine the evolution of these abnormal neocortical and mesiotemporal activations over 24 h. We thus observed the fMRI brain regions activated during the 24-h-delayed retrieval of a word list in the same sample of healthy control subjects and LTLE patients. In control subjects, a similar left occipitotemporofrontal network was activated during both immediate and 24-h-delayed retrieval conditions. In addition, the 24-h-delayed retrieval also activated a larger parietal region and the right hippocampus. This distributed neocortical and mesiotemporal network was very poorly activated during the 24-h-delayed retrieval in LTLE patients, suggesting the inability to reactivate areas that are keys to retrieving stored information.  相似文献   

5.
The test-retest reliability of activation patterns elicited by encoding and recognition of word-pair associates within the whole brain and a predefined medial temporal region of interest (ROI) was investigated. Twenty healthy right-handed subjects were studied within two sessions, either on the same day or 210-308 days later. Three quantitative measures of reliability were calculated for the contrasts encoding and recognition versus a control condition within the ROI and also for the whole brain: A group correlational analysis between the lateralization indices of the first and second session, correlations of the individual SPM(t) maps of the first and the second run, and overlap ratios between both sessions. For the ROI, correlational analysis of lateralization indices during both encoding trials was significant. Eighty percent of the individual positive correlation coefficients of SPM(t) maps during encoding, and 75% during recognition reached significance. The mean percentage of overlapping voxels was 18% during encoding and 19% during recognition. The reproducibility measures evaluated for the whole brain demonstrated significantly higher values compared to the ROI. For the group that stayed inside the scanner, better whole brain test-retest reliability was observed, and no influence of the memory process (encoding or recognition) on reproducibility was found.  相似文献   

6.
Attention switching between items being stored and manipulated in working memory (WM) is proposed to be an elementary executive function. Experiment 1 reveals a similar attentional limitation within and between verbal and visuospatial WM and identifies a supramodal switching process required for switching between WM items. By using functional magnetic resonance imaging, Experiment 2 investigated brain activation correlates of parametrically varied attention switching within and between these two WM modalities. Attention switching activation was broadly distributed, was quite similar across the three conditions, and, in almost all areas, increased with increasing switching demand, indicating that attention switching recruits and modulates the entire WM network. Dorsolateral prefrontal cortex was implicated in both within- and between-modality attention switching, but no significant activation was found in ventrolateral areas, supporting dorsal-ventral process models of prefrontal organization. A functional dissociation between anterior frontal and dorsolateral prefrontal cortex was found with the former being more activated when switching attention between modalities was required. The data challenge the notion of an anatomically separate attention switching executive function, but suggest that anterior frontal areas are recruited for the additional demand of coordinating the verbal and visuospatial WM slave systems.  相似文献   

7.
年龄相关性记忆缺损者内颞叶结构MR体积测量研究   总被引:4,自引:0,他引:4  
目的观察年龄相关性记忆缺损(AAMI)者与认知功能正常老年人和轻度认知障碍(MCI)者内颞叶结构体积测量值,评价AAMI者内颞叶结构体积指标与正常对照者和MCI者的差别.方法对45名研究对象(正常老年人22例,AAMI者10例,MCI者 13例)行颅脑磁共振成像检查,在不知晓临床资料的情况下测量海马结构、内嗅皮层、杏仁核和侧脑室颞角等结构的体积,应用社会科学统计程序(SPSS)对所获数据进行统计学处理.结果三组间比较,右侧海马结构体积测量值有显著性差异(P=0.011),其他内颞叶结构体积测量值未见显著性差异.各组间两两比较,AAMI组与MCI组之间右侧海马结构体积测量值有显著差异(P=0.003);AAMI组与正常对照组之间各脑结构体积测量值无显著差异;MCI组与正常对照组比较,左侧内嗅皮层显著性萎缩(P=0.032).结论 AAMI者与正常对照者比较,内颞叶脑结构体积测量值无明显差异;而MCI者右侧海马结构和左侧内嗅皮层体积测量值明显减小.  相似文献   

8.
Dove A  Brett M  Cusack R  Owen AM 《NeuroImage》2006,31(4):1790-1801
Although the prefrontal cortex and regions of the medial temporal lobe are commonly co-activated in neuroimaging studies, their precise respective contributions to human memory remain unclear. In this event-related fMRI study, conditions requiring volunteers to simply look at pictures of abstract art were compared with conditions in which they were explicitly instructed to remember similar stimuli for later recognition. Looking, with no explicit instruction to remember, was associated with significant increases in signal intensity in the medial temporal lobe in 19 of the 20 volunteers scanned, but not in a region of the mid-ventrolateral prefrontal cortex that has previously been implicated in memory encoding and retrieval. Behavioral data collected outside the scanner on the same task revealed that recognition of these stimuli was, however, above chance. When the task instructions were changed to encourage the volunteers to remember the stimuli, significant increases in signal intensity were observed bilaterally, in the mid-ventrolateral frontal cortex, but there was no concomitant increase within the medial temporal lobe region. Moreover, behavioral data collected outside the scanner confirmed that recognition of these stimuli was significantly improved relative to the 'just look' trials. These results suggest that the mid-ventrolateral frontal cortex and the medial temporal lobe region make dissociable contributions to human memory that correspond closely to 'top-down' and 'bottom-up' notions of cognitive control, respectively.  相似文献   

9.
Lesion-deficit studies have provided evidence for a functional dissociation between the left medial temporal lobe (MTL) mediating verbal memory encoding and right MTL mediating non-verbal memory encoding. While a small number of functional MRI studies have demonstrated similar findings, none has looked specifically for material-specific lateralization using subsequent memory effects. In addition, in many fMRI studies, encoding activity has been located in posterior MTL structures, at odds with lesion-deficit and positron emission tomography (PET) evidence. In this study, we used an event-related fMRI memory encoding paradigm to demonstrate a material-specific lateralization of encoding in the medial temporal lobes of ten healthy control subjects. Activation was left-lateralized for word encoding, bilateral for picture encoding, and right-lateralized for face encoding. Secondly, we demonstrated the locations of activations revealed using an event-related analysis to be more anterior than those revealed using a blocked analysis of the same data. This suggests that anterior MTL structures underlie memory encoding as judged by subsequent memory effects, and that more posterior activity detected in other fMRI studies is related to deficiencies of blocked designs in the analysis of memory encoding.  相似文献   

10.
The human medial temporal lobe (MTL) system mediates memories that can be consciously recollected. However, the specific natures of the individual contributions of its various subregions to conscious memory processes remain equivocal. Here we show a functional dissociation between the hippocampus proper and the parahippocampal region in conscious and unconscious memory as revealed by invasive recordings of limbic event-related brain potentials recorded during explicit and implicit word recognition: Only hippocampal and not parahippocampal neural activity exhibits a sensitivity to the implicit versus explicit nature of the recognition memory task. Moreover, only within the hippocampus proper do the neural responses to repeated words differ not only from those to new words but also from each other as a function of recognition success. By contrast parahippocampal (rhinal) responses are sensitive to repetition independent of conscious recognition. These findings thus demonstrate that it is the hippocampus proper among the MTL structures that is specifically engaged during conscious memory processes.  相似文献   

11.
12.
Restom K  Perthen JE  Liu TT 《NeuroImage》2008,40(4):1495-1502
Prior measures of the blood oxygenation level-dependent (BOLD) and cerebral blood flow (CBF) responses to a memory-encoding task within the medial temporal lobe have suggested that the coupling between functional changes in CBF and changes in the cerebral metabolic rate of oxygen (CMRO(2)) may be tighter in the medial temporal lobe as compared to the primary sensory areas. In this study, we used a calibrated functional magnetic resonance imaging (fMRI) approach to directly estimate memory-encoding-related changes in CMRO(2) and to assess the coupling between CBF and CMRO(2) in the medial temporal lobe. The CBF-CMRO(2) coupling ratio was estimated using a linear fit to the flow and metabolism changes observed across subjects. In addition, we examined the effect of region-of-interest (ROI) selection on the estimates. In response to the memory-encoding task, CMRO(2) increased by 23.1+/-8.8% to 25.3+/-5.7% (depending upon ROI), with an estimated CBF-CMRO(2) coupling ratio of 1.66+/-0.07 to 1.75+/-0.16. There was not a significant effect of ROI selection on either the CMRO(2) or coupling ratio estimates. The observed coupling ratios were significantly lower than the values (2 to 4.5) that have been reported in previous calibrated fMRI studies of the visual and motor cortices. In addition, the estimated coupling ratio was found to be less sensitive to the calibration procedure for functional responses in the medial temporal lobe as compared to the primary sensory areas.  相似文献   

13.
The role of the medial temporal lobe in learning and memory has been well established in research on humans and other animals. In humans, clinical and neuroimaging studies typically suggest material-specific lateralization in which the left and right temporal lobes are associated with verbal and nonverbal memory, respectively. It is often assumed that the temporal lobes are functionally alike, differing only in terms of the content to be learned. Here we present data that challenge this notion, showing that the type of material used during a memory task can influence fMRI activation patterns beyond the expected left-verbal/right-nonverbal dichotomy. Our results also suggest some degree of functional asymmetry in the medial temporal lobe that is independent of material type, pointing to underlying processing differences between the left and right temporal lobes.  相似文献   

14.
Though the hippocampus has been associated with encoding and retrieval processes in episodic memory, the precise nature of its involvement in working memory has yet to be determined. This functional magnetic resonance imaging (fMRI) study employed a verbal working memory paradigm that allows for the within-subject comparison of functional activations during encoding, maintenance, and retrieval. In each trial, participants were shown 5 target words and, after an 8 s delay, a series of probe words. Probe words consisted of target matches, phonetically or semantically related foils, or foils unrelated to the target words. Both the left and right hippocampi showed higher mean activation amplitudes during encoding than maintenance. In contrast, the right dorsolateral prefrontal cortex (DLPFC) showed greater activation during maintenance than encoding. Both hippocampal and DLPFC regions were more active during retrieval than maintenance. Furthermore, an analysis of retrieval activation separated by probe type showed a trend toward greater bilateral hippocampal activation for probes related (both semantically and phonetically) to the target than for unrelated probes and still greater activation for target matches. This pattern suggests that there may be roles for the hippocampus and DLPFC in working memory that change as function of information processing stage. Additionally, the trend towards increased involvement of the hippocampus with the increase in relatedness of the probe stimuli to the information maintained is interpreted to be consistent with the role of the hippocampus in recollection-based retrieval in long-term memory and may indicate that this role extends to working memory processes.  相似文献   

15.
Several brain regions involved in visual perception have been shown to also participate in non-sensory cognitive processes of visual representations. Here we studied the role of ventral visual pathway areas in visual imagery and working memory. We analyzed intracerebral EEG recordings from the left inferior temporal lobe of an epileptic patient during working memory tasks and mental imagery. We found that high frequency gamma-band activity (50-150 Hz) in the inferior temporal gyrus (ITG) increased with memory load only during visuo-spatial, but not verbal, working memory. Using a real-time set-up to measure and visualize gamma-band activity online - BrainTV - we found a systematic activity increase in ITG when the patient was visualizing a letter (visual imagery), but not during perception of letters. In contrast, only 7 mm more medially, neurons located in the fusiform gyrus exhibited a complete opposite pattern, responding during verbal working memory retention and letter presentation, but not during imagery or visuo-spatial working memory maintenance. Talairach coordinates indicate that the fusiform contact site corresponds to the word form area, suggesting that this region has a role not only in processing letter-strings, but also in working memory retention of verbal information. We conclude that neural networks supporting imagination of a visual element are not necessarily the same as those underlying perception of that element. Additionally, we present evidence that gamma-band activity in the inferior temporal lobe, can be used as a direct measure of the efficiency of top-down attentional control over visual areas with implications for the development of novel brain-computer interfaces. Finally, by just reading gamma-band activity in these two recording sites, it is possible to determine, accurately and in real-time, whether a given memory content is verbal or visuo-spatial.  相似文献   

16.
Chen SH  Desmond JE 《NeuroImage》2005,24(2):332-338
Converging evidence has implicated the cerebellum in verbal working memory. The current fMRI study sought to further characterize cerebrocerebellar participation in this cognitive process by revealing regions of activation common to a verbal working task and an articulatory control task, as well as regions that are uniquely activated by working memory. Consistent with our model's predictions, load-dependent activations were observed in Broca's area (BA 44/6) and the superior cerebellar hemisphere (VI/CrusI) for both working memory and motoric rehearsal. In contrast, activations unique to verbal working memory were found in the inferior parietal lobule (BA 40) and the right inferior cerebellum hemisphere (VIIB). These findings provide evidence for two cerebrocerebellar networks for verbal working memory: a frontal/superior cerebellar articulatory control system and a parietal/inferior cerebellar phonological storage system.  相似文献   

17.
The current event-related fMRI study examined the relative involvement of different parts of the medial temporal lobe (MTL), particularly the contribution of hippocampus and perirhinal cortex, in either intentional or incidental recognition of famous faces in contrast to unfamiliar faces. Our intention was to further explore the controversial contribution of MTL in the processing of semantic memory tasks. Subjects viewed a sequence of famous and unfamiliar faces. Two tasks were used encouraging attention to either fame or gender. In the fame task, the subjects were requested to identify the person when seeing his/her face and also to try to generate the name of this person. In the gender task, the subjects were asked to conduct a judgement of a person's gender when seeing his/her face. The visual processing was hence directed to gender and thereby expected to diminish attention to semantic information leading only to a "passive" registration of famous and non-familiar faces. Recognition of famous faces, in both contrasts, produced significant activations in the MTL. First, during the intentional recognition (the person identification task) increased activity was observed in the anterolateral part of left hippocampus, in proximity to amygdala. Second, during the incidental recognition of famous faces (the gender classification task), there was increased activity in the left posterior MTL with focus in the perirhinal cortex. Our results suggest that the hippocampus may be centrally involved in the intentional retrieval of semantic memories while the perirhinal cortex is associated with the incidental recognition of semantic information.  相似文献   

18.
Neuroimaging studies of working memory have revealed two sites in the left supramarginal gyrus that may support the short-term storage of phonological information. Activation in the left dorsal aspect of the inferior parietal cortex (DIPC) has been observed in contrasts of working memory load, whereas activation in the ventral aspect of the inferior parietal cortex (VIPC) has been found primarily in contrast of information type (verbal vs. nonverbal). Our goal was to determine whether these two areas are functionally distinct or if instead they are part of a homogeneous region with large variations in the focus of peak activity. Toward this end, we used fMRI to assess the neural response in two working memory tasks (N-back and item recognition) in which we also manipulated memory load and the type of information to be recalled (verbal vs. nonverbal). We found both DIPC and VIPC activation in the same group of subjects and further demonstrated that they have differential sensitivity to our experimental factors. Only the DIPC showed robust load effects, whereas only the VIPC showed reliable effects of information type. These results help to account for the differences observed in between-subject comparisons, and they indicate that the two regions are functionally dissociable. In contrast to the DIPC, activity of the VIPC was also recruited in the fixation and low-load conditions, a surprising result that has not been fully explored in prior studies. Despite their distinctive patterns of performance, neither of these regions displayed a pattern of activity that entirely corresponds to common assumptions of a dedicated phonological short-term store (STS). Instead, we hypothesize that the DIPC may support domain-general executive processes, while the VIPC may support phonological encoding-recoding processes central to a variety of language tasks.  相似文献   

19.
Objects Evaluation of medial temporal lobe (MTL) atrophy is usually performed by magnetic resonance imaging (MRI). In Japan, however, the availability of computed tomography (CT) is much higher than that of MRI. The evaluation of MTL atrophy using CT may be useful when MRI is unavailable. This project developed a technique to automatically measure MTL atrophy using axial CT imaging and assessed the sensitivity of this method for diagnosing dementia of Alzheimer type (DAT). Materials and methods Linear measurements were taken for the width of the temporal horn, the width of the MTL, and the interuncal distance and the area of the temporal horn were measured. The algorithm developed employs the gray level threshold and the snake technique to process axial CT images. The algorithm was evaluated on 85 patients. Results The efficacy of this automated method was verified by a quantitative comparison of computerdetermined and manually obtained MTL measures, and based on its sensitivity and specificity in differentiating patients with DAT from control subjects. Conclusions This fully automated method of measuring MTL atrophy using CT is feasible and effective in DAT diagnosis, and simple to perform clinically. This method may be a practical alternative for MRI in some settings.  相似文献   

20.
The establishment of a role for medial temporal lobe (MTL) structures in episodic memory has led to an investigative focus on the specific contributions and interactions between constituent MTL regions, including the hippocampus and surrounding medial temporal cortices. By dissociating an intentional stimulus-category learning condition from a passive viewing condition, we demonstrate, using fMRI, that novelty- and familiarity-driven responses in human anterior and posterior hippocampus, respectively, only occur during intentional learning. With increasing familiarity of stimulus-category associations, there is a shift in neuronal responses from anterior to posterior hippocampal regions. This anterior/posterior response gradient may reflect a weighting of functional hippocampal architecture related to encoding of novel and retrieval of familiar information. By contrast, perirhinal cortex is engaged by novel stimuli irrespective of task, highlighting this region as a component of a generic familiarity discrimination system. By introducing distinct stimulus types, we further demonstrate that these MTL responses are independent of stimulus complexity. Different patterns of activity for intentional learning vs. passive viewing indicate that intentional encoding/retrieval of stimulus-category associations and automatic novelty/familiarity assessment of stimuli are processed in anatomically dissociable neuronal ensembles within the MTL memory system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号