首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutations in the COL4A4 gene in thin basement membrane disease   总被引:4,自引:0,他引:4  
BACKGROUND: Patients with thin basement membrane disease (TBMD) are often from families where hematuria segregates with the COL4A3 and COL4A4 genes. These genes also are affected in autosomal recessive Alport syndrome. The aim of this study was to demonstrate COL4A4 mutations in TBMD. METHODS: Forty-eight unrelated individuals with TBMD who had no family members with autosomal recessive Alport syndrome were examined for COL4A4 mutations. The diagnosis of TBMD had been confirmed by renal biopsy (43/48, 90%) or by a family history of hematuria but without a renal biopsy (5/48, 10%). The 47 coding exons of COL4A4 were screened for mutations with the methods of enzyme mismatch cleavage or single stranded conformational polymorphism (SSCP) analysis, and exons that demonstrated electrophoretic abnormalities were sequenced. RESULTS: Nine variants that altered the coding sequences were identified. These were nonsense and frameshift mutations that resulted in stop codons (N = 3), and glycine (N = 3) and non-glycine missense variants (N = 3). Four intronic variants and three neutral polymorphisms were also detected. In total, four variants were considered 'pathogenic' principally because they resulted in stop codons or were not present in non-hematuric normal subjects. Three variants were considered 'possibly pathogenic' but two of these were each present in one of 46 non-hematuric normal subjects. CONCLUSIONS: Pathogenic COL4A4 mutations were demonstrated in three of the nine (33%) families in whom hematuria segregated with the COL4A3/COL4A4 locus. Two stop codons (R1377X and 2788/91delG) and a glycine substitution (G960R) resulted in hematuria in all 16 members who were tested from these three families. The S969X mutation described here in TBMD for the first time, as well as the R1377X mutation, also occur in autosomal recessive Alport syndrome.  相似文献   

2.
BACKGROUND: Inherited hematuria is common and is usually attributed to thin basement membrane disease (TBMD). The aim of this study was to determine how often hematuria in families with TBMD segregated with haplotypes at the chromosomal loci for autosomal recessive and X-linked Alport syndrome (COL4A3/COL4A4 and COL4A5, respectively). METHODS: The families of 22 individuals with TBMD on renal biopsy and with urinary glomerular red blood cell (RBC) counts of more than 50,000/mL were studied using phase-contrast microscopy of the urine and DNA microsatellite markers. Eighteen families had at least two members with hematuria. RESULTS: Hematuria segregated with or was consistent with segregation at the COL4A3/COL4A4 locus in eight (36%) families (P < 0.05 in 5 of these) and at the COL4A5 locus in four (18%) families (P < 0.05 in 2). The lack of segregation in the other 10 (45%) families may have occurred because of incomplete penetrance of the hematuria, de novo mutations, coincidental hematuria in other family members, or the presence of a novel gene locus. In four different families, three of which had hematuria that segregated with the COL4A3/COL4A4 locus, four family members with the hematuria haplotype had spouses with coincidental hematuria (4 of 29, 14%). However, none of their four offspring who had also inherited the hematuria haplotype had the clinical features of autosomal recessive Alport syndrome. CONCLUSIONS: Hematuria in families with TBMD commonly segregates with the COL4A3/COL4A4 locus and thus results from mutations in the same genes as autosomal recessive Alport syndrome. Sometimes TBMD may be confused with the carrier state for X-linked Alport syndrome. However, nearly half of the families in this study had hematuria that did not segregate with the loci for either autosomal recessive or X-linked Alport syndrome.  相似文献   

3.
Thin basement membrane nephropathy   总被引:17,自引:0,他引:17  
Thin basement membrane nephropathy. Thin basement membrane nephropathy (TBMN) is the most common cause of persistent glomerular bleeding in children and adults, and occurs in at least 1% of the population. Most affected individuals have, in addition to the hematuria, minimal proteinuria, normal renal function, a uniformly thinned glomerular basement membrane (GBM) and a family history of hematuria. Their clinical course is usually benign. However, some adults with TBMN have proteinuria >500 mg/day or renal impairment. This is more likely in hospital-based series of biopsied patients than in the uninvestigated, but affected, family members. The cause of renal impairment in TBMN is usually not known, but may be due to secondary focal segmental glomerulosclerosis (FSGS) or immunoglobulin A (IgA) glomerulonephritis, to misdiagnosed IgA disease or X-linked Alport syndrome, or because of coincidental disease. About 40% families with TBMN have hematuria that segregates with the COL4A3/COL4A4 locus, and many COL4A3 and COL4A4 mutations have now been described. These genes are also affected in autosomal-recessive Alport syndrome, and at least some cases of TBMN represent the carrier state for this condition. Families with TBMN in whom hematuria does not segregate with the COL4A3/COL4A4 locus can be explained by de novo mutations, incomplete penetrance of hematuria, coincidental hematuria in family members without COL4A3 or COL4A4 mutations, and by a novel gene locus for TBMN. A renal biopsy is warranted in TBMN only if there are atypical features, or if IgA disease or X-linked Alport syndrome cannot be excluded clinically. In IgA disease, there is usually no family history of hematuria. X-linked Alport syndrome is much less common than TBMN and can often be identified in family members by its typical clinical features (including retinopathy), a lamellated GBM without the collagen alpha3(IV), alpha4(IV), and alpha5(IV) chains, and by gene linkage studies or the demonstration of a COL4A5 mutation. Technical difficulties in the demonstration and interpretation of COL4A3 and COL4A4 mutations mean that mutation detection is not used routinely in the diagnosis of TBMN.  相似文献   

4.
This study examined how often children with persistent familial hematuria were from families where hematuria segregated with the known genetic locus for the condition known as benign familial hematuria or thin basement membrane nephropathy (TBMN) at COL4A3/COL4A4. Twenty-one unrelated children with persistent familial hematuria as well as their families were studied for segregation of hematuria with haplotypes at the COL4A3/COL4A4 locus for benign familial hematuria and at the COL4A5 locus for X-linked Alport syndrome. Eight families (38%) had hematuria that segregated with COL4A3/COL4A4, and four (19%) had hematuria that segregated with COL4A5. At most, eight of the other nine families could be explained by disease at the COL4A3/COL4A4 locus if de novo mutations, non-penetrant hematuria or coincidental hematuria in unaffected family members was present individually or in combination. This study confirms that persistent familial hematuria is not always linked to COL4A3/COL4A4 (or COL4A5) and suggests the possibility of a further genetic locus for benign familial hematuria. This study also highlights the risk of excluding X-linked Alport syndrome on the basis of the absence of a family history or of kidney failure.  相似文献   

5.
A novel COL4A5 mutation causes rapid progression to end-stage renal disease in males, despite the absence of clinical and biopsy findings associated with Alport syndrome. Affected males have proteinuria, variable hematuria, and an early progression to end-stage renal disease. Renal biopsy findings include global and segmental glomerulosclerosis, mesangial hypercellularity and basement membrane immune complex deposition. Exon sequencing of the COL4A5 locus identified a thymine to guanine transversion at nucleotide 665, resulting in a phenylalanine to cysteine missense mutation at codon 222. The phenylalanine at position 222 is absolutely conserved among vertebrates. This mutation was confirmed in 4 affected males and 4 female obligate carriers, but was absent in 6 asymptomatic male family members and 198 unrelated individuals. Immunostaining for α5(IV) collagen in renal biopsies from affected males was normal. This mutation, in a non-collagenous interruption associated with severe renal disease, provides evidence for the importance of this structural motif and suggests the range of phenotypes associated with COL4A5 mutations is more diverse than previously realized. Hence, COL4A5 mutation analysis should be considered when glomerulonephritis presents in an X-linked inheritance pattern, even with a presentation distinct from Alport syndrome.  相似文献   

6.
The genetics of thin basement membrane nephropathy   总被引:2,自引:0,他引:2  
The diagnosis of thin basement membrane nephropathy (TBMN) usually is made on the basis of the clinical features or the glomerular membrane ultrastructural appearance. Only now are we beginning to understand the genetics of TBMN and the role of diagnostic genetic testing. The similarity of clinical and glomerular membrane features first suggested TBMN might represent the carrier state for autosomal-recessive Alport syndrome. This was confirmed subsequently by the demonstration that 40% of families with TBMN have hematuria that segregates with the corresponding locus ( COL4A3/COL4A4 ), and identical mutations occur in both conditions. To date, about 20 COL4A3 and COL4A4 mutations have been shown in TBMN, and these mainly are single nucleotide substitutions that are different in each family. The families in whom hematuria does not appear to segregate with the COL4A3/COL4A4 locus cannot all be explained by de novo mutations, and nonpenetrant or coincidental hematuria. This suggests a further TBMN locus. In patients with persistent hematuria, testing for COL4A3 and COL4A4 mutations to diagnose TBMN is problematic because of the huge size of these genes, their frequent polymorphisms, and the likelihood of a further gene locus. It is far more practicable to perform genetic testing to exclude or confirm X-linked Alport syndrome because this condition is the major differential diagnosis of TBMN and has a very different prognosis.  相似文献   

7.
Mutations in either the COL4A3 or the COL4A4 genes, encoding the alpha3 and alpha4 chains of type IV collagen, are responsible for the autosomal-recessive form of Alport syndrome, a progressive hematuric nephropathy characterized by glomerular basement membrane abnormalities. Reported here are the complete COL4A3 exon-intron structure and a comprehensive screen for mutations of the 52 COL4A3 exons in 41 unrelated patients diagnosed as having autosomal Alport syndrome. This resulted in the identification of 21 mutations that are expected to be causative. Furthermore, it is shown that heterozygous COL4A3 missense mutations, when symptomatic, can be associated with a broad range of phenotypes, from familial benign hematuria to the complete features of Alport syndrome nephropathy.  相似文献   

8.
Thin glomerular basement membrane disease   总被引:4,自引:0,他引:4  
The term thin glomerular basement membrane disease (TBMD) refers to a condition characterised by thinning of the GBM at electron microscopy examination and, clinically, by isolated hematuria, frequently occurring in other family members, with no extra-renal manifestations. Progression towards chronic renal failure (CRF), although rare, has been reported and blood pressure is high in 30-35% of cases during follow-up. TBMD is generally considered different from Alport syndrome since immunohistological investigation does not show abnormalities of type IV collagen alpha chains in the GBM, as frequently observed in Alport patients; moreover, in familial cases, the disease is transmitted as autosomal dominant trait, rarely observed in Alport syndrome. Genetic studies suggest that TBMD is a heterogeneous disease, but some cases may be related to mutations of COL4A3/COL4A4 genes, thus belonging to the spectrum of type IV collagen diseases. TBMD may arise with other glomerular diseases, most frequently IgA nephropathy, and it remains to be established whether these cases are a casual occurrence or whether a thinner than normal GBM predisposes to immune complex deposition.  相似文献   

9.
Gene mutations in COL4A5 located on Xq22 are believed to cause X-linked Alport syndrome, whereas mutations in COL4A3 and COL4A4 located on chromosome 2 are associated with autosomal inherited Alport syndrome or benign familial hematuria. A family with benign familial hematuria caused by COL4A5 mutation, implying X-linked transmission, is reported here for the first time. This result suggests that COL4A5 should be added to the list of causative genes for benign familial hematuria, although the mechanism(s) by which the same mutation leads to the distinct phenotypes, i.e. X-linked Alport syndrome or benign familial hematuria, remains unknown.  相似文献   

10.
Background: Alport syndrome is a hereditary nephritis that may lead to end-stage renal disease (ERSD) in young adult life and is often associated with sensorineural deafness and/or ocular abnormalities. The majority of families are X-linked due to mutations in the COL4A5 gene at X122. Autosomal forms of the disease are also recognized with recessive disease, having been shown to be due to mutations in the COL4A3 and COL4A4 genes on chromosome 2. Familial benign haematuria has also been mapped to this region in some families.Subjects and methods: We describe a large family with autosomal dominant Alport syndrome in which males and females are equally severely affected and one member with a mild sensorineural deafness reached ESRD aged 35 years. Renal biopsy in four affected patients demonstrated characteristic thickened and split glomerular basement membranes on electron-microscopy. Results: Genetic linkage analysis using markers on chromosome 2q demonstrated co-segregation of the disease with the markers D2S351 and D2S401 with a maximum lod score of 3.4 at zero recombination. Linkage to the COL4A4 gene was confirmed using an intragenic COL4A4 polymorphism. Mutation analysis has revealed a missense Leu36Pro mutation in exon 5 of the adjacent COL4A3 gene in the unaffected mother, which may lead to a more severe phenotype in affected family members carrying this mutation. Conclusion: Mutations in the COL4A3 and COL4A4 cause a spectrum of glomerular basement membrane disease ranging from autosomal recessive Alport syndrome to autosomal dominant Alport syndrome and familial benign haematuria.  相似文献   

11.
BACKGROUND: Alport syndrome is a clinically and genetically heterogeneous nephropathy. The majority of cases are transmitted as an X-linked semidominant condition due to COL4A5 mutations. In this form males are more severely affected than females. Less than 10% of cases are autosomal recessive due to mutation in either COL4A3 or COL4A4. In this rarer form, both males and females are severely affected. Only two cases of autosomal-dominant Alport syndrome have been reported, one due to a COL4A3 mutation and the other due to a COL4A4 mutation. Because of the paucity of the reported families, the natural history of autosomal-dominant Alport syndrome is mostly unknown. METHODS: Four families with likely autosomal-dominant Alport syndrome were investigated. COL4A3 and COL4A4 genes were analyzed by denaturing high-performance liquid chromatography (HPLC). Automated sequencing was performed to identify the underlying mutation. RESULTS: Two families had a mutation in the COL4A4 gene and two in the COL4A3. Accurate clinical evaluation of family members showed interesting results. Affected individuals (22 persons) had a wide range of phenotypes from end-stage renal disease (ESRD) in the fifth decade to a nonprogressive isolated microhematuria. Finally, three heterozygous individuals (90, 22 and 11 years old, respectively) were completely asymptomatic. CONCLUSION: This paper demonstrated that patients affected by autosomal-dominant Alport syndrome have a high clinical variability. Moreover, a reduced penetrance of about 90% (3 of 25) may be considered for the assessment of recurrence risk during genetic counseling of these families.  相似文献   

12.
13.
A large tandem duplication within the COL4A5 gene is responsible for the high prevalence of Alport syndrome in French Polynesia. Background. The prevalence of X-linked Alport syndrome, a progressive inherited nephropathy associated with mutations in the type IV collagen gene COL4A5, is remarkably high in French Polynesia. Methods. A vast clinical, genealogic, and molecular study was undertaken in Polynesia, based on public records, patients' interviews, linkage analysis, and mutation screening. Results and Conclusions. We show that the high frequency of Alport syndrome in this region is due to a founder mutation that occurred onto a common haplotype shared by affected and unaffected individuals, the presence of which precludes indirect molecular diagnosis. We have characterized the mutation as a tandem duplication of 35 COL4A5 exons, resulting in a approximately 65% increase in the length of the collagenous domain of the alpha 5(IV) chain, which is still able to assemble into type IV collagen network as shown by immunofluorescence analysis. That mutation is associated with severe and highly penetrant ocular symptoms and with uniformly thin glomerular basement membrane (GBM) in male adult patients. However, the rate of progression of the renal disease is very variable from one male patient to another, demonstrating the importance of strong modifier factors. Our results suggest that the 20% to 50% of "missing"COL4A5 mutations in X-linked Alport syndrome may be rearrangements similar to that reported here, which was not detectable by sequencing of either individual COL4A5 exons or overlapping cDNA fragments. Finally, we provide the basis for a polymerase chain reaction (PCR) assay that accurately identifies female carriers and allows adequate genetic counseling in this population.  相似文献   

14.
COL4A3/COL4A4 mutations: From familial hematuria to autosomal-dominant or recessive Alport syndrome. BACKGROUND: Mutations of the type IV collagen COL4A5 gene cause X-linked Alport syndrome (ATS). Mutations of COL4A3 and COL4A4 have been reported both in autosomal-recessive and autosomal-dominant ATS, as well as in benign familial hematuria (BFH). In the latter conditions, however, clinical features are less defined, few mutations have been reported, and other genes and non-genetic factors may be involved. METHODS: We analyzed 36 ATS patients for COL4A3 and COL4A4 mutations by polymerase chain reaction-single strand conformational polymorphism (PCR-SSCP) and direct sequencing. Sporadic patients who had tested negative for COL4A5 mutations were included with typical cases of autosomal recessive ATS to secure a better definition of the phenotype spectrum. RESULTS: We identified seven previously undescribed COL4A3 mutations: in two genetic compounds and three heterozygotes, and one in COL4A4. In agreement with the literature, some of the mutations of compound heterozygotes were associated with microhematuria in healthy heterozygous relatives. The mutations of heterozygous patients are likely dominant, since no change was identified in the second allele even by sequencing, and they are predicted to result in shortened or abnormal chains with a possible dominant-negative effect. In addition, both genes showed rare variants of unclear pathogenicity, and common polymorphisms that are shared in part with other populations. CONCLUSIONS: This study extends the mutation spectrum of COL4A3 and COL4A4 genes, and suggests a possible relationship between production of abnormal COL IV chains and dominant expression of a continuous spectrum of phenotypes, from ATS to BFH.  相似文献   

15.
BACKGROUND: The X-linked Alport syndrome (AS) is an inherited nephropathy due to mutations in the COL4A5 gene, encoding the alpha5 chain of type IV collagen, a major component of the glomerular basement membrane (GBM). Here, we report a new kindred with the rare association of X-linked AS and diffuse leiomyomatosis (DL), which is a tumourous process involving smooth muscle cells of the oesophagus, the tracheobronchial tree and, in females, the genital tract. For this syndrome, an almost constant association of large COL4A5 rearrangements with a severe juvenile form of nephropathy has been described for male patients. METHODS: DNA rearrangement at the COL4A5-COL4A6 locus was studied in several members of this family using polymerase chain reaction and pulsed field gel electrophoresis. Furthermore, immunohistochemical staining of tumour and skin samples was performed. RESULTS: The affected patients in this family carry a 120 kb deletion by which the COL4A5 exon 1 and COL4A6 exons 1, 1', and 2 are removed. Immunohistochemical investigation of a skin biopsy of an affected male patient confirmed the absence of both the alpha5 and the alpha6 chains of type IV collagen in the basement membrane of the skin. Surprisingly, both affected male patients had a rather mild renal phenotype. CONCLUSIONS: This report shows that, contrary to what has been reported to date, patients suffering from AS associated with DL can be associated with a late onset renal failure (adult) form of nephropathy.  相似文献   

16.
BACKGROUND/AIM: Alport syndrome is a hereditary glomerulonephritis, X-linked in 85% of the cases. This form is associated with mutations in the COL4A5 gene which encodes the alpha5 chain of type IV collagen. We have performed the mutational analysis of the COL4A5 gene in a Spanish family with X-linked Alport syndrome. METHODS: We have analyzed three polymorphic markers close to the gene to confirm the X chromosome linkage. By means of the PCR technique, we have screened the 51 exons of the gene. RESULTS: The segregation of the alleles from the analyzed markers was in agreement with the X linkage. Direct sequencing of PCR-amplified products has shown a CCT-to-CTT change in exon 25, resulting in substitution of a proline for a leucine at position 619 of the polypeptide chain (nucleotide 2058). CONCLUSIONS: Although proline is considered a nonconserved amino acid, it is essential, upon hydroxylation, in the maintenance of a stable alpha chain triple-helix collagen. Furthermore, the change cosegregates with the disease in all affected members of the family, not being present in 80 control chromosomes. This represents a new mutation in the COL4A5 gene found in the Spanish population.  相似文献   

17.
Familial benign hematuria (FBH) is a common autosomal dominant disorder characterized by the presence of persistent or recurrent hematuria. The clinical and pathologic features of this syndrome resemble those of early Alport syndrome (AS), and for this reason a common molecular defect has been proposed. The COL4A3/4 genes seem to be involved in both autosomal AS and FBH. This study involves a linkage analysis for the COL4A3/4 loci and a search for mutations within these genes in 11 biopsy-proven FBH families. Haplotype analysis showed that linkage to the COL4A3/4 locus could not be excluded in eight of nine families. One family was not linked to this locus; however, it included three affected women who could be X-linked AS carriers. Two families were too small to perform linkage analysis. COL4A3 and COL4A4 mutation screening disclosed six new pathogenic mutations, two in the COL4A3 gene (G985V and G1015E) and four in the COL4A4 gene (3222insA, IVS23-1G>C, 31del11, and G960R). It is the first time that mutations within the COL4A3 gene are described in families with FBH. This study clearly demonstrates the main role of the COL4A4 and COL4A3 genes in the pathogenesis of FBH.  相似文献   

18.
目的 探讨薄基底膜肾病(TBMN)合并局灶节段性肾小球硬化症(FSGS)的遗传学机制.方法 对一病理学诊断为TBMN合并FSGS患者及其家系的COL4A3和COL4A4基因突变,应用与COL4A3和COL4A4基因连锁的微卫星标记连锁分析方法进行分析.PCR扩增COIAA3和COL4A4全部98个外显子后,直接测序筛查突变.同时测序排除已为公认的FSGS相关基因NPHS1、NPHS2、WT1、TRPC6、ACTN4、CD2AP突变导致FSGS的可能.结果 微卫星标记连锁分析显示此家系与COL4A3和COL4A4基因连锁.直接测序在此家系中发现疾病患者COL4A4基因1214位的鸟嘌呤突变为腺嘌呤,导致Ⅳ型胶原α4链第405位甘氨酸突变为谷氨酸,并且发现COL4A3基因一多态性IVS1-4C>T.此多态性随疾病分布,可能与致病相关.未发现FSGS相关基因的突变.结论 此家系是在TBMN的基础上发生FSGS.Ⅳ型胶原α4链突变及随疾病分布的基因多态性是否导致TBMN合并FSGS或使其易感性增加尚待更多家系进一步研究.  相似文献   

19.
Wang F  Wang Y  Ding J  Yang J 《Kidney international》2005,67(4):1268-1274
  相似文献   

20.
Alport syndrome (ATS) and benign familial hematuria (BFH) are type IV collagen inherited disorders. Mutations in COL4A5 are generally believed to cause X-linked ATS, whereas mutations in COL4A3 and COL4A4 genes can be associated with the autosomal-recessive and -dominant type of ATS or BFH. In view of the wide spectrum of phenotypes, an exact diagnosis is sometimes difficult to achieve. This study involved screening each exon with boundary intronic sequences of COL4A3, COL4A4, and COL4A5 genes by optimized polymerase chain reaction-single-stranded conformational polymorphism analysis in 17 families with ATS and in 40 families diagnosed as having BFH. Twelve different mutations were found in the COL4A5 gene in ATS patients, comprising nine missense mutations, a splice site mutation, a mutation causing frameshift, and a nonsense mutation. One of the missense mutations (p.G624D) was present not only in one family with ATS but also in five families with suspected BFH. Three heterozygous mutations in the COL4A3 gene (two missense and one frameshift) and four heterozygous mutations in COL4A4 (two splice site, one in-frame deletion, and one missense) were identified in patients with BFH. Sixteen mutations are to the best of our knowledge new and private.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号