首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.
Despite compelling evidence supporting key roles for glycogen synthase kinase 3β (GSK3β), mitochondrial adenosine triphosphate-sensitive K(+) (mitoK(ATP)) channels, and mitochondrial connexin 43 (Cx43) in cytoprotection, it is not clear how these signaling modules are linked mechanistically. By patch-clamping the inner membrane of murine cardiac mitochondria, we found that inhibition of GSK3β activated mitoK(ATP). PKC activation and protein phosphatase 2a inhibition increased the open probability of mitoK(ATP) channels through GSK3β, and this GSK3β signal was mediated via mitochondrial Cx43. Moreover, (i) PKC-induced phosphorylation of mitochondrial Cx43 was reduced in GSK3β-S9A mice; (ii) Cx43 and GSK3β proteins associated in mitochondria; and (iii) SB216763-mediated reduction of infarct size was abolished in Cx43 KO mice in vivo, consistent with the notion that GSK3β inhibition results in mitoK(ATP) opening via mitochondrial Cx43. We therefore directly targeted mitochondrial Cx43 by the Cx43 C-terminal binding peptide RRNYRRNY for cardioprotection, circumventing further upstream pathways. RRNYRRNY activated mitoK(ATP) channels via Cx43. We directly recorded mitochondrial Cx43 channels that were activated by RRNYRRNY and blocked by the Cx43 mimetic peptide (43)GAP27. RRNYRRNY rendered isolated cardiomyocytes in vitro and the heart in vivo resistant to ischemia/reperfusion injury, indicating that mitochondrial Cx43- and/or mitoK(ATP)-mediated reduction of infarct size was not undermined by RRNYRRNY-related opening of sarcolemmal Cx43 channels. Our results demonstrate that GSK3β transfers cytoprotective signaling through mitochondrial Cx43 onto mitoK(ATP) channels and that Cx43 functions as a channel in mitochondria, being an attractive target for drug treatment against cardiomyocyte injury.  相似文献   

2.
Heart mitochondria contain functional ATP-dependent K+ channels   总被引:7,自引:0,他引:7  
Recent observations challenged the functional importance or even the existence of mitochondrial ATP-dependent K+ (mitoK(ATP)) channels. In the present study, we determined the presence of K(ATP)-channel subunits in mouse heart mitochondria, and investigated whether known openers or blockers of the channel can alter mitochondrial membrane potential. Investigation of the channel composition was performed with antibodies against K(ATP)-channel subunits, namely the sulfonylurea receptor (SUR1 or SUR2) and the inwardly rectifying K+ channel (Kir6.1 or Kir6.2). Specific Kir6.1 and Kir6.2 proteins were found in the mitochondria by western blotting and immunogold electron microscopy. Neither SUR1 nor SUR2 was present in the mitochondria. In contrast, a mitochondrially enriched low molecular weight SUR2-like band was found at approximately 25 kDa. Mitochondrial-transport tags were identified in the sequences of Kir6.1 and Kir6.2, but not in SUR1 or SUR2. The fluorescent BODIPY-glibenclamide labeling of mitochondria indicated direct sulfonylurea binding. Pharmacological characterization of mitoK(ATP) was performed in isolated respiring heart mitochondria. Fluorescent confocal imaging with the membrane potential-sensitive dye MitoFluorRed showed that glibenclamide application changed membrane potential, while the specific mitoK(ATP)-channel openers, diazoxide or BMS-191095, reversed the effect. Mitochondrially formed peroxynitrite is a physiological opener of the channel. We conclude that a functional K(ATP) channel is present in heart mitochondria, which can be opened by diazoxide or BMS-191095. The channel can be composed of Kir6.1 and Kir6.2 subunits and does not contain either SUR1 or SUR2.  相似文献   

3.
Mitochondrial ATP-sensitive K (mitoK(ATP)) channels play a central role in protecting the heart from injury in ischemic preconditioning. In isolated mitochondria exposed to elevated extramitochondrial Ca, P(i), and anoxia to simulate ischemic conditions, the selective mitoK(ATP) channel agonist diazoxide (25-50 microM) potently reduced mitochondrial injury by preventing both the mitochondrial permeability transition (MPT) and cytochrome c loss from the intermembrane space. Both effects were blocked completely by the selective mitoK(ATP) antagonist 5-hydroxydecanoate. The protective effect against Ca-induced MPT was most evident under conditions in which the ability of electron transport to support membrane potential (Deltapsi(m)) was decreased and inner membrane leakiness was increased moderately. Under these conditions, mitoK(ATP) channel activity strongly regulated Deltapsi(m), and diazoxide prevented MPT by inhibiting the driving force for Ca uptake. Phorbol 12-myristate 13-acetate mimicked the protective effects of diazoxide, unless 5-hydroxydecanoate was present, indicating that protein kinase C activation also protects mitochondria by activating mitoK(ATP) channels. Because Deltapsi(m) recovery ultimately is required for heart functional recovery, these results may explain how mitoK(ATP) channel activation mimics ischemic preconditioning by protecting mitochondria as they pass through a critical vulnerability window during ischemia/reperfusion.  相似文献   

4.
OBJECTIVES: This study aimed to examine:1) whether nicorandil protects the ischemic myocardium by activating sarcolemmal adenosine triphosphate (ATP)-sensitive K(+) (sarcK(ATP)) channels or the mitochondrial K(ATP) (mitoK(ATP)) channels, and 2) whether protein kinase C (PKC) activity is necessary for cardioprotection afforded by nicorandil. BACKGROUND: Nicorandil is a hybrid of nitrate and a K(ATP) channel opener that activates the sarcK(ATP) and mitoK(ATP) channels. Both of these K(ATP) channels are regulated by PKC, and this kinase may be activated by nitric oxide and also by oxygen free radicals (OFR) generated after mitoK(ATP) channel opening. METHODS: In isolated rabbit hearts, infarction was induced by 30-min global ischemia/2-h reperfusion with monitoring of the activation recovery interval (ARI), an index of action potential duration. Protein kinase C translocation was assessed by Western blotting. RESULTS: Nicorandil did not change ARI before ischemia, but it accelerated ARI shortening after the onset of ischemia and reduced infarct size by 90%. A sarcK(ATP) channel selective blocker, HMR1098, abolished acceleration of ischemia-induced ARI-shortening by nicorandil and eliminated 40% of nicorandil-induced infarct size limitation. A mitoK(ATP) channel selective blocker, 5-hydroxydecanoate, abolished the protection afforded by nicorandil without affecting ARI. Cardioprotection by nicorandil was inhibited neither by an OFR scavenger, N-2-mercaptopropionylglycine nor by a PKC inhibitor, calphostin C, at a dose that was capable of inhibiting PKC- epsilon translocation after preconditioning. CONCLUSIONS: Both the sarcK(ATP) and mitoK(ATP) channels are involved in anti-infarct tolerance afforded by nicorandil, but PKC activation induced by nitric oxide or OFR generation, if any, does not play a crucial role.  相似文献   

5.
BACKGROUND & AIMS: Changes in mitochondrial energy metabolism promoted by uncoupling proteins (UCPs) are often found in metabolic disorders. We have recently shown that hypertriglyceridemic (HTG) mice present higher mitochondrial resting respiration unrelated to UCPs. Here, we disclose the underlying mechanism and consequences, in tissue and whole body metabolism, of this mitochondrial response to hyperlipidemia. METHODS: Oxidative metabolism and its response to mitochondrial adenosine triphosphate (ATP)-sensitive K+ channel (mitoK(ATP)) agonists and antagonists were measured in isolated mitochondria, livers, and mice. RESULTS: Mitochondria isolated from the livers of HTG mice presented enhanced respiratory rates compared with those from wild-type mice. Changes in oxygen consumption were sensitive to adenosine triphosphate (ATP), diazoxide, and 5-hydroxydecanoate, indicating they are attributable to mitochondrial ATP-sensitive K+ channel (mitoK(ATP)) activity. Indeed, mitochondria from HTG mice presented enhanced swelling in the presence of K+ ions, sensitive to mitoK(ATP) agonists and antagonists. Furthermore, mitochondrial binding to fluorescent glibenclamide indicates that HTG mice expressed higher quantities of mitoK(ATP). The higher content and activity of liver mitoK(ATP) resulted in a faster metabolic state, as evidenced by increased liver oxygen consumption and higher body CO(2) release and temperature in these mice. In agreement with higher metabolic rates, food ingestion was significantly larger in HTG mice, without enhanced weight gain. CONCLUSIONS: These results show that primary hyperlipidemia leads to an elevation in liver mitoK(ATP) activity, which may represent a regulated adaptation to oxidize excess fatty acids in HTG mice. Furthermore, our data indicate that mitoK(ATP), in addition to UCPs, may be involved in the control of energy metabolism and body weight.  相似文献   

6.
Activation of mitochondrial K(ATP) (mitoK(ATP)) channel induces acute ischemic preconditioning (PC) against ischemic injury. The ability of this channel to elicit late PC remains unknown. The present study tests the hypothesis that stimulation of mitoK(ATP) channel induces late PC via the protein kinase C (PKC) signaling pathway. Rats were subjected to 30 minutes of regional ischemia and 120 minutes of reperfusion (I/R). In other groups, rats were pretreated with diazoxide, a specific opener of the mitoK(ATP) channel (7 mg/kg, IV), 12, 24, 48, and 72 hours before they were subjected to I/R. A maximum reduction in infarct size was observed after 24 hours (33.3+/-2.2% versus I/R group, 62.1 +/-2.4%). Pretreatment with diazoxide did not reduce the infarct size significantly after 12, 48, and 72 hours (50.2+/-4.3%, 50.5+/-4.6%, and 58.2+/-4.9%) compared with the I/R group. The protection was blocked with 5-hydroxydecanoic acid (5-HD, 5 mg/kg IV), a relatively selective mitoK(ATP) channel blocker (56.5+/-2.7%), and chelerythrine (5 mg/kg IV), an effective PKC inhibitor (57.1+/-3.4%) administered either on the first day before diazoxide pretreatment or 10 minutes before I/R on the second day. Cell necrosis was decreased by approximately 50% in the diazoxide preconditioned hearts compared with control I/R hearts. Cell death by apoptosis was also significantly decreased in diazoxide pretreated hearts (3.2%) as compared with I/R (11.3%). In conclusion, activation of mitoK(ATP) channel with diazoxide produces late PC against reperfusion injury. The effect of mitoK(ATP) channel appears to be dependent on the PKC-mediated signal pathway.  相似文献   

7.
We investigated the role of protein kinase C (PKC) and phosphatidylinositol 3;-kinase (PI3-K) in the signaling mechanism of cardioprotection afforded by bradykinin (BK). Coronary-perfused guinea pig ventricular muscles were subjected to 20-min no-flow ischemia and 60-min reperfusion. Pretreatment for 5 min with BK (1 microm) significantly improved the recovery of developed tension measured after 60 min of reperfusion (86.8+/-2.6%v 34.8+/-4.1% in control). Prior treatment with B2 receptor antagonist HOE 140 completely abolished the protective effect of BK (37.0+/-7.6%). The protection was reduced by either PKC inhibitor chelerythrine (CH, 58.9+/-2.2%) or PI3-K inhibitor wortmannin (WM, 59.4+/-2.5%); however, the recovery of contractility was intermediate between the BK and control groups. Nevertheless, pretreatment with CH and WM together completely eliminated the protective effect of BK (38.9+/-4.2%). The mitochondrial ATP-sensitive K+ (mitoK(ATP)) channel blocker 5-hydroxydecanoate (5HD) significantly but partially inhibited the effect of BK (59.0+/-2.2%). Pretreatment with 5HD and CH together could not generate further inhibition (61.1+/-3.3%), while pretreatment with 5HD and WM together totally eliminated the protection (34.9+/-2.9%). We conclude that BK B2 receptors can precondition guinea pig hearts via the dual activation of PKC and PI3-K. The mitoK(ATP) channels act as downstream targets of PKC, whereas PI3-K is not associated with mitoK(ATP) channels.  相似文献   

8.
Much of cell death from ischaemia/reperfusion in heart and other tissues is generally thought to arise from mitochondrial permeability transition (MPT) in the first minutes of reperfusion. In ischaemic pre-conditioning, agonist binding to G(i) protein-coupled receptors prior to ischaemia triggers a signalling cascade that protects the heart from MPT. We believe that the cytosolic component of this trigger pathway terminates in activation of guanylyl cyclase resulting in increased production of cGMP and subsequent activation of protein kinase G (PKG). PKG phosphorylates a protein on the mitochondrial outer membrane (MOM), which then causes the mitochondrial K(ATP) channel (mitoK(ATP)) on the mitochondrial inner membrane to open, leading to increased production of reactive oxygen species (ROS) by the mitochondria. This implies that the protective signal is somehow transmitted from the MOM to its inner membrane. This is accomplished by a series of intermembrane signalling steps that includes protein kinase C (PKCepsilon) activation. The resulting ROS then activate a second PKC pool which, through another signal transduction pathway termed the mediator pathway, causes inhibition of MPT and reduction in cell death.  相似文献   

9.
We have recently proposed that opening of mitochondrial K(ATP) channels (mitoK(ATP)) acts as a trigger for preconditioning (PC) by causing mitochondria to produce reactive oxygen species (ROS). Controversy exists as to whether the putative sarcolemma-selective K(ATP) channel opener P1075 also opens mitoK(ATP) channels and may be cardioprotective. We purified mitoK(ATP) channels from either rabbit heart, rat heart or rat brain and reconstituted the proteins into liposomes. mitoK(ATP) channels from each of these tissues were opened by P1075 with EC(50) values of 60-90 nM. We next tested whether P1075 causes rabbit cardiomyocytes to produce ROS in a K(ATP)-dependent fashion. Mitochondrial ROS production was monitored by the appearance of fluorescence as reduced MitoTracker Red was oxidized. P1075 (100 microM) led to a 44 +/- 9% increase in ROS generation (P < 0.001 vs. untreated cells), which was similar to the increase seen with 50 microM diazoxide, a selective mitoK(ATP) channel opener (49 +/- 9%, P < 0.001 vs. untreated cells). The effect of P1075 was equally potent at a concentration of 150 nM. The P1075-induced increase in ROS production was blocked by 50 microM glibenclamide (GLI), a non-selective K(ATP) blocker, and by 5-hydroxydecanoate (1 mM), a highly selective mitoK(ATP) blocker (-6 +/- 14% and +4 +/- 12%, respectively; P = n.s). In isolated rabbit hearts, P1075 (150 nM) markedly reduced infarct size compared to control animals (10.6 +/- 8.1% of the area at risk vs. 31.5 +/- 5.6%, P < 0.05). GLI (5 microM) as well as 5-hydroxydecanoate (200 microM) completely blocked P1075's anti-infarct effect (31.7 +/- 9.5% and 27.7 +/- 4.6% infarction, respectively; P = n.s. vs. untreated hearts). These data provide strong evidence that P1075 does open mitoK(ATP) channels and protects the ischemic rabbit heart in a mitoK(ATP)-dependent manner.  相似文献   

10.
OBJECTIVES: This study intended to assess the role of mitochondrial ATP-sensitive potassium (mitoK ATP) channels and the sequence of signal transduction with protein kinase C (PKC) and adenosine A1 receptors in rabbits. BACKGROUND: To our knowledge, the link between trigger receptors of preconditioning, PKC and mitoK ATP channels has not been examined in a whole heart model of infarction. METHODS: In the first series of experiments, myocardial infarction was induced in isolated buffer-perfused rabbit hearts by 30-min global ischemia and 2-h reperfusion. Infarct size in the left ventricle was determined by tetrazolium staining and expressed as a percentage of area at risk (i.e., the whole left ventricle) (%IS/AR). In the second series of experiments, mitochondria were isolated from the heart, and their respiratory function was examined using glutamate as a substrate. RESULTS: Pretreatment with R-phenylisopropyladenosine (R-PIA, 1 micromol/liter), an A1-receptor agonist, reduced %IS/AR from 49.8 +/- 6.5% to 13.4 +/- 2.9%. This protection was abolished by calphostin C, a PKC inhibitor, and by 5-hydroxydecanoate (5-HD), a selective inhibitor of mitoK ATP channels. A selective mitoK ATP channel opener, diazoxide (100 micromol/liter), mimicked the effect of R-PIA on infarct size (%IS/AR = 11.6 +/- 4.0%), and this protective effect was also abolished by 5-HD. However, calphostin C failed to block the infarct size-limiting effect of diazoxide. Neither calphostin C nor 5-HD alone modified %IS/AR. State III respiration (QO2) and respiratory control index (RCI) were reduced after 30 min of ischemia (QO2 = 147.3 +/- 5.3 vs. 108.5 +/- 12.3, RCI = 22.3 +/- 1.1 vs. 12.1 +/- 1.8, p < 0.05). This mitochondrial dysfunction was persistent after 10 min of reperfusion (QO2 = 96.1 +/- 15.5, RCI = 9.5 +/- 1.9). Diazoxide significantly attenuated the respiratory dysfunction after 30 min of ischemia (QO2 = 142.8 +/- 9.7, RCI = 16.2 +/- 0.8) and subsequent 10-min reperfusion (QO2 = 135.3 +/- 7.2, RCI = 19.1 +/- 0.8). CONCLUSIONS: These results suggest that mitoK ATP channels are downstream of PKC in the mechanism of infarct-size limitation by A1-receptor activation and that the anti-infarct tolerance afforded by opening of mitoK ATP channels is associated with preservation of mitochondrial function during ischemia/reperfusion.  相似文献   

11.
Reactive oxygen species (ROS) are key mediators in signal transduction of angiotensin II (Ang II). However, roles of vascular mitochondria, a major intracellular ROS source, in response to Ang II stimuli have not been elucidated. This study aimed to examine the involvement of mitochondria-derived ROS in the signaling pathway and the vasoconstrictor mechanism of Ang II. Using 5-hydroxydecanoate (5-HD; a specific inhibitor of mitochondrial ATP-sensitive potassium [mitoK(ATP)] channels) and tempol (a superoxide dismutase mimetic), the effects of Ang II and diazoxide (a mitoK(ATP) channel opener) were compared on redox-sensitive mitogen-activated protein (MAP) kinase activation in rat vascular smooth muscle cells (RVSMCs) in vitro and in rat aorta in vivo. Stimulation of RVSMCs by Ang II or diazoxide increased phosphorylated MAP kinases (ERK1/2, p38, and JNK), as well as superoxide production, which were then suppressed by 5-HD pretreatment in a dose-dependent manner, except for ERK1/2 activation by Ang II. The same events were reproduced in rat aorta in vivo. Ang II-like diazoxide depolarized the mitochondrial membrane potential (DeltaPsi(M)) of RVSMCs determined by JC-1 fluorescence, which was inhibited by 5-HD. 5-HD did not modulate Ang II-induced calcium mobilization in RVSMCs and did not affect on the vasoconstrictor effect in either acute or chronic phases of Ang II-induced hypertension. These results reveal that Ang II stimulates mitochondrial ROS production through the opening of mitoK(ATP) channels in the vasculature-like diazoxide, leading to reduction of DeltaPsi(M) and redox-sensitive activation of MAP kinase; however, generated ROS from mitochondria do not contribute to Ang II-induced vasoconstriction.  相似文献   

12.
The mitochondrial ATP-sensitive K(+) (mitoK(ATP)) channel plays a central role in protection of cardiac and neuronal cells against ischemia and apoptosis, but its molecular structure is unknown. Succinate dehydrogenase (SDH) is inhibited by mitoK(ATP) activators, fueling the contrary view that SDH, rather than mitoK(ATP), is the target of cardioprotective drugs. Here, we report that SDH forms part of mitoK(ATP) functionally and structurally. Four mitochondrial proteins [mitochondrial ATP-binding cassette protein 1 (mABC1), phosphate carrier, adenine nucleotide translocator, and ATP synthase] associate with SDH. A purified IM fraction containing these proteins was reconstituted into proteoliposomes and lipid bilayers and shown to confer mitoK(ATP) channel activity. This channel activity is sensitive not only to mitoK(ATP) activators and blockers but also to SDH inhibitors. These results reconcile the controversy over the basis of ischemic preconditioning by demonstrating that SDH is a component of mitoK(ATP) as part of a macromolecular supercomplex. The findings also provide a tangible clue as to the structural basis of mitoK(ATP) channels.  相似文献   

13.
Ischemic and pharmacological preconditioning can be triggered by an intracellular signaling pathway in which Gi-coupled surface receptors activate a cascade including phosphatidylinositol 3-kinase, endothelial nitric oxide synthase, guanylyl cyclase, and protein kinase G (PKG). Activated PKG opens mitochondrial KATP channels (mitoKATP) which increase production of reactive oxygen species. Steps between PKG and mitoKATP opening are unknown. We describe effects of adding purified PKG and cGMP on K+ transport in isolated mitochondria. Light scattering and respiration measurements indicate PKG induces opening of mitoKATP similar to KATP channel openers like diazoxide and cromakalim in heart, liver, and brain mitochondria. This effect was blocked by mitoKATP inhibitors 5-hydroxydecanoate, tetraphenylphosphonium, and glibenclamide, PKG-selective inhibitor KT5823, and protein kinase C (PKC) inhibitors chelerythrine, Ro318220, and PKC-epsilon peptide antagonist epsilonV(1-2). MitoKATP are opened by the PKC activator 12-phorbol 13-myristate acetate. We conclude PKG is the terminal cytosolic component of the trigger pathway; it transmits the cardioprotective signal from cytosol to inner mitochondrial membrane by a pathway that includes PKC-epsilon.  相似文献   

14.
Rationale: Activation of the mitochondrial ATP-sensitive potassium channel (mitoK(ATP)) has been implicated in the mechanism of cardiac ischemic preconditioning, yet its molecular composition is unknown. Objective: To use an unbiased proteomic analysis of the mitochondrial inner membrane to identify the mitochondrial K(+) channel underlying mitoK(ATP). Methods and Results: Mass spectrometric analysis was used to identify KCNJ1(ROMK) in purified bovine heart mitochondrial inner membrane and ROMK mRNA was confirmed to be present in neonatal rat ventricular myocytes and adult hearts. ROMK2, a short form of the channel, is shown to contain an N-terminal mitochondrial targeting signal, and a full-length epitope-tagged ROMK2 colocalizes with mitochondrial ATP synthase β. The high-affinity ROMK toxin, tertiapin Q, inhibits mitoK(ATP) activity in isolated mitochondria and in digitonin-permeabilized cells. Moreover, short hairpin RNA-mediated knockdown of ROMK inhibits the ATP-sensitive, diazoxide-activated component of mitochondrial thallium uptake. Finally, the heart-derived cell line, H9C2, is protected from cell death stimuli by stable ROMK2 overexpression, whereas knockdown of the native ROMK exacerbates cell death. Conclusions: The findings support ROMK as the pore-forming subunit of the cytoprotective mitoK(ATP) channel.  相似文献   

15.
Nitric oxide (NO) has been implicated in the "second-window" of ischemic preconditioning (PC). However, the identity of the end effector after initiation of preconditioning by NO is not known. It is likely that NO is involved in opening of mitochondrial ATP-sensitive potassium (mitoK(ATP)) channels. We hypothesized that NO is an important trigger for the opening of mitoK(ATP) channels in the late phase of preconditioning and inducible nitric oxide synthase (iNOS) up-regulation via NF kappa B plays a critical role in diazoxide-induced cardioprotection. To examine this, diazoxide (7 mg/kg) was administered to wild-type (WT) mice and mice lacking the gene 24 hours before 40 minutes of global ischemia. Hearts were perfused in a Langendorff mode and effects of activation of mitoK(ATP) channel and other interventions on functional, biochemical and pathological changes in ischemic hearts were assessed. In hearts from WT mice treated diazoxide, left-ventricular-developed pressure, end-diastolic pressure and coronary flow were significantly improved after ischemia/reperfusion (I/R); lactate dehydrogenase (LDH) release was also significantly decreased, while ATP contents were significantly higher. Administration of 5-HD, a specific blocker of mitoK(ATP) channel or l -NAME, an inhibitor of iNOS before I/R, during diazoxide-pretreatment completely blocked the late cardioprotection against ischemia. Late cardioprotection was also blocked by inhibition of either PKC- delta by rottlerin or NF kappa B by DDTC before diazoxide pretreatment. Diazoxide pretreatment significantly increased nuclear translocation of p65 which was blocked by protein kinase C (PKC) or nitric oxide synthase (NOS) inhibition. Diazoxide was totally inefffective in iNOS knockout mice. These results suggest that diazoxide activates NF kappa B via PKC signaling pathway and that leads to iNOS up-regulation after 24 hours. NO which is generated upon ischemic stress triggers the opening of mitoK(ATP)channel as an end effector of cardioprotection during late PC.  相似文献   

16.
To obtain insight into the role of the mitochondrial ATP-sensitive K(+) (mitoK(ATP)) channel in ischemic preconditioning (PC), we aimed to clarify the mitoK(ATP) channel-dependent phase of PC in two PC protocols with different intervals between PC ischemia and an index ischemia. The possible contribution of mitoK(ATP) channel opening to protein kinase C activation in PC was also examined by Western blotting. Myocardial infarction was induced by 30-min coronary occlusion/2-h reperfusion in rat hearts in situ, and infarct size was expressed as a percentage of the area at risk (% IS/AR). PC was performed with 2 episodes of 5-min ischemia, and each heart was subjected to 30-min ischemia either 5 min or 20 min after PC. At 5 min after PC, both PKC-delta and -epsilon were translocated and the myocardium was protected against infarction (% IS/AR = 28.3 +/- 2.7 % vs. 72.7 +/- 2.2 in controls p < 0.05). Pretreatment with a selective mitoK(ATP) channel blocker, 5-hydroxydecanoate (5-HD, 10 mg/kg), abolished the cardioprotection but not PKC translocation by PC. At 20 min after PC, PKC translocation remained at the same level as that 5 min after PC, but the anti-infarct tolerance was attenuated (%IS/AR = 43.5 +/- 4.7 %). Injection of 5-HD after PC did not affect anti-infarct tolerance at 5 min after PC but abolished the protection at 20 min after PC without any effects on PKC. These results suggest that the mitoK(ATP) channel plays a role in triggering of PC in a PKC-independent manner and that the role of the mitoK(ATP) channel as a mediator of protection is detectable after, but not before, the PC effect starts to decay without a change in the level of PKC translocation in the rat heart.  相似文献   

17.
OBJECTIVE: Mitochondrial calcium-activated K(+) (mitoK(Ca)) channels have been described as channels that are activated by Ca(2+), inner mitochondrial membrane depolarization and drugs such as NS-1619. NS-1619 is cardioprotective, leading to the assumption that this effect is related to the opening of mitoK(Ca) channels. Here, we show several weaknesses in this hypothesis. METHODS: Isolated mitochondria from rat hearts were tested for evidence of mitoK(Ca) activity by analyzing functional parameters in K(+)-rich and K(+)-free media. RESULTS: NS-1619 promoted mitochondrial depolarization both in K(+)-rich and K(+)-free media. Respiratory rate increments were also seen in the presence of NS-1619 for both media. In parallel, NS-1619 promoted respiratory inhibition, as evidenced by respiratory measurements in state 3. Mitochondrial volume measurements conducted using light scattering showed that NS-1619 led to swelling, in a manner unaltered by inhibitors of mitoK(Ca) channels, antagonists of adenosine triphosphate-sensitive potassium channels or inhibitors of the permeability transition. Swelling was also maintained when K(+) in the media was substituted with tetraethylammonium (TEA(+)), which is not transported by any known K(+) carrier. Electron microscopy experiments gave support to the idea that NS-1619-induced mitochondrial swelling took place in the absence of K(+). In addition to testing the pharmacological effects of NS-1619, we attempted, unsuccessfully, to promote mitoK(Ca) activity by altering Ca(2+) concentrations in the medium and inducing mitochondrial uncoupling. CONCLUSION: Our data indicate that NS-1619 promotes non-selective permeabilization of the inner mitochondrial membrane to ions, in addition to partial respiratory inhibition. Furthermore, we found no specific K(+) transport in isolated heart mitochondria compatible with mitoK(Ca) opening, whether by pharmacological or physiological stimuli. Our results indicate that NS-1619 has extensive mitochondrial effects unrelated to mitoK(Ca) and suggest that tissue protection mediated by NS-1619 may occur through mechanisms other than activation of these channels.  相似文献   

18.
Although activation of protein kinase C (PKC) epsilon and mitogen-activated protein kinases (MAPKs) are known to play crucial roles in the manifestation of cardioprotection, the spatial organization of PKCepsilon signaling modules in na?ve and protected myocardium remains unknown. Based on evidence that mitochondria are key mediators of the cardioprotective signal, we hypothesized that PKCepsilon and MAPKs interact, and that they form functional signaling modules in mitochondria during cardioprotection. Both immunoblotting and immunofluorescent staining demonstrated that PKCepsilon, ERKs, JNKs, and p38 MAPK co-localized with cardiac mitochondria. Moreover, transgenic activation of PKCepsilon greatly increased mitochondrial PKCepsilon expression and activity, which was concomitant with increased mitochondrial interaction of PKCepsilon with ERKs, JNKs, and p38 as determined by co-immunoprecipitation. These complex formations appeared to be independent of PKCepsilon activity, as the interactions were also observed in mice expressing inactive PKCepsilon. However, although both active and inactive PKCepsilon bound to all three MAPKs, increased phosphorylation of mitochondrial ERKs was only observed in mice expressing active PKCepsilon but not in mice expressing inactive PKCepsilon. Examination of potential downstream targets of mitochondrial PKCepsilon-ERK signaling modules revealed that phosphorylation of the pro-apoptotic protein Bad was elevated in mitochondria. Together, these data show that PKCepsilon forms subcellular-targeted signaling modules with ERKs, leading to the activation of mitochondrial ERKs. Furthermore, formation of mitochondrial PKCepsilon-ERK modules appears to play a role in PKCepsilon-mediated cardioprotection, in part by the phosphorylation and inactivation of Bad.  相似文献   

19.
ATP-sensitive K(+) channels (K(ATP)) contribute to the regulation of tone in vascular smooth muscle cells. We determined the effects of protein kinase C (PKC) activation on the nucleoside diphosphate-activated (K(NDP)) subtype of vascular smooth muscle K(ATP) channel. Phorbol 12,13-dibutyrate (PdBu) and angiotensin II inhibited K(NDP) activity of C-A patches of rabbit portal vein (PV) myocytes, but an inactive phorbol ester was without effect, and pretreatment with PKC inhibitor prevented the actions of PdBu. Constitutively active PKC inhibited K(NDP) in I-O patches but was without effect in the presence of a specific peptide inhibitor of PKC. PdBu increased the duration of a long-lived interburst closed state but was without effect on burst duration or intraburst kinetics. PdBu treatment inhibited K(NDP), but not a 70-pS K(ATP) channel of rat PV. The results indicate that the K(NDP) subtype of vascular smooth muscle K(ATP) channel is inhibited by activation of PKC. Control of K(NDP) activity by intracellular signaling cascades involving PKC may, therefore, contribute to control of tone and arterial diameter by vasoconstrictors.  相似文献   

20.
Nicorandil has been shown to inhibit myocyte apoptosis by opening of mitochondrial ATP-sensitive potassium (mitoK(ATP)) channels and nitrate-like effect against oxidative stress. However, the detailed mechanism of nicorandil-mediated cardioprotection under hypoxic conditions remains to be largely unknown. The present study examined whether nicorandil can inhibit apoptosis via regulation of Bcl-2 family proteins in hypoxic myocytes. Neonatal rat cardiac myocytes were exposed to hypoxia for 7 hours. Hypoxia-induced myocyte apoptosis (13.9+/-0.9%) under glucose-rich conditions. Myocyte apoptosis was accompanied by loss of mitochondrial membrane potential (Deltapsi(m)), cytochrome c release from mitochondria into cytosol, and activation of caspase-3. Hypoxia also significantly increased Bax and decreased Bcl-2 mRNA and protein expression, thereby increasing Bax/Bcl-2 ratio. Nicorandil 100 micromol/l significantly decreased the percentage of apoptotic myocytes (7.2+/-0.5%) by inhibiting loss of Deltapsi(m) and translocation of cytochrome c. These effects of nicorandil were partially but significantly inhibited by cotreatment of either 500 micromol/l 5-hydroxydecanoate, a selective mitoK(ATP) channel antagonist, or 10 micromol/l 1H-[1,2,4]oxidazolo[4,3-a]quinoxalin-1-one (ODQ), an inhibitor of soluble guanylate cyclase. Moreover, nicorandil significantly inhibited the hypoxia-induced changes in Bax and Bcl-2 expression, and concomitant increased Bax and decreased Bcl-2 immunoreactivity in mitochondria. These effects of nicorandil in Bax and Bcl-2 expression were significantly blunted by cotreatment of ODQ and 5-HD, respectively. Cotreatment of KT5823, an inhibitor of protein kinase G, significantly blocked the effect of nicorandil on Bax expression and 8-bromo-cyclic guanosine 3',5' monophosphate (8-bromo-cGMP), a cGMP analog, mimicked the effect of nicorandil on Bax expression. The present study demonstrates that nicorandil regulates Bcl-2 family proteins via opening of mitoK(ATP) channels and nitric oxide-cGMP signaling and inhibits hypoxia-induced mitochondrial death pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号