首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
3D measurement of optical attenuation is of interest in a variety of fields of biomedical importance, including spectrophotometry, optical projection tomography (OPT) and analysis of 3D radiation dosimeters. Accurate, precise and economical 3D measurements of optical density (OD) are a crucial step in enabling 3D radiation dosimeters to enter wider use in clinics. Polymer gels and Fricke gels, as well as dosimeters not based around gels, have been characterized for 3D dosimetry over the last two decades. A separate problem is the verification of the best readout method. A number of different imaging modalities (magnetic resonance imaging (MRI), optical CT, x-ray CT and ultrasound) have been suggested for the readout of information from 3D dosimeters. To date only MRI and laser-based optical CT have been characterized in detail. This paper describes some initial steps we have taken in establishing charge coupled device (CCD)-based optical CT as a viable alternative to MRI for readout of 3D radiation dosimeters. The main advantage of CCD-based optical CT over traditional laser-based optical CT is a speed increase of at least an order of magnitude, while the simplicity of its architecture would lend itself to cheaper implementation than both MRI and laser-based optical CT if the camera itself were inexpensive enough. Specifically, we study the following aspects of optical metrology, using high quality test targets: (i) calibration and quality of absorbance measurements and the camera requirements for 3D dosimetry; (ii) the modulation transfer function (MTF) of individual projections; (iii) signal-to-noise ratio (SNR) in the projection and reconstruction domains; (iv) distortion in the projection domain, depth-of-field (DOF) and telecentricity. The principal results for our current apparatus are as follows: (i) SNR of optical absorbance in projections is better than 120:1 for uniform phantoms in absorbance range 0.3 to 1.6 (and better than 200:1 for absorbances 1.0 to 3.5 with the test target and a novel absorbance range extension method), (ii) the spatial resolution is shown to be at worst 0.5 mm (and often better than this) with an associated DOF of 8 cm, (iii) the SNR of uniform phantoms in reconstruction domain is above 80:1 (one standard deviation) over an absorbance dynamic range of 0.3 to 1.6, (iv) the apparatus is telecentric and without distortion. Finally, a sample scan and reconstruction of a scan of a PRESAGE dosimeter are shown, demonstrating the capabilities of the apparatus.  相似文献   

2.
Recent progress in tissue engineering led to the development of completely biological human vessels grown from the patients own cells. Those tissue-engineered blood vessels (TEBV) are grown on an individual basis at high costs per item, and therefore require close growth monitoring and quality control. We designed and tested an optical transillumination tomography system using red laser light to image weakly scattering specimens, such as TEBV. Fixated TEBV were imaged and the results compared to optical coherence tomography. This preliminary scanner prototype had an in-plane resolution of 50 m and allowed to see small inhomogeneities and defects in the samples. Tissue attenuation was found to be 70 cm–1. Main advantages of the transillumination tomography scanner over optical coherence tomography were the inexpensive instrumentation and the potential to rapidly acquire complete 3D sections with a CCD camera. The prototype presented in this study provides a basis to further improve image quality and acquisition speed.  相似文献   

3.
介绍了近红外光断层成像的理论基础和最新研究进展.近红外光断层成像可以提供生物组织的功能性图像,因此在脑功能研究、乳腺癌的诊断、婴儿大脑连续监测等方面取得了成功.文中介绍了广泛使用的成像系统的三种实现方法,以及光子在生物体中传播的基础理论,重点介绍了基于散射理论和非线性最优化法的图像重建算法.介绍了近红外光断层成像的发展方向:与其它成像设备相结合、组织各向异性的研究、对比剂的使用、三维成像的研究等.最后指出了目前所存在的没有很好解决的问题:模拟数据和仪器测量数据的匹配,以及模型边界的设定等.  相似文献   

4.

Background  

Confocal laser scanning microscopy has revolutionized cell biology. However, the technique has major limitations in speed and sensitivity due to the fact that a single laser beam scans the sample, allowing only a few microseconds signal collection for each pixel. This limitation has been overcome by the introduction of parallel beam illumination techniques in combination with cold CCD camera based image capture.  相似文献   

5.
High-resolution imaging provides a significant means for accurate material modulus estimation and mechanical characterization. Within the realm of in vivo soft tissue characterization, particularly on small biological length scales such as arterial atherosclerotic plaques, optical coherence tomography (OCT) offers a desirable imaging modality with higher spatial resolution and contrast of tissue as compared with intravascular ultrasound (IVUS). Based on recent advances in OCT imaging and elastography, we present a fully integrated system for tissue elasticity reconstruction, and assess the benefits of OCT on the distribution results of four representative tissue block models. We demonstrate accuracy, with displacement residuals on the order of 10−6 mm (more than 3 orders of magnitude less than average calculated displacements), and high-resolution estimates, with the ability to resolve inclusions of 0.15 mm diameter.  相似文献   

6.
Because of a much higher dynamic range of flat panel detectors, patient dose can vary without change of image quality being perceived by radiologists. This condition makes optimization (OT) of radiation protection undergoing digital radiography (DR) more complex, while a chance to reduced patient dose also exists. In this study, we evaluated the difference of patient radiation and image rejection before and after OT to identify if it is necessary to carry out an OT procedure in a routine task with DR. The study consisted of a measurement of the dose area product (DAP) and entrance surface dose (ESD) received by a reference group of patients for eight common radiographic procedures using the DR system before and after OT. Meanwhile image rejection data during two 2-month periods were collected and sorted according to reason. For every radiographic procedure, t tests showed significant difference in average ESD and DAP before and after OT (p < 0.005). The ESDs from most examinations before OT were three times higher than that after OT. For DAPs, the difference is more significant. Image rejection rate after OT is significantly lower than that before OT (χ 2 = 36.5, p < 0.005). The substantial reductions of dose after OT resulted from appropriate mAs and exposure field. For DR patient dose, less than recommended diagnostic reference level can meet quality criteria and clinic diagnosis.  相似文献   

7.
The aim of this study was to develop wireless Picture Archiving and Communication System (PACS) device and to analyze its effect on image transfer from portable imaging modalities to the main PACS server. Using a laptop computer equipped with wireless local area network (LAN), the authors developed a wireless PACS device with DICOM modality worklist and DICOM storage server modules. This laptop computer could be easily fixed to portable imaging modalities such as ultrasound machines. From May to August 2007, 112 portable examinations were evaluated. Of these, 62 were done with wireless LAN-based PACS device, and 50 were done without wireless PACS device. To evaluate the impact of the wireless LAN-based PACS device on productivity and workflow, we analyzed the mean time delay and standard deviations (SD) both in cases where wireless LAN-based PACS device was used and in cases where it was not used. Statistical analysis was performed using a t test. The mean time interval from image acquisition to storage in the main PACS when the wireless LAN-based PACS device was used was 342.4 s (5 min and 42.4 s, SD = 509.2 s). When the wireless PACS was not used, the mean time interval was 2,305.5 s (38 min and 25.5 s, SD = 1,371.8 s). The mean time interval was statistically different between the two groups (t test, p < 0.001). The wireless LAN-based PACS device could help in reducing the storage intervals of images obtained by portable machines and in promoting effective and rapid treatment of patients who have undergone portable imaging examinations.  相似文献   

8.
X-ray fluorescence computed tomography (XFCT) is an emerging imaging modality that allows for the reconstruction of the distribution of nonradioactive elements within a sample from measurements of fluorescence x-rays produced by irradiation of the sample with monochromatic synchrotron radiation. XFCT is not a transmission tomography modality, but rather a stimulated emission tomography modality and thus correction for attenuation of the incident and fluorescence photons is essential if accurate images are to be obtained. In this work, we develop and characterize an approximate analytic approach to image reconstruction with attenuation correction in XFCT that is applicable when the incident beam attenuation is uniform and when a factor involving fluorescence attenuation and solid angle effects satisfies a certain approximation. When these conditions hold, we demonstrate that the XFCT imaging equation reduces to the exponential Radon transform, which can be readily inverted. The necessary approximation worsens as the total fluorescence attenuation in the sample grows, but the approach is found to be relatively robust as the approximation breaks down. In a long-axis, small solid angle geometry the proposed approach performs comparably to a previously proposed, more computationally expensive approximate method across a range of attenuation levels. In a short-axis, large solid angle geometry, the proposed approach is found to outperform this previous method.  相似文献   

9.
We report a novel device to analyze cell-surface interactions under controlled fluid-shear conditions on well-characterised protein surfaces. Its performance is demonstrated by studying platelets interacting with immobilised von Willebrand Factor at arterial vascular shear rates using just 200 μL of whole human blood per assay. The device’s parallel-plate flow chamber, with 0.1 mm2 cross sectional area and height-to-width ratio of 1:40, provides uniform, well-defined shear rates along the chip surface with negligible vertical wall effects on the fluid flow profile while minimizing sample volumetric flow. A coating process was demonstrated by ellipsometry, atomic force microscopy, and fluorescent immunostaining to provide reproducible, homogeneous, uniform protein layers over the 0.7 cm2 cell-surface interaction area. Customized image processing quantifies dynamic cellular surface coverage vs. time throughout the whole-blood-flow assay for a given drug treatment or disease state. This device can track the dose response of anti-platelet drugs, is suitable for point-of-care diagnostics, and is designed for adaptation to mass manufacture.  相似文献   

10.
Recently, the field of photoacoustic tomography has experienced considerable growth. Although several commercially available pure optical imaging modalities, including confocal microscopy, two-photon microscopy, and optical coherence tomography, have been highly successful, none of these technologies can penetrate beyond approximately 1 mm into scattering biological tissues because all of them are based on ballistic and quasiballistic photons. Consequently, heretofore there has been a void in high-resolution optical imaging beyond this depth limit. Photoacoustic tomography has filled this void by combining high ultrasonic resolution and strong optical contrast in a single modality. However, it has been assumed in reconstruction of photoacoustic tomography until now that ultrasound propagates in a boundary-free infinite medium. We present the boundary conditions that must be considered in certain imaging configurations; the associated inverse solutions for image reconstruction are provided and validated by numerical simulation and experiment. Partial planar, cylindrical, and spherical detection configurations with a planar boundary are covered, where the boundary can be either hard or soft. Analogously to the method of images of sources, which is commonly used in forward problems, the ultrasonic detectors are imaged about the boundary to satisfy the boundary condition in the inverse problem.  相似文献   

11.
Imaging modality can aid retrieval of medical images for clinical practice, research, and education. We evaluated whether an ensemble classifier could outperform its constituent individual classifiers in determining the modality of figures from radiology journals. Seventeen automated classifiers analyzed 77,495 images from two radiology journals. Each classifier assigned one of eight imaging modalities—computed tomography, graphic, magnetic resonance imaging, nuclear medicine, positron emission tomography, photograph, ultrasound, or radiograph—to each image based on visual and/or textual information. Three physicians determined the modality of 5,000 randomly selected images as a reference standard. A “Simple Vote” ensemble classifier assigned each image to the modality that received the greatest number of individual classifiers’ votes. A “Weighted Vote” classifier weighted each individual classifier’s vote based on performance over a training set. For each image, this classifier’s output was the imaging modality that received the greatest weighted vote score. We measured precision, recall, and F score (the harmonic mean of precision and recall) for each classifier. Individual classifiers’ F scores ranged from 0.184 to 0.892. The simple vote and weighted vote classifiers correctly assigned 4,565 images (F score, 0.913; 95% confidence interval, 0.905–0.921) and 4,672 images (F score, 0.934; 95% confidence interval, 0.927–0.941), respectively. The weighted vote classifier performed significantly better than all individual classifiers. An ensemble classifier correctly determined the imaging modality of 93% of figures in our sample. The imaging modality of figures published in radiology journals can be determined with high accuracy, which will improve systems for image retrieval.  相似文献   

12.
In this paper we investigate the application of anatomical prior information to image reconstruction in optical tomography. We propose a two-stage reconstruction scheme. The first stage is a reconstruction into a low-dimensional region basis, obtained by segmentation of an image obtained by an independent imaging modality, into areas of distinct tissue types. The reconstruction into this basis recovers global averages of the optical tissue parameters of each region. The recovered distribution of region values provides the starting point for the second stage of the reconstruction into the spatially resolved final image basis. This second step recovers localized perturbations within the regions. The benefit of this method is the improved stability and faster convergence of the imaging process compared with a direct reconstruction into a spatially resolved basis. This is particularly important for the simultaneous reconstruction of absorption and scattering images, where ambiguities between the two parameters and the resulting problems of crosstalk require a good initial parameter distribution to ensure convergence of the reconstruction. We use a segmented brain model obtained from a magnetic resonance image as a test case to compare the performance of the two-stage reconstruction and the direct reconstruction from a flat prior, and show that the former achieves superior results in the recovery of localized absorption and scattering hot spots embedded in the background tissue.  相似文献   

13.
Establishment of immune tolerance is crucial to protect humans against asthma. Promyelocytic leukemia zinc finger (PLZF) is an emerging suppressor of inflammatory responses. CCL21-CCR7 signaling mediates tolerance development. However, whether PLZF and CCL21-CCR7 are required for the development of asthma tolerance is unknown. Here, we found that Zbtb16 (coding PLZF) and Ccl21 were upregulated in OVA-induced asthma tolerance (OT) lungs by RNA-seq. PLZF physically interacted with GATA3 and its expression was higher in GATA3+ Th2 cells and ILC2s in OT lungs. Zbtb16-knockdown in lymphocytes promoted the differentiation of CD3e+CD4+ T cells, particularly those producing IL-4 and IL-5. Moreover, iNKT cells with high expression of PLZF were recruited into the lungs via draining lymph nodes during tolerance. Blockade of CCL21-CCR7 signaling in OT mice decreased the PLZF+ cell population, abolished CCR7-induced PLZF+ iNKT recruitment to the lungs, enhanced Th2responses and exacerbated lung pathology. In OT mice, respiratory syncytial virus (RSV) infection impeded PLZF+ cell and CCR7+PLZF+ iNKT cellrecruitment to the lungs and increased airway resistance. Collectively, these results indicate that PLZF could interact with GATA3 and restrain differentiation of IL-4- and IL-5-producing T cells, iNKT cells with high PLZF expression are recruited to the lungs via CCL21-CCR7 signaling to facilitate the development of asthma tolerance.  相似文献   

14.
Computational fluid dynamics (CFD) methods based on three-dimensional (3D) vessel reconstructions have recently been shown to provide prognostically relevant hemodynamic data. However, the geometry reconstruction and the assessment of clinically relevant hemodynamic parameters may depend on the used imaging modality. In this study, the silicon model of the left coronary artery (LCA) was acquired with a biplane angiography. The geometry reconstruction was done using commercial CAAS 5.2 QCA 3D software and compared with an original geometry. The original model is an optically digitized post-mortem vessel cast. The biplane angiography reconstruction achieved a Hausdorff surface distance of 0.236 mm to the original geometry that is comparable with results obtained in our earlier study for computed tomography (CT) and magnetic resonance imaging (MRI) reconstructions. Steady flow simulations were performed with a commercial CFD program FLUENT. A comparison of the calculated wall shear stress (WSS) shows good correlation for histograms (r = 0.97) and good agreement among the four modalities with a mean WSS of 0.65 Pa in the original model, of 0.68 Pa in the CT-based model, of 0.67 Pa in the MRI based model, and of 0.69 Pa in the biplane angiography-based model. We can conclude that the biplane angiography-based reconstructions can be used for the WSS profiling of the coronary arteries.  相似文献   

15.
State-of-the-art and upcoming camera-driven, implanted artificial vision systems provide only tens to hundreds of electrodes, affording only limited visual perception for blind subjects. Therefore, real time image processing is crucial to enhance and optimize this limited perception. Since tens or hundreds of pixels/electrodes allow only for a very crude approximation of the typically megapixel optical resolution of the external camera image feed, the preservation and enhancement of contrast differences and transitions, such as edges, are especially important compared to picture details such as object texture. An Artificial Vision Support System (AVS2) is devised that displays the captured video stream in a pixelation conforming to the dimension of the epi-retinal implant electrode array. AVS2, using efficient image processing modules, modifies the captured video stream in real time, enhancing ‘present but hidden’ objects to overcome inadequacies or extremes in the camera imagery. As a result, visual prosthesis carriers may now be able to discern such objects in their ‘field-of-view’, thus enabling mobility in environments that would otherwise be too hazardous to navigate. The image processing modules can be engaged repeatedly in a user-defined order, which is a unique capability. AVS2 is directly applicable to any artificial vision system that is based on an imaging modality (video, infrared, sound, ultrasound, microwave, radar, etc.) as the first step in the stimulation/processing cascade, such as: retinal implants (i.e. epi-retinal, sub-retinal, suprachoroidal), optic nerve implants, cortical implants, electric tongue stimulators, or tactile stimulators.  相似文献   

16.
Here we present an ultrahigh-speed Fourier-domain optical coherence tomography (OCT) that records the OCT spectrum in streak mode with a high-speed area scan camera, which allows higher OCT imaging speed than can be achieved with a line-scan camera. Unlike parallel OCT techniques that also use area scan cameras, the conventional single-mode fiber-based point-scanning mechanism is retained to provide a confocal gate that rejects multiply scattered photons from the sample. When using a 1000 Hz resonant scanner as the streak scanner, 1,016,000 A-scans have been obtained in 1 s. This method's effectiveness has been demonstrated by recording in vivo OCT-image sequences of embryonic chick hearts at 1000 frames/s. In addition, 2-megahertz OCT data have been obtained with another high speed camera.  相似文献   

17.
Fluorescence molecular tomography (FMT) is an imaging modality that exploits the specificity of fluorescent biomarkers to enable 3D visualization of molecular targets and pathways in vivo in small animals. Owing to the high degree of absorption and scattering of light through tissue, the FMT inverse problem is inherently ill-conditioned making image reconstruction highly susceptible to the effects of noise and numerical errors. Appropriate priors or penalties are needed to facilitate reconstruction and to restrict the search space to a specific solution set. Typically, fluorescent probes are locally concentrated within specific areas of interest (e.g., inside tumors). The commonly used L(2) norm penalty generates the minimum energy solution, which tends to be spread out in space. Instead, we present here an approach involving a combination of the L(1) and total variation norm penalties, the former to suppress spurious background signals and enforce sparsity and the latter to preserve local smoothness and piecewise constancy in the reconstructed images. We have developed a surrogate-based optimization method for minimizing the joint penalties. The method was validated using both simulated and experimental data obtained from a mouse-shaped phantom mimicking tissue optical properties and containing two embedded fluorescent sources. Fluorescence data were collected using a 3D FMT setup that uses an EMCCD camera for image acquisition and a conical mirror for full-surface viewing. A range of performance metrics was utilized to evaluate our simulation results and to compare our method with the L(1), L(2) and total variation norm penalty-based approaches. The experimental results were assessed using the Dice similarity coefficients computed after co-registration with a CT image of the phantom.  相似文献   

18.
Wang Q  Liang X  Liu Z  Zhang Q  Carney P  Jiang H 《Medical physics》2008,35(1):216-224
Diffuse optical tomography (DOT) is a promising functional imaging modality due to its ability to provide quantitative and dynamic tomographic imaging of brain functions. This pilot study was conducted to demonstrate that DOT can be used to visualize the changes in local hemodynamics during seizures. The focal seizure was induced by microinjection of 10 microl of 1.9 mM GABAA antagonist bicuculline methiodide (BMI) into the left parietal neocortex of male Harlen Sprague-Dawley rats, which was imaged by a multispectral continuous-wave DOT system. Functional images were obtained by our finite element based image reconstruction algorithm. A series of dynamic 2D images were obtained to delineate the time course of concentration changes of oxyhaemoglobin, deoxyhaemoglobin, and total hemoglobin in the rat brain during seizure onset. The BMI induced epileptic foci were localized and observed over time from the images obtained. Our results suggest that diffuse optical tomography may be a promising modality for epilepsy imaging due to its ability to localize epileptic foci as well as its potential to map the functional activity in the area of human cerebral cortex in planning of epilepsy surgery.  相似文献   

19.
A feasibility study of ultrahigh-resolution full-field optical coherence tomography (FF-OCT) for a subcellular-level imaging of human donor corneas is presented. The FF-OCT system employed in this experiment is based on a white light interference microscope, where the sample is illuminated by a thermal light source and a horizontal cross-sectional (en face) image is detected using a charge coupled device (CCD) camera. A conventional four-frame phase-shift detection technique is employed to extract the interferometric image from the CCD output. A 95-nm-broadband full-field illumination yields an axial resolution of 2.0 microm, and the system covers an area of 850 microm x 850 microm with a transverse resolution of 2.4 microm using a 0.3-NA microscope objective and a CCD camera with 512 x 512 pixels. Starting a measurement from the epithelial to the endothelial side, a series of en face images was obtained. From detected en face images, the epithelial cells, Bowman's layer, stromal keratocyte, nerve fiber, Descemet's membrane, and endothelial cell were clearly observed. Keratocyte cytoplasm, its nuclei, and its processes were also separately detected. Two-dimensional interconnectivity of the keratocytes is visualized, and the keratocytes existing between collagen lamellaes are separately extracted by exploiting a high axial resolution ability of FF-OCT.  相似文献   

20.
Many applications in radiography require, or would benefit from, the ability to translate, i.e. move, an optical image in the detector plane. In this paper, we describe the design and characterization of a prism-based optical image translator for insertion into existing XRII-video imaging systems. A pair of prisms rotatable about the optical axis form a very compact in-line optical image translator for installation in the parallel light path between an x-ray image intensifier and its video camera. Rotation of the prisms translates the XRII optical image on the camera target. With the addition of x-ray and light collimators to limit the image to a single video line, x-ray streak images may be acquired. By rotating an object in the x-ray beam during a streak, a complete computed tomography (CT) data set may be acquired. This image translator can translate an image anywhere in the focal plane of a 50-mm-output lens within a 40-mm-diam circle. The prisms have an aperture of 50 mm, permitting an optical speed of F/2 with a 50-mm output lens. The design is insensitive to angular alignment errors. This image translator is achromatic, since the spectral width of the output phosphorus of image intensifiers is sufficient to introduce blurring in a nonacrhomatic design. A prism-based image translator introduces image distortion, since the prisms do not operate at minimum deviation. The distortion is less than 4% over all parts of a typical detector area, and less than 1% in the central region of the image.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号