首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In recent years, novel bacterial topoisomerase inhibitors (NBTIs) have been developed as future antibacterials for treating multidrug-resistant bacterial infections. A series of dioxane-linked NBTIs with an amide moiety has been synthesized and evaluated. Compound 3 inhibits DNA gyrase, induces the formation of single strand breaks to bacterial DNA, and achieves potent antibacterial activity against a variety of Gram-positive pathogens, including methicillin-resistant Staphylococcus aureus (MRSA). Optimization of this series of analogues led to the discovery of a subseries of compounds (22–25) with more potent anti-MRSA activity, dual inhibition of DNA gyrase and topoisomerase IV, and the ability to induce double strand breaks through inhibition of S. aureus DNA gyrase.  相似文献   

2.
Viral mRNA cap methyltransferases (MTases) are emerging targets for the development of broad-spectrum antiviral agents. In this work, we designed potential SARS-CoV-2 MTase Nsp14 and Nsp16 inhibitors by using bioisosteric substitution of the sulfonium and amino acid substructures of the cosubstrate S-adenosylmethionine (SAM), which serves as the methyl donor in the enzymatic reaction. The synthetically accessible target structures were prioritized using molecular docking. Testing of the inhibitory activity of the synthesized compounds showed nanomolar to submicromolar IC50 values for five compounds. To evaluate selectivity, enzymatic inhibition of the human glycine N-methyltransferase involved in cellular SAM/SAH ratio regulation was also determined, which indicated that the discovered compounds are nonselective inhibitors of the studied MTases with slight selectivity for Nsp16. No cytotoxic effects were observed; however, this is most likely a result of the poor cell permeability of all evaluated compounds.  相似文献   

3.
Potent JNK3 isoform selective inhibitors were developed from a thiophenyl-pyrazolourea scaffold. Through structure activity relationship (SAR) studies utilizing enzymatic and cell-based assays, and in vitro and in vivo drug metabolism and pharmacokinetic (DMPK) studies, potent and highly selective JNK3 inhibitors with oral bioavailability and brain penetrant capability were developed. Inhibitor 17 was a potent and isoform selective JNK3 inhibitor (IC50 = 35 nM), had significant inhibition to only JNK3 in a panel profiling of 374 wild-type kinases, had high potency in functional cell-based assays, had high stability in human liver microsome (t1/2 = 66 min) and a clean CYP-450 inhibition profile, and was orally bioavailable and brain penetrant. Moreover, cocrystal structures of compounds 17 and 27 in human JNK3 were solved at 1.84 Å, which showed that these JNK3 isoform selective inhibitors bound to the ATP pocket, had interactions in both hydrophobic pocket-I and hydrophobic pocket-II.  相似文献   

4.
SIRT1, a member of the sirtuin family, catalyzes the deacetylation of proteins with the transformation of NAD+ into nicotinamide and 2′-O-acetyl-ADP-ribose. Selective SIRT1/2 inhibitors have potential application in the chemotherapy of colorectal carcinoma, prostate cancer, and myelogenous leukemia. Here we identified novel SIRT1 inhibitors with the scaffold of 5-benzylidene-2-phenyl-1,3-dioxane-4,6-dione. The most potent inhibitor 12n displayed an IC50 of 460 nM and a selectivity for SIRT1 over SIRT2, SIRT3, and SIRT5 of 113.5-, 254.3-, and 10.83-fold, respectively. It did not affect the activity of SIRT6. To elucidate the inhibitory mechanism, we determined the inhibition type of the inhibitor by enzyme kinetic analysis, showing that the inhibitor was competitive to the acetyl peptide and noncompetitive to NAD+. Further, the interaction of the inhibitor in SIRT1 was studied by using molecular docking, which was validated by the structure–activity relationship analysis of the inhibitors and the site-directed mutagenesis of SIRT1. Consistent with the in vitro assays, the inhibitors increased the acetylation level of p53 in a concentration-dependent manner in cells.  相似文献   

5.
Competitive inhibitors of galactocerebrosidase (GALC) could be candidates for pharmacological chaperone therapy of patients with Krabbe disease. The known and selective nortropane-type iminosugar galacto-noeurostegine has been found to competitively inhibit GALC with Ki = 7 μM at pH 4.6, which is 330-fold more potent than the analogous deoxynoeurostegine. It was shown through X-ray protein crystallography that galacto-noeurostegine binds to the active site of GALC in its bicyclic form.  相似文献   

6.
Hematopoietic progenitor kinase 1 (HPK1), a serine/threonine kinase, is a negative immune regulator of T cell receptor (TCR) and B cell signaling that is primarily expressed in hematopoietic cells. Accordingly, it has been reported that HPK1 loss-of-function in HPK1 kinase-dead syngeneic mouse models shows enhanced T cell signaling and cytokine production as well as tumor growth inhibition in vivo, supporting its value as an immunotherapeutic target. Herein, we present the structurally enabled discovery of novel, potent, and selective diaminopyrimidine carboxamide HPK1 inhibitors. The key discovery of a carboxamide moiety was essential for enhanced enzyme inhibitory potency and kinome selectivity as well as sustained elevation of cellular IL-2 production across a titration range in human peripheral blood mononuclear cells. The elucidation of structure–activity relationships using various pendant amino ring systems allowed for the identification of several small molecule type-I inhibitors with promising in vitro profiles.  相似文献   

7.
Fibroblast growth factor receptors (FGFR) 2 and 3 have been established as drivers of numerous types of cancer with multiple drugs approved or entering late stage clinical trials. A limitation of current inhibitors is vulnerability to gatekeeper resistance mutations. Using a combination of targeted high-throughput screening and structure-based drug design, we have developed a series of aminopyrazole based FGFR inhibitors that covalently target a cysteine residue on the P-loop of the kinase. The inhibitors show excellent activity against the wild-type and gatekeeper mutant versions of the enzymes. Further optimization using SAR analysis and structure-based drug design led to analogues with improved potency and drug metabolism and pharmacokinetics properties.  相似文献   

8.
Structure-based optimization of a set of aryl urea RAF inhibitors has led to the identification of Type II pan-RAF inhibitor GNE-9815 (7), which features a unique pyrido[2,3-d]pyridazin-8(7H)-one hinge-binding motif. With minimal polar hinge contacts, the pyridopyridazinone hinge binder moiety affords exquisite kinase selectivity in a lipophilic efficient manner. The improved physicochemical properties of GNE-9815 provided a path for oral dosing without enabling formulations. In vivo evaluation of GNE-9815 in combination with the MEK inhibitor cobimetinib demonstrated synergistic MAPK pathway modulation in an HCT116 xenograft mouse model. To the best of our knowledge, GNE-9815 is among the most highly kinase-selective RAF inhibitors reported to date.  相似文献   

9.
Psammaplin A (PsA) is a bromotyrosine disulfide dimer with histone deacetylase (HDAC) inhibition and acts through reduced monomer PsA-SH. We studied the connection of HDAC inhibition, cell growth inhibition, and apoptosis induction of PsA-SH by modifying the −SH group with deletion (6a) or replacement with hydroxamic acid (10b) or benzamide (12g). PsA-SH inhibits HDAC1/2/3 and 6a loses the HDAC inhibition ability. 10b inhibits HDAC1/2/3/6 while 12g shows selective inhibition of HDAC3. PsA-SH and 10b, but neither 6a nor 12g, induce apoptosis in human leukemia HL-60 cells associated with increased acetylation of Histone H3. PsA-SH and 10b inhibit growth of several solid tumor cell lines in vitro and Lewis lung cancer cell growth in vivo. PsA-SH is a simple scaffold for developing selective HDAC inhibitors and induces apoptosis through inhibiting HDAC1/2.  相似文献   

10.
Phosphoinositide 3-kinases (PI3Ks) are a family of enzymes that control a wide variety of cellular functions such as cell growth, proliferation, differentiation, motility, survival, and intracellular trafficking. PI3Kγ plays a critical role in mediating leukocyte chemotaxis as well as mast cell degranulation, making it a potentially interesting target for autoimmune and inflammatory diseases. We previously disclosed a novel series of PI3Kγ inhibitors derived from a benzothiazole core. The truncation of the benzothiazole core led to the discovery of a structurally diverse alkynyl thiazole series which displayed high PI3Kγ potency and subtype selectivity. Further medicinal chemistry optimization of the alkynyl thiazole series led to identification of compounds such as 14 and 32, highly potent, subtype selective, and CNS penetrant PI3Kγ inhibitors. Compound 14 showed robust inhibition of PI3Kγ mediated neutrophil migration in vivo.  相似文献   

11.
Mycophenolic acid (MPA) and its morpholino ester prodrug mycophenolate mofetil (MMF) are widely used in solid organ transplantation. These drugs prevent rejection due to their potent inhibition of inosine-5′-monophosphate dehydrogenase (IMPDH), an enzyme vital for lymphocyte proliferation. As a strategy to provide localized immunosuppression in cell transplantation, four mycophenolic acid prodrugs designed to release MPA by two distinct mechanisms were synthesized and characterized. A nitrobenzyl ether prodrug was effectively converted to MPA upon exposure to bacterial nitroreductase, while a propargyl ether was converted to the active drug by immobilized Pd0 nanoparticles. In vitro, both prodrugs were inactive against IMPDH and exhibited reduced toxicity relative to the active drug, suggesting their potential for providing localized immunosuppression.  相似文献   

12.
We report herein the discovery of quinazolindiones as potent and selective tankyrase inhibitors. Elucidation of the structure–activity relationship of the lead compound 1g led to truncated analogues that have good potency in cells, pharmacokinetic (PK) properties, and excellent selectivity. Compound 21 exhibited excellent potencies in cells and proliferation studies, good selectivity, in vitro activities, and an excellent PK profile. Compound 21 also inhibited H292 xenograft tumor growth in nude mice. The synthesis, biological, pharmacokinetic, in vivo efficacy studies, and safety profiles of compounds are presented.  相似文献   

13.
14.
Furin plays an important role in various pathological states, especially in bacterial and viral infections. A detailed understanding of the structural requirements for inhibitors targeting this enzyme is crucial to develop new therapeutic strategies in infectious diseases, including an urgent unmet need for SARS-CoV-2 infection. Previously, we have identified a potent furin inhibitor, peptide Ac-RARRRKKRT-NH2 (CF1), based on the highly pathogenic avian influenza hemagglutinin. The goal of this study was to determine how its N-terminal part (the P8–P5 positions) affects its activity profile. To do so, the positional-scanning libraries of individual peptides modified at the selected positions with natural amino acids were generated. Subsequently, the best substitutions were combined together and/or replaced by unnatural residues to expand our investigations. The results reveal that the affinity of CF1 can be improved (2–2.5-fold) by substituting its P5 position with the small hydrophobic residues (Ile or Val) or a basic Lys.  相似文献   

15.
The botulinum neurotoxin, the caustic agent that causes botulism, is the most lethal toxin known to man. The neurotoxin composed of a heavy chain (HC) and a light chain (LC) enters neurons and cleaves SNARE proteins, leading to flaccid paralysis, which, in severe occurrences, can result in death. A therapeutic target for botulinum neurotoxin (BoNT) intoxication is the LC, a zinc metalloprotease that directly cleaves SNARE proteins. Herein we report dipeptides containing an aromatic connected to the N-terminus via a sulfonamide and a hydroxamic acid at the C-terminus as BoNT/A LC inhibitors. On the basis of a structure–activity relationship study, 33 was discovered to inhibit the BoNT/A LC with an IC50 of 21 nM. X-ray crystallography analysis of 30 and 33 revealed that the dipeptides inhibit through a competitive mechanism and identified several key intermolecular interactions.  相似文献   

16.
Herein we report the discovery of 2,4-1H-imidazole carboxamides as novel, biochemically potent, and kinome selective inhibitors of transforming growth factor β-activated kinase 1 (TAK1). The target was subjected to a DNA-encoded chemical library (DECL) screen. After hit analysis a cluster of compounds was identified, which was based on a central pyrrole-2,4-1H-dicarboxamide scaffold, showing remarkable kinome selectivity. A scaffold-hop to the corresponding imidazole resulted in increased biochemical potency. Next, X-ray crystallography revealed a distinct binding mode compared to other TAK1 inhibitors. A benzylamide was found in a perpendicular orientation with respect to the core hinge-binding imidazole. Additionally, an unusual amide flip was observed in the kinase hinge region. Using structure-based drug design (SBDD), key substitutions at the pyrrolidine amide and the glycine resulted in a significant increase in biochemical potency.  相似文献   

17.
18.
Bruton’s tyrosine kinase (BTK) is a cytoplasmic tyrosine kinase that plays a critical role in the activation of B cells, macrophages, and osteoclasts. Given the key role of these cell types in the pathology of autoimmune disorders, BTK inhibitors have the potential to improve treatment outcomes in multiple diseases. Herein, we report the discovery and characterization of a novel potent and selective covalent 4-oxo-4,5-dihydro-3H-1-thia-3,5,8-triazaacenaphthylene-2-carboxamide BTK inhibitor chemotype. Compound 27 irreversibly inhibits BTK by targeting a noncatalytic cysteine residue (Cys481) for covalent bond formation. Compound 27 is characterized by selectivity for BTK, potent in vivo BTK occupancy that is sustained after it is cleared from systemic circulation, and dose-dependent efficacy at reducing joint inflammation in a rat collagen-induced arthritis model.  相似文献   

19.
Historically, modulation of transforming growth factor β (TGF-β) signaling has been deemed a rational strategy to treat many disorders, though few successful examples have been reported to date. This difficulty could be partially attributed to the challenges of achieving good specificity over many closely related enzymes that are implicated in distinct phenotypes in organ development and in tissue homeostasis. Recently, fresolimumab and disitertide, two peptidic TGF-β blockers, demonstrated significant therapeutic effects toward human skin fibrosis. Therefore, the selective blockage of TGF-β signaling assures a viable treatment option for fibrotic skin disorders such as systemic sclerosis (SSc). In this report, we disclose selective TGF-β type II receptor (TGF-βRII) inhibitors that exhibited high functional selectivity in cell-based assays. The representative compound 29 attenuated collagen type I alpha 1 chain (COL1A1) expression in a mouse fibrosis model, which suggests that selective inhibition of TGF-βRII-dependent signaling could be a new treatment for fibrotic disorders.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号