首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The S-(N-methylcarbamoyl) derivatives of glutathione, cysteine and N-acetylcysteine, the S-linked conjugates derived from a reactive metabolite of N-methylformamide (NMF), were studied in mice dosed with an equimolar mixture of NMF and deuterium-labelled NMF. Following preparation of N-benzyloxycarbonyl derivatives in aqueous media, the title conjugates were isolated, purified as their methyl esters and subjected to analysis by fast atom bombardment mass spectrometry (FAB/MS), fast atom bombardment tandem mass spectrometry (FAB/MS/MS) or thermospray liquid chromatography/mass spectrometry (TSP LC/MS). Characteristic isotope clusters in the FAB or TSP mass spectra facilitated recognition of drug metabolites, while constant neutral loss (89 u) and daughter ion scanning tandem mass spectrometry (MS/MS) experiments provided unique structural information on the conjugates of interest. It is concluded that the combined use of stable isotopes, aqueousphase derivatization and contemporary mass spectrometric techniques represents a powerful approach for the analysis of glutathione adducts and related S-linked conjugates of chemically-reactive drug metabolites.  相似文献   

2.
Tanaproget is a first-in-class nonsteroidal progesterone receptor agonist that is being investigated for use in contraception. A major in vitro and in vivo metabolite of tanaproget formed in humans was initially characterized as a glucuronide of tanaproget. However, whether the glucuronide was linked to the nitrogen or sulfur of the benzoxazine-2-thione group in tanaproget could not be determined by liquid chromatography/mass spectrometry (LC/MS) and LC-tandem mass spectrometry analysis. To obtain additional structural details for this metabolite, additional quantities were generated from rat liver microsomal incubations and purified by high-performance liquid chromatography (HPLC) for NMR analysis. The NMR data for the metabolite confirmed that the glucuronide was covalently bound to either the sulfur or the nitrogen of the benzoxazine-2-thione moiety. The lack of key through-bond (scalar) and through-space (dipolar) one-dimensional (1D) and two-dimensional (2D) NMR couplings and correlations in the metabolite spectra (due primarily to low sample concentration) precluded an unambiguous structure elucidation. Subsequent synthesis of the S- and N-glucuronides of tanaproget from tanaproget facilitated the unambiguous regio- and stereochemical assignment of the metabolite by comparison of 1D NMR chemical shifts and scalar coupling constants, 2D NMR correlations, and HPLC and LC/MS characteristics between the synthetic compounds and the metabolite. From extensive comparison of the spectral and chromatographic data of the microsomally derived metabolite and the synthetic compounds, the metabolite has been determined to be the S-(beta)-D-glucuronide of tanaproget.  相似文献   

3.
The determination of polycyclic aromatic hydrocarbon (PAH) metabolites in bile can serve as a tool for assessing environmental PAH exposure in fish. Biliary PAH metabolite levels can be measured using several analytical methods, including simple fluorescence assays (fixed fluorescence detection or synchronous fluorescence spectrometry); high-performance liquid chromatography with fluorescence detection (HPLC-F); gas chromatography–mass spectrometry (GC–MS) after deconjugation, extraction and derivatization of the bile sample, and finally by advanced liquid chromatography-tandem mass spectrometry (LC–MS/MS) and gas chromatography-tandem mass spectrometry (GC–MS/MS) methods. The method alternatives are highly different both with regard to their analytical performance towards different PAH metabolite structures as well as in general technical demands and their suitability for different monitoring strategies. In the present review, the state-of-the-art for these different analytical methods is presented and the advantages and limitations of each approach as well as aspects related to analytical quality control and inter-laboratory comparability of data and availability of certified reference materials are discussed.  相似文献   

4.
The S-(N-methylcarbamoyl) derivatives of glutathione, cysteine and N-acetylcysteine, the S-linked conjugates derived from a reactive metabolite of N-methylformamide (NMF), were studied in mice dosed with an equimolar mixture of NMF and deuterium-labelled NMF. Following preparation of N-benzyloxycarbonyl derivatives in aqueous media, the title conjugates were isolated, purified as their methyl esters and subjected to analysis by fast atom bombardment mass spectrometry (FAB/MS), fast atom bombardment tandem mass spectrometry (FAB/MS/MS) or thermospray liquid chromatography/mass spectrometry (TSP LC/MS). Characteristic isotope clusters in the FAB or TSP mass spectra facilitated recognition of drug metabolites, while constant neutral loss (89 u) and daughter ion scanning tandem mass spectrometry (MS/MS) experiments provided unique structural information on the conjugates of interest. It is concluded that the combined use of stable isotopes, aqueousphase derivatization and contemporary mass spectrometric techniques represents a powerful approach for the analysis of glutathione adducts and related S-linked conjugates of chemically-reactive drug metabolites.  相似文献   

5.
Application of mass spectrometry for metabolite identification   总被引:4,自引:0,他引:4  
Metabolism studies play a pivotal role in drug discovery and development. Characterization of metabolic "hot-spots" as well as reactive and pharmacologically active metabolites is critical to designing new drug candidates with improved metabolic stability, toxicological profile and efficacy. Metabolite identification in the preclinical species used for safety evaluation is required in order to determine whether human metabolites have been adequately tested during non-clinical safety assessment. From an instrumental standpoint, high performance liquid chromatography (HPLC) coupled with mass spectrometry (MS) dominates all analytical tools used for metabolite identification. The general strategies employed for metabolite identification in both drug discovery and drug development settings together with sample preparation techniques are reviewed herein. These include a discussion of the various ionization methods, mass analyzers, and tandem mass spectrometry (MS/MS) techniques that are used for structural characterization in a modern drug metabolism laboratory. Mass spectrometry-based techniques, such as stable isotope labeling, on-line H/D exchange, accurate mass measurement to enhance metabolite identification and recent improvements in data acquisition and processing for accelerating metabolite identification are also described. Rounding out this review, we offer additional thoughts about the potential of alternative and less frequently used techniques such as LC-NMR/MS, CRIMS and ICPMS.  相似文献   

6.
The determination of polycyclic aromatic hydrocarbon (PAH) metabolites in bile can serve as a tool for assessing environmental PAH exposure in fish. Biliary PAH metabolite levels can be measured using several analytical methods, including simple fluorescence assays (fixed fluorescence detection or synchronous fluorescence spectrometry); high-performance liquid chromatography with fluorescence detection (HPLC-F); gas chromatography-mass spectrometry (GC-MS) after deconjugation, extraction and derivatization of the bile sample, and finally by advanced liquid chromatography-tandem mass spectrometry (LC-MS/MS) and gas chromatography-tandem mass spectrometry (GC-MS/MS) methods. The method alternatives are highly different both with regard to their analytical performance towards different PAH metabolite structures as well as in general technical demands and their suitability for different monitoring strategies. In the present review, the state-of-the-art for these different analytical methods is presented and the advantages and limitations of each approach as well as aspects related to analytical quality control and inter-laboratory comparability of data and availability of certified reference materials are discussed.  相似文献   

7.
异钩藤碱代谢产物的质谱鉴定及药理活性的探讨   总被引:3,自引:0,他引:3  
目的研究异钩藤碱(Isorhy)在猫体内的代谢并同步观察其可能的药理活性。方法麻醉猫静脉注射异钩藤碱5 mg/kg后,观察家猫血压的变化,收集0~3 h的血浆样品,用氢氧化钠—乙醚(1∶5)提取异钩藤碱及其代谢物,高效液相色谱法(HPLC)分离收集色谱峰流分,以液相色谱/质谱(LC/MS)测定异钩藤碱代谢物1(metabolite 1)分子离子峰的质荷比(m/z);代谢物1以60 ℃减压蒸馏24 h,同法测定代谢物1裂解物(metabolite 2)的分子离子峰m/z,根据m/z推测二者的化学结构。结果异钩藤碱代谢物1的相对分子质量为386,其热裂解化合物(metabolite2)相对分子质量为300,代谢产物在降压方面的药理作用贡献不大。结论①异钩藤碱代谢物的相对分子质量为386,为异钩藤碱的加氢还原产物;②代谢物不稳定,加热易裂解,其相对分子质量为300;③代谢物没有表现出心血管药理活性。  相似文献   

8.
Aging has been established as a major risk factor for prevalent diseases and hence, the development of anti-aging medicines is of great importance. Recently, herbal fermented beverages have emerged as a promising source of potential anti-aging drug. Pru, a traditional Cuban refreshment produced by decoction and fermentation of multispecies plants with sugar, has been consumed for many years and is claimed to have multiple medicinal properties. Besides the traditional method, Pru is also manufactured industrially. The present study analyzed the major components of both traditional Pru (TP) and industrial Pru (IP) to reveal their potential application in promoting the health span. We performed desorption electrospray ionization-mass spectrometry (DESI-MS) and acquired mass spectra by scanning over the 50–1200 m/z range in both positive and negative ion modes. Fourier transform ion cyclotron resonance (FTICR) tandem mass spectrometry (MS/MS) was performed for validating the compound assignments. Three important compounds were identified by comparing the MS and MS/MS spectra with reported literature and the online database. One of the identified compounds, gluconic acid, was found to be the most abundant shared metabolite between TP and IP whereas the other two compounds, magnoflorine and levan were exclusively detected in TP. The present study is the first report of component profiling in Cuban traditional and industrial Pru using DESI-MS and FTICR MS/MS, and reveals the potential application of Pru as a health-promoting agent.  相似文献   

9.
AIM: To identify 4 unknown metabolites of benproperine (BPP, 1) in human urine after a po dose, and to investigate the antitussive effect of monohydroxylate metabolites. METHODS: The putative metabolite references were prepared using chemical synthesis. Their structures were identified using 1H and 13C nuclear magnetic resonance, and mass spectrometry. The metabolites in human urine were separated and assayed using liquid chromatography-ion trap mass spectrometry (LC/MS/MS), and further confirmed by comparison of their mass spectra and chromatographic retention times with those of synthesized reference substances. The antitussive effects of metabolites were evaluated on coughs induced by 7.5% citric acid in conscious guinea pigs. RESULTS: 1-[1-Methyl-2-[2-(phenylmethyl)phenoxy]-ethyl]-4-piperidinol (2), 1-[1-methyl-2-[2-(phenylmethyl)phenoxy] ethyl]-3-piperidinol (3) and their glucuronides 4 and 5 were obtained from chemical synthesis. Four urinary metabolites in human urine showed peaks with the same chromatographic retention times and mass spectra in LC/MS/MS as synthetic substances 2, 3, 4 and 5. Phosphates of compounds 2 and 3 prolonged the latency of cough and reduced the number of coughs during the 3 min test using citric acid, but did not reduce the number of coughs during the 5 min immediately after the test in conscious guinea pigs. CONCLUSION: Compounds 2, 3, 4, and 5 were identified as the metabolites of BPP in human urine. Among them, compounds 2 and 3 are inactive in the antitussive effect.  相似文献   

10.
HPLC combined with atmospheric pressure ionization (API) mass spectrometry (MS) has become a very useful tool in the pharmaceutical industry. The technique of HPLC-API/MS/MS is becoming very important for both drug discovery and drug development programs. In the drug discovery area, it has three major uses: (1) rapid, quantitative method development, (2) metabolite identification, and (3) multi-drug analysis. The sensitivity of the API source and the selectivity provided by tandem mass spectrometry (MS/MS) enable rapid, quantitative method development for drugs in plasma. Early information on the metabolism of candidate drugs can guide structural modifications, thereby improving the activity and/or bioavailability.  相似文献   

11.
The biotransformation of the anticholinergic quinazoline alkaloid Desoxypeganine is studied by means of aerobic incubation with the non-induced supernatant obtained at 9000g from rabbit liver homogenates as enzyme source followed by an admixture of NADPH. The metabolites were identified by high-performance liquid chromatography, chemical ionisation mass spectrometry (LC-CI MS) and electron impact mass spectrometry (LC-EI MS) in comparison with synthetic reference compounds and typical ion fragments taken from literature data. C-oxidation of Desoxypeganine to the major metabolite Pegenone was observed as well as the hydroxylation of the alicyclic ring. The incubation mixture followed Michaelis-Menten kinetics characterised by K(m) = 5.8 x 10(-5) mol L(-1) and V(max) = 4.32 nmol Pegenone/min per mg protein or 3.37 nmol Pegenone/min per nmol CYP 450, respectively. These in vitro results demonstrate that the bioactive substance Desoxypeganine is easily oxidised to its ineffective metabolite Pegenone. This provokes a problem for correct dosage finding in formulations for the treatment of Alzheimer's disease and in the therapy of alcoholism and nicotine dependence.  相似文献   

12.
Drug candidates, which have the potential of enhancing athletic performance represent a risk of being misused in elite sport. Therefore, there is a need for early consideration by anti‐doping authorities and implementation into sports drug testing programmes. The hypoxia‐inducible factor (HIF) or prolyl hydroxylase inhibitor (PHI) GSK1278863 represents an advanced candidate of an emerging class of therapeutics that possess substantial potential for abuse in sport due to their capability to stimulate the biogenesis of erythrocytes and, consequently, the individual's oxygen transport capacity. A thorough characterization of such analytes by technologies predominantly used for doping control purposes and the subsequent implementation of the active drug and/or its main urinary metabolite(s) are vital for comprehensive, preventive, and efficient anti‐doping work. In the present study, the HIF PHI drug candidate GSK1278863 (comprising a 6‐hydroxypyrimidine‐2,4‐dione nucleus) and its bishydroxylated metabolite M2 (GSK2391220A) were studied regarding their mass spectrometric behaviour under electrospray ionization (ESI‐MS/MS) conditions. Synthesized reference materials were used to elucidate dissociation pathways by means of quadrupole/time‐of‐flight high resolution/high accuracy tandem mass spectrometry, and their detection from spiked urine and elimination study urine samples under routine doping control conditions was established using liquid chromatography‐electrospray ionization‐tandem mass spectrometry with direct injection. Dissociation pathways to diagnostic product ions of GSK1278863 (e.g. m/z 291, 223, and 122) were proposed as substantiated by determined elemental compositions and MSn experiments as well as comparison to spectra of the bishydroxylated analogue M2. An analytical assay based on direct urine injection using liquid chromatography coupled with tandem mass spectrometry (LC‐MS/MS) was developed for the simultaneous determination of GSK1278863 in combination with its bishydroxylated metabolite M2. Validation parameters including limit of detection (0.5–1 ng/mL), linearity, specificity, ion suppression/enhancement (<10%), intra‐ and inter‐day precision (6–22%) were determined, demonstrating the fitness‐for‐purpose of the assay for doping control screening of urine samples for the presence of the drug candidate and its main metabolite and for expanding current anti‐doping efforts to this new class of therapeutics. However, administration study urine sample analysis suggested the use of M2 rather than the intact drug due to extensive metabolic conversion. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Metabolism studies play a pivotal role in drug discovery and development since the active metabolites is critical to toxicological profile, efficacy and designing new drug candidates. From the instrumentation standpoint, liquid chromatography/mass spectrometry (LC/MS) has secured a central analytical technique for metabolite identification with the continuous developments and improvements in LC and MS technologies. Recently, a wide range of experimental strategies and post acquisition data processing and mining modes have emerged driven by the need to identify and characterize metabolites at ever increasing sensitivity and in ever more complex samples. In this article, the classical and practical mass spectrometry-based techniques, such as low resolution MS (quadruple, ion trap, linear ion trap, etc), high resolution MS (time-of-flight, hybrid time-of-flight instruments, Qrbitrap, Fourier transform ion cyclotron resonance MS, etc) and corresponding post acquisition data processing and mining modes (precursor ion filtering, neutral loss filtering, mass defect filter, isotope-pattern-filtering, etc) are described comprehensively. In addition, this review is also devote to discuss several novel MS technologies (ambient ionization techniques, ion mobility MS, imaging MS, LC/MNR/MS, etc) that hold additional promise for the advancement of metabolism studies.  相似文献   

14.
Analysis of a high-pressure liquid chromatography fraction containing two urinary glucuronide metabolites of doxylamine by thermospray mass spectrometry (TSP/MS) provided [MH]+ ions for each metabolite. TSP/MS/MS of the [MH]+ ions provided a fragment ion characteristic of these metabolites. The results demonstrate the utility of TSP/MS analysis for biologically derived glucuronide metabolites.  相似文献   

15.
In 2012, seized capsules containing white powder were analyzed to show the presence of unknown steroid‐related compounds. Subsequent gas chromatography–mass spectrometry (GC‐MS) and nuclear magnetic resonance (NMR) investigations identified a mixture of 3α‐ and 3β‐ isomers of the novel compound; 3‐chloro‐17α‐methyl‐5α‐androstan‐17β‐ol. Synthesis of authentic reference materials followed by comparison of NMR, GC‐MS and gas chromatography‐tandem mass spectrometry (GC‐MS/MS) data confirmed the finding of a new ‘designer’ steroid. Furthermore, in vitro androgen bioassays showed potent activity highlighting the potential for doping using this steroid. Due to the potential toxicity of the halogenated steroid, in vitro metabolic investigations of 3α‐chloro‐17α‐methyl‐5α‐androstan‐17β‐ol using equine and human S9 liver fractions were performed. For equine, GC‐MS/MS analysis identified the diagnostic 3α‐chloro‐17α‐methyl‐5α‐androstane‐16α,17β‐diol metabolite. For human, the 17α‐methyl‐5α‐androstane‐3α,17β‐diol metabolite was found. Results from these studies were used to verify the ability of GC‐MS/MS precursor‐ion scanning techniques to support untargeted detection strategies for designer steroids in anti‐doping analyses. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Tryptanthrin originally isolated from Isatis tinctoria L. has been characterized to have anti-inflammatory activities through the dual inhibition of cyclooxygenase-2 and 5-lipoxygenase mediated prostaglandin and leukotriene syntheses. To characterize phase I metabolite(s), tryptanthrin was incubated with rat liver microsomes in the presence of NADPH-generating system. One metabolite was identified by liquid chromatography/electrospray ionization-tandem mass spectrometry. M1 could be identified as a metabolite mono-hydroxylated on the aromatic ring of indole moiety from the MS(2) spectra of protonated tryptanthrin and M1. The structure of metabolite was confirmed as 8-hydroxytryptanthrin with a chemically synthesized authentic standard. The formation of M1 was NADPH-dependent and was inhibited by SKF-525A, a general CYP-inhibitor, indicating the cytochrome P450 (CYP)-mediated reaction. In addition, it was proposed that M1 might be formed by CYP 1A in rat liver microsomes from the experiments with enriched rat liver microsomes.  相似文献   

17.
An improved mass defect filter (MDF) method employing both drug and core structure filter templates was applied to the processing of high resolution liquid chromatography/mass spectrometry (LC/MS) data for the detection and structural characterization of oxidative metabolites with mass defects similar to or significantly different from those of the parent drugs. The effectiveness of this approach was investigated using nefazodone as a model compound, which is known to undergo multiple common and uncommon oxidative reactions. Through the selective removal of all ions that fall outside of the preset filter windows, the MDF process facilitated the detection of all 14 nefazodone metabolites presented in human liver microsomes in the MDF-filtered chromatograms. The capability of the MDF approach to remove endogenous interferences from more complex biological matrices was examined by analyzing omeprazole metabolites in human plasma. The unprocessed mass chromatogram showed no distinct indication of metabolite peaks; however, after MDF processing, the metabolite peaks were easily identified in the chromatogram. Compared with precursor ion scan and neutral loss scan techniques, the MDF approach was shown to be more effective for the detection of metabolites in a complex matrix. The comprehensive metabolite detection capability of the MDF approach, together with accurate mass determination, makes high resolution LC/MS a useful tool for the screening and identification of both common and uncommon drug metabolites.  相似文献   

18.
Product ion spectra obtained with liquid chromatography‐electrospray ionization tandem mass spectrometry (LC‐ESI/MS/MS) were applied to the identification of seized drug samples from atmospheric pressure matrix‐assisted laser desorption/ionization product ion spectra (AP‐MALDI‐MS/MS spectra). Data acquisition was performed in the information‐dependent acquisition (IDA) mode, and the substance identification was based on a spectral library previously created with LC‐ESI/MS/MS using protonated molecules as precursor ions. A total of 39 seized drug samples were analyzed with both AP‐MALDI and LC‐ESI techniques using the same triple‐quadrupole instrument (AB Sciex 4000QTRAP). The study shows that ESI‐MS/MS spectra can be directly utilized in AP‐MALDI‐MS/MS measurements as the average fit and purity score percentages with AP‐MALDI were 90% and 85%, respectively, being similar to or even better than those obtained with the reference LC/ESI‐MS/MS method. This fact enables the possibility to use large ESI spectral libraries, not only to ESI analyses but also to analyses with other ionization techniques which produce protonated molecules as the base peak. The data obtained shows that spectral library search works also for analytical techniques which produce multi‐component mass spectra, such as AP‐MALDI, unless isobaric compounds are encountered. The spectral library search was successfully applied to rapid identification of confiscated drugs by AP‐MALDI‐IDA‐MS/MS. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
Abstract

Mass spectrometry plays a pivotal role in drug metabolism studies, which are an integral part of drug discovery and development nowadays. Metabolite identification has become critical to understanding the metabolic fate of drug candidates and to aid lead optimization with improved metabolic stability, toxicology and efficacy profiles. Ever since the introduction of atmospheric ionization techniques in the early 1990s, liquid chromatography coupled with mass spectrometry (LC/MS) has secured a central role as the predominant analytical platform for metabolite identification as LC and MS technologies continually advanced. In this review, we discuss the evolution of both MS technology and its applications over the past 50 years to meet the increasing demand of drug metabolism studies. These advances include ionization sources, mass analyzers, a wide range of MS acquisition strategies and data mining tools that have substantially accelerated the metabolite identification process and changed the overall drug metabolism landscape. Exemplary applications for characterization and identification of both small-molecule xenobiotics and biological macromolecules are described. In addition, this review discusses novel MS technologies and applications, including xenobiotic metabolomics that hold additional promise for advancing drug metabolism research, and offers thoughts on remaining challenges in studying the metabolism and disposition of drugs and other xenobiotics.  相似文献   

20.
Zolpidem and zopiclone (Z‐compounds) are non‐benzodiazepine hypnotics of new generation that can be used in drug‐facilitated sexual assault (DFSA). Their determination in biological fluids, mainly urine, is of primary importance; nevertheless, although they are excreted almost entirely as metabolites, available methods deal mainly with the determination of the unmetabolized drug. This paper describes a method for the determination in urine of Z‐compounds and their metabolites by ultra‐high‐pressure liquid chromatography/tandem mass spectrometry (UHPLC‐MS/MS) and UHPLC coupled with high resolution/high accuracy Orbitrap® mass spectrometry (UHPLC‐HRMS). The metabolic profile was studied on real samples collected from subjects in therapy with zolpidem or zopiclone; the main urinary metabolites were identified and their MS behaviour studied by MS/MS and HRMS. Two carboxy‐ and three hydroxy‐ metabolites, that could be also detected by gas chromatography/mass spectrometry (GC‐MS) as trimethylsylyl derivatives, have been identified for zolpidem. Also, at least one dihydroxilated metabolite was detected. As for zopiclone, the two main metabolites detected were N‐demethyl and N‐oxide zopiclone. For both substances, the unmetabolized compounds were excreted in low amounts in urine. In consideration of these data, a UHPLC‐MS/MS method for the determination of Z‐compounds and their main metabolites after isotopic dilution with deuterated analogues of zolpidem and zopiclone and direct injection of urine samples was set up. The proposed UHPLC‐MS/MS method appears to be practically applicable for the analysis of urine samples in analytical and forensic toxicology cases, as well as in cases of suspected DFSA. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号