首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PURPOSE OF REVIEW: To describe emerging understanding of fibroblast growth factor 23 (FGF23) - a bone-derived hormone that inhibits phosphate reabsorption and calcitriol production by kidney and participates as the principle phosphaturic factor in a bone-kidney axis coordinating systemic phosphate homeostasis and bone mineralization. RECENT FINDINGS: FGF23 (a circulating factor made by osteocytes in bone) inhibits phosphate reabsorption and 1,25(OH)2D production by kidney. Physiologically, FGF23 is a counter-regulatory phosphaturic hormone for vitamin D and coordinates systemic phosphate homeostasis with skeletal mineralization. Pathologically, high circulating FGF23 levels cause hypophosphatemia, decreased 1,25(OH)2D production, elevated parathyroid hormone and rickets/osteomalacia. FGF23 mutations impairing its degradation cause autosomal dominant hypophosphatemic rickets. Respective loss-of-function mutations of osteocyte gene products DMP1 and Phex cause autosomal recessive hypophosphatemic rickets and X-linked hypophosphatemic rickets, initiating increased FGF23 production. Low FGF23 levels lead to hyperphosphatemia, elevated 1,25(OH)2D, and soft-tissue calcifications. FGF23 is markedly increased in chronic renal disease, but its role remains undefined. SUMMARY: FGF23 discovery has uncovered primary regulatory pathways and new systems biology governing bone mineralization, vitamin D metabolism, parathyroid gland function, and renal phosphate handling. FGF23 assessment will become important in diagnosing hypophosphatemic and hyperphosphatemic disorders, for which pharmacological regulation of FGF23 levels may provide novel treatments.  相似文献   

2.
How fibroblast growth factor 23 works   总被引:2,自引:0,他引:2  
There is a discontinuum of hereditary and acquired disorders of phosphate homeostasis that are caused by either high or low circulating levels of the novel phosphaturic hormone fibroblastic growth factor 23 (FGF23). Disorders that are caused by high circulating levels of FGF23 are characterized by hypophosphatemia, decreased production of 1,25-dihydroxyvitamin D, and rickets/osteomalacia. On the other end of the spectrum are disorders that are caused by low circulating levels of FGF23, which are characterized by hyperphosphatemia, elevated production of 1,25-dihydroxyvitamin D, soft tissue calcifications, and hyperostosis. Knowledge of the genetic basis of these hereditary disorders of phosphate homeostasis and studies of their mouse homologues have uncovered a bone-kidney axis and new systems biology that govern bone mineralization, vitamin D metabolism, parathyroid gland function, and renal phosphate handling. Further understanding of this primary phosphate homeostatic pathway has the potential to have a significant impact on the diagnosis and treatment of disorders of bone and mineral metabolism.  相似文献   

3.
4.
5.
X‐linked hypophosphatemia (XLH) is characterized by impaired renal tubular reabsorption of phosphate owing to increased circulating FGF23 levels, resulting in rickets in growing children and impaired bone mineralization. Increased FGF23 decreases renal brush border membrane sodium‐dependent phosphate transporter IIa (Npt2a) causing renal phosphate wasting, impairs 1‐α hydroxylation of 25‐hydroxyvitamin D, and induces the vitamin D 24‐hydroxylase, leading to inappropriately low circulating levels of 1,25‐dihydroxyvitamin D (1,25D). The goal of therapy is prevention of rickets and improvement of growth in children by phosphate and 1,25D supplementation. However, this therapy is often complicated by hypercalcemia and nephrocalcinosis and does not always prevent hyperparathyroidism. To determine if 1,25D or blocking FGF23 action can improve the skeletal phenotype without phosphate supplementation, mice with XLH (Hyp) were treated with daily 1,25D repletion, FGF23 antibodies (FGF23Ab), or biweekly high‐dose 1,25D from d2 to d75 without supplemental phosphate. All treatments maintained normocalcemia, increased serum phosphate, and normalized parathyroid hormone levels. They also prevented the loss of Npt2a, α‐Klotho, and pERK1/2 immunoreactivity observed in the kidneys of untreated Hyp mice. Daily treatment with 1,25D decreased urine phosphate losses despite a marked increase in bone FGF23 mRNA and in circulating FGF23 levels. Daily 1,25D was more effective than other treatments in normalizing the growth plate and metaphyseal organization. In addition to being the only therapy that normalized lumbar vertebral height and body weight, daily 1,25D therapy normalized bone geometry and was more effective than FGF23Ab in improving trabecular bone structure. Daily 1,25D and FGF23Ab improved cortical microarchitecture and whole‐bone biomechanical properties more so than biweekly 1,25D. Thus, monotherapy with 1,25D improves growth, skeletal microarchitecture, and bone strength in the absence of phosphate supplementation despite enhancing FGF23 expression, demonstrating that 1,25D has direct beneficial effects on the skeleton in XLH, independent of its role in phosphate homeostasis. © 2016 American Society for Bone and Mineral Research.  相似文献   

6.
Fibroblast growth factor (FGF)-23 is probably the most important regulator of serum phosphate and calcitriol (1,25(OH)?D?) levels. It is secreted by osteocytes and osteoblasts in response to oral phosphate loading or increased serum 1,25(OH)?D? levels. In human chronic kidney disease (CKD), plasma FGF-23 appears to be a sensitive biomarker of abnormal renal phosphate handling, as FGF-23 levels increase during early stages of kidney malfunction. In humans and animals with CKD, elevated FGF-23 levels increase fractional phosphate excretion, reduce serum phosphate levels, and reduce 1α-hydroxylase activity, which reduces 1,25(OH)?D? formation thereby increasing parathyroid hormone (PTH) secretion. FGF-23 thus has a key adaptive role in maintaining normophosphatemia. Plasma FGF-23 continues to increase as CKD progresses, increasing by orders of magnitude in end-stage renal disease. At the same time, responsiveness to FGF-23 declines as the number of intact nephrons declines, which is associated with reduced expression of Klotho, the co-receptor required for FGF-23 signaling. In late CKD, FGF-23 cannot reduce serum phosphate levels, and abnormally high plasma FGF-23 concentrations appear to exert unwarranted off-target effects, including left ventricular hypertrophy, faster CKD progression, and premature mortality. Lowering serum phosphate levels through the use of oral phosphate binders and/or long-acting PTH agents may reduce FGF-23 levels in early CKD stages, thereby limiting off-target effects, which may improve patient outcomes.  相似文献   

7.
FGF23: its role in renal bone disease   总被引:2,自引:0,他引:2  
Fibroblast growth factor 23 (FGF23) is a recently characterized peptide hormone produced mainly in the bone. It is secreted in response to dietary phosphorus load, and its main function is the promotion of urinary phosphate excretion and the suppression of active vitamin D (1,25D) production in the kidney. As such, FGF23 plays an important role in the maintenance of systemic phosphate homeostasis. In the advanced stages of chronic kidney disease (CKD), the kidney cannot excrete a phosphate load even in the presence of high levels of FGF23. This results in both hyperphosphatemia and a low level of 1,25D that stimulates the secretion of parathyroid hormone (PTH), leading to the development of secondary hyperparathyroidism. In chronic dialysis patients without residual renal function, FGF23 levels become extremely high due to stimulation by vitamin D therapy as well as by high levels of serum phosphate and PTH. Recent investigations have demonstrated that serum FGF23 level can be a useful marker for the prediction of the future development of refractory hyperparathyroidism and the response to vitamin D therapy in dialysis patients. In addition, putative protective roles of FGF23 against calcification have also been speculated on. Further elucidation of the mechanisms of FGF23 action will be needed to understand the various roles of FGF23 in CKD-Mineral and Bone Disorder (CKD-MBD).  相似文献   

8.
Fibroblastic growth factor 23 (FGF23) regulates renal phosphate reabsorption and 1alpha-hydroxylase activity. Ablation of FGF23 results in elevated serum phosphate, calcium, and 1,25-dihydroxyvitamin D3 [1,25(OH)(2)D] levels; vascular calcifications; and early death. For determination of the independent roles of hyperphosphatemia and excess vitamin D activity on the observed phenotypic abnormalities, FGF23 null mice were fed a phosphate- or vitamin D-deficient diet. The phosphate-deficient diet corrected the hyperphosphatemia, prevented vascular calcifications, and rescued the lethal phenotype in FGF23 null mice, despite persistent elevations of serum 1,25(OH)(2)D and calcium levels. This suggests that hyperphosphatemia, rather than excessive vitamin D activity, is the major stimulus for vascular calcifications and contributes to the increased mortality in the FGF23-null mouse model. In contrast, the vitamin D-deficient diet failed to correct either the hyperphosphatemia or the vascular calcifications in FGF23 null mice, indicating that FGF23 independently regulates renal phosphate excretion and that elevations in 1,25(OH)(2)D and calcium are not sufficient to induce vascular calcifications in the absence of hyperphosphatemia. The vitamin D-deficient diet also improved survival in FGF23 null mice in association with normalization of 1,25(OH)(2)D and calcium levels and despite persistent hyperphosphatemia and vascular calcifications, indicating that excessive vitamin D activity can also have adverse effects in the presence of hyperphosphatemia and absence of FGF23. Understanding the independent and context-dependent interactions between hyperphosphatemia and excessive vitamin D activity, as well as vascular calcifications and mortality in FGF23 null mice, may ultimately provide important insights into the management of clinical disorders of hyperphosphatemia and excess vitamin D activity.  相似文献   

9.
Deficiency of 1,25-dihydroxyvitamin D [1,25(OH)(2)D] and excessive fibroblast growth factor (FGF23) are suggested to be associated with increased mortality in patients with chronic kidney disease (CKD). Generally, 24-hydroxylation has been considered the first step in the degradation pathway of 1,25(OH)(2)D and 25(OH)D. 24,25-dihydroxyvitamin D [24,25(OH)(2)D] was believed to be a degradation product, with no important biological effects. However, some data have accumulated showing that 24,25(OH)(2)D has biological effects on its own. Under conditions of eucalcemia, the synthesis of 24,25(OH)(2)D is increased, and the synthesis of 1,25(OH)(2)D is decreased. In patients with CKD, both high parathyroid hormone levels, which decrease the activity of enzyme CYP24A1 (24-hydroxylase), and high FGF23 levels, which increase the activity of enzyme CYP24A1, were often detected. However, information about 24,25(OH)(2)D levels in these patients is very limited. Whether compensatory changes in levels of FGF23 and 24,25(OH)(2)D in CKD patients are protective or harmful remain unknown issues. Therefore, more studies are needed to identify the nature of the interactions between these molecules and to fully elucidate their clinical significance.  相似文献   

10.
Calcium, phosphorus, and magnesium homeostasis is altered in chronic kidney disease (CKD). Hypocalcemia, hyperphosphatemia, and hypermagnesemia are not seen until advanced CKD because adaptations develop. Increased parathyroid hormone (PTH) secretion maintains serum calcium normal by increasing calcium efflux from bone, renal calcium reabsorption, and phosphate excretion. Similarly, renal phosphate excretion in CKD is maintained by increased secretion of fibroblast growth factor 23 (FGF23) and PTH. However, the phosphaturic effect of FGF23 is reduced by downregulation of its cofactor Klotho necessary for binding FGF23 to FGF receptors. Intestinal phosphate absorption is diminished in CKD due in part to reduced levels of 1,25 dihydroxyvitamin D. Unlike calcium and phosphorus, magnesium is not regulated by a hormone, but fractional excretion of magnesium increases as CKD progresses. As 60–70% of magnesium is reabsorbed in the thick ascending limb of Henle, activation of the calcium‐sensing receptor by magnesium may facilitate magnesium excretion in CKD. Modification of the TRPM6 channel in the distal tubule may also have a role. Besides abnormal bone morphology and vascular calcification, abnormalities in mineral homeostasis are associated with increased cardiovascular risk, increased mortality and progression of CKD.  相似文献   

11.
Regulation of fibroblast growth factor-23 in chronic kidney disease.   总被引:4,自引:0,他引:4  
BACKGROUND: Fibroblast growth factor-23 (FGF23) is a circulating factor that regulates the renal reabsorption of inorganic phosphate (Pi) and is increased in chronic kidney disease (CKD). The aim of the current investigation was to study the regulation of FGF23 in CKD subjects with various degree of renal function. As such, we analysed the relationship between FGF23, Pi, calcium, parathyriod hormone (PTH), 25(OH) vitamin D3(25(OH)D3), 1,25(OH)2 vitamin D3(1,25(OH)2D3) and estimated glomerular filtration rate (eGFR). METHODS: Intact FGF23 and other biochemical variables were analysed in 72 consecutive adult out-patients with various stages of CKD (eGFR ranging from 4-96 ml/min.) Association studies were performed using linear univariate and multivariate analysis. RESULTS: FGF23 was significantly elevated at CKD stage 4 (266 +/- 315 pg/ml, P < 0.001) and 5 (702 +/- 489 pg/ml, P < 0.001) compared with CKD 1-2 (46 +/- 43 pg/ml). In CKD 4-5 an independent association between log FGF23 and Pi (P < 0.001), 25(OH)D3 (P < 0.05) as well as eGFR (P < 0.01) was observed. In contrast, in CKD 1-3 log PTH (P < 0.05) was the only independent predictor of log FGF23 in multivariate analysis. In CKD 1-5, Pi (P < 0.00001) and log PTH (P < 0.01) were explanatory variables for log FGF23 in multivariate analysis. CONCLUSIONS: We conclude that serum FGF23 increases in CKD 4-5, in parallel with the emerging hyperphosphataemia. Serum Pi is the most important predictor of FGF23 when GFR is less than 30 ml/min. In contrast, our data suggest that Pi may not be an important determinant of FGF23 in normophosphataemic CKD subjects. Finally, the association between FGF23 and PTH in CKD may suggest a co-regulation that remains to be further elucidated.  相似文献   

12.
Phosphorus directly controls parathyroid hormone (PTH) synthesis and secretion. Serum levels of the novel phosphate-regulating hormone, fibroblast growth factor 23 (FGF23), are positively correlated with hyperphosphatemia in patients with chronic renal insufficiency (CRI). We proposed that changes in serum PTH and FGF23 levels might be associated with changes in serum phosphorus levels caused by the phosphate binder sevelamer hydrochloride (sevelamer, i.e. crosslinked poly[allylamine hydrochloride]). Rats were fed a diet containing adenine for 4 weeks to establish CRI. Animals were then offered either a normal diet or a diet containing 1 or 3% sevelamer for 8 weeks continuously, or intermittently with sevelamer diet or a normal diet offered for alternating 2-week periods. Changes in the serum levels of phosphorus, calcium, PTH, FGF23, and 1alpha,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) were monitored over time. Adenine-treated rats developed severe CRI, with markedly elevated serum levels of phosphorus, PTH and FGF23, and reduced levels of serum 1,25(OH)(2)D(3). Continuous treatment with sevelamer suppressed these increases throughout the study period. Serum phosphorus, PTH, and FGF23 levels decreased rapidly when sevelamer treatments commenced and recovered rapidly once they were discontinued. However, the changes in serum FGF23 levels began after the onset of changes in serum phosphorus and PTH levels. In conclusion, circulating PTH, and FGF23 levels can be promptly manipulated through the control of serum phosphorus levels. Moreover, phosphate-binder treatment can effectively inhibit the elevation of serum FGF23 levels, as well as PTH levels, under conditions of CRI.  相似文献   

13.
Phosphorus is an essential element in skeletal development, bone mineralization, membrane composition, nucleotide structure, and cellular signaling. Phosphate, the principal form in which phosphorus is found in the body, is regulated by the complex interplay of the hormones parathyroid hormone (PTH), calcitriol (1,25[OH]2 vitamin D3), and fibroblast growth factor 23 (FGF23). These collectively govern bone mineralization, absorption of phosphorus by the intestine, and renal tubular reabsorption of phosphate. The skeleton is the major storage pool for phosphate and the principal production site for FGF23, a major phosphate regulatory hormone. Recent advances in understanding the molecular basis of disorders of phosphate metabolism have revealed new phosphate-regulatory hormones and provided insight into how these regulators may interface with previously known phosphate-regulatory pathways. Here we outline the current knowledge about the regulation of normal phosphate homeostasis and present a review of the molecular basis of disorders of phosphate homeostasis.  相似文献   

14.
15.
Fibroblast growth factor 23 (FGF23) is a phosphaturic factor that suppresses both sodium-dependent phosphate transport and production of 1,25-dihydroxyvitamin D [1,25(OH)(2)D] in the proximal tubule. In vitro studies suggest that FGFR3 is the physiologically relevant receptor for FGF23 in the kidney, but this has not been established in vivo. Here, immunohistochemical analysis of the mouse kidney revealed that the proximal tubule expresses FGF receptor 3 (FGFR3) but not FGFR1, FGFR2, or FGFR4. Compared with wild-type mice, Hyp mice, which have elevated circulating levels of FGF23, exhibited low levels of serum phosphate and 1,25(OH)(2)D, reduced expression of the sodium-dependent phosphate transporter NPT2a in the proximal tubules, and low bone mineral density as a result of osteomalacia. In contrast, neither the serum phosphate nor 1,25(OH)(2)D levels were altered in FGFR3-null mice. For examination of the role of FGFR3 in mediating the effects of FGF23, Hyp mice were crossed with FGFR3-null mice; interestingly, this failed to correct the aforementioned metabolic abnormalities of Hyp mice. Ablation of FGFR4 also failed to correct hypophosphatemia in Hyp mice. Because the ablation of neither FGFR3 nor FGFR4 inhibited the renal effects of excess FGF23, the kidney localization of FGFR1 was investigated. FGFR1 co-localized with Klotho, the co-factor required for FGF23-dependent FGFR activation, in the distal tubule. In summary, neither FGFR3 nor FGFR4 is the principal mediator of FGF23 effects in the proximal tubule, and co-localization of FGFR1 and Klotho suggests that the distal tubule may be an effector site of FGF23.  相似文献   

16.
Fibroblast growth factor 23 (FGF23), a hormone primarily produced in bone cells, targets the kidney to accelerate phosphate excretion into the urine and suppresses vitamin D synthesis, thereby inducing a negative phosphate balance. Excessive serum FGF23 due to hereditary disorders such as hypophosphatemic rickets leads to phosphate wasting and impaired bone mineralization. In contrast, deficiencies in FGF23 are associated with hyperphosphatemia, elevated 1,25(OH)2D3, ectopic ossification in soft tissues, and defects in skeletal mineralization. Recent studies of human genetic disorders and genetically engineered mice, as well as the in vitro approaches, have clarified some mysteries in FGF23 regulation and its potential roles in bone modeling and remodeling, which are summarized in this review article.  相似文献   

17.
Fibroblast growth factor 23 (FGF23) is a phosphatonin that is secreted by osteocytes and osteoblasts in response to hyperphosphatemia and 1,25-dihydroxyvitamin D (1,25D). It acts on its receptor complex, Klotho–FGFR1c (fibroblast growth factor receptor 1 c-splicing form), in the distal convoluted tubule to repress renal phosphorus reabsorption in the proximal tubule and suppress the renal synthesis of 1,25D. Klotho–FGFR1c is also expressed in the parathyroid glands. FGF23 acts on the receptor complex in the parathyroid glands to decrease parathyroid hormone (PTH) gene expression and PTH secretion through activation of the MAPK pathway. In chronic kidney disease (CKD), both FGF23 and PTH are increased, implying resistance of the parathyroid glands to FGF23. There is a decrease in the Klotho–FGFR1c complex in the parathyroid glands in both experimental CKD and in patients with end-stage renal disease. In addition, in advanced experimental CKD, FGF23 has a decreased ability to inhibit PTH expression.  相似文献   

18.

Background

The relationship between fibroblast growth factor 23 (FGF23) and vitamin D production and catabolism post-renal transplantation has not been characterized.

Methods

Circulating creatinine, calcium, phosphorus, albumin, parathyroid hormone, FGF23, and 1,25(OH)2 vitamin D (calcitriol) values were obtained pre-transplantation, daily post-operatively for 5 days, and at 6 months post-transplantation in 44 patients aged 16.4?±?0.4 years undergoing renal transplantation at UCLA from 1 August 2005 through to 30 April 2007. 25(OH) Vitamin D and 24,25(OH)2 vitamin D concentrations were obtained at baseline and on post-operative days 5 and 180, and urinary concentrations of creatinine, phosphorus, and FGF23 were measured on post-operative days 1, 3, 5, and 180.

Results

Circulating phosphate concentrations declined more rapidly and the fractional excretion of phosphorus was higher in the first week post-transplantation in subjects with higher FGF23 values. Fractional excretion of FGF23 was low at all time-points. Circulating 1,25(OH)2 vitamin D levels rose more rapidly and were consistently higher in patients with lower FGF23 values; however, 25(OH) vitamin D and 24,25(OH)2 vitamin D values were unrelated to FGF23 concentrations.

Conclusions

Inhibition of renal 1α-hydroxylase, rather than stimulation of 24-hydroxylase, may primarily contribute to the relationship between FGF23 values and calcitriol. The rapid decline in FGF23 levels post-transplantation in our patient cohort was not mediated solely by the filtration of intact FGF23 by the new kidney.  相似文献   

19.
In chronic kidney disease (CKD), several abnormalities in bone and mineral metabolism develop in the majority of patients. The parathyroid plays a very important role in regulating bone and mineral metabolism; thus, control of parathyroid function is one of the main targets of the management of CKD-mineral and bone disorder (CKD-MBD). In the development of secondary hyperparathyroidism, it has recently been suggested that fibroblast growth factor 23 (FGF23) plays a crucial role, both as a phosphaturic factor and as a suppressor of active vitamin D (1,25D) production in the kidney. FGF23 is originally secreted to prevent hyperphosphatemia in CKD, but this occurs at the expense of low 1,25D and hyperparathyroidism (“trade-off” hypothesis revisited). Furthermore, recent data suggest that FGF23 could be another useful marker for the prognosis of hyperparathyroidism, because a high serum level may reflect the cumulative dose of vitamin D analogues previously administered. We have also demonstrated that severe hyperparathyroidism was associated with the production and secretion of a new form of parathyroid hormone (PTH) molecule, which can be detected by third-generation assays for PTH, but not by the second-generation assays. For the regression of already established nodular hyperplasia, the more advanced type of parathyroid hyperplasia, it is certainly necessary, in the near future, to develop new agents that specifically induce apoptosis in parathyroid cells. Until such agents are developed, prevention and early recognition of nodular hyperplasia is mandatory for the effective and safe management of hyperparathyroidism in CKD.  相似文献   

20.
Fibroblast growth factor 23 (FGF23) is a circulating factor secreted by osteocytes that is essential for phosphate homeostasis. In kidney proximal tubular cells FGF23 inhibits phosphate reabsorption and leads to decreased synthesis and enhanced catabolism of 1,25‐dihydroxyvitamin D3 (1,25[OH]2D3). Excess levels of FGF23 cause renal phosphate wasting and suppression of circulating 1,25(OH)2D3 levels and are associated with several hereditary hypophosphatemic disorders with skeletal abnormalities, including X‐linked hypophosphatemic rickets (XLH) and autosomal recessive hypophosphatemic rickets (ARHR). Currently, therapeutic approaches to these diseases are limited to treatment with activated vitamin D analogues and phosphate supplementation, often merely resulting in partial correction of the skeletal aberrations. In this study, we evaluate the use of FGFR inhibitors for the treatment of FGF23‐mediated hypophosphatemic disorders using NVP‐BGJ398, a novel selective, pan‐specific FGFR inhibitor currently in Phase I clinical trials for cancer therapy. In two different hypophosphatemic mouse models, Hyp and Dmp1‐null mice, resembling the human diseases XLH and ARHR, we find that pharmacological inhibition of FGFRs efficiently abrogates aberrant FGF23 signaling and normalizes the hypophosphatemic and hypocalcemic conditions of these mice. Correspondingly, long‐term FGFR inhibition in Hyp mice leads to enhanced bone growth, increased mineralization, and reorganization of the disturbed growth plate structure. We therefore propose NVP‐BGJ398 treatment as a novel approach for the therapy of FGF23‐mediated hypophosphatemic diseases. © 2013 American Society for Bone and Mineral Research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号