首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 15 毫秒
1.
Blocking neural activity with intraocular tetrodotoxin (TTX) hinders regeneration of goldfish optic axons, and prevents the refinement of the retinotopic map that is formed in the optic tectum. The latter effect is not observed with TTX treatment confined to the first two weeks of regeneration, but is produced when the TTX treatment is delayed until after this time. In the present study, 2-dimensional gel electrophoresis was used to analyse the effects of two different schedules of TTX treatment (0–9 days or 14–32 days) on incorporation of [3H]proline into individual proteins conveyed by fast axonal transport in the optic nerve. The labelling of many of these proteins was somewhat reduced by either schedule of TTX treatment, but a number of proteins showed a larger reduction as a result of the delayed treatment. These included some glycoproteins, as well as a protein of about 45 kDa and pI 4.5, which shows greatly increased synthesis during regeneration, and which is probably identical to the ‘growth-associated protein’ GAP-43. By contrast, cytoskeletal proteins (- and ß-tubulin and actin) were unaffected by the delayed TTX treatment. It is possible that the differential effects of the early and delayed TTX treatments on various transported proteins may account for differences in the effect of these treatments on the retinotectal projection.  相似文献   

2.
Anatomical studies suggest that regenerating optic axons which invade the ipsilateral lobe of the optic tectum following ablation of the contralateral lobe compete with resident optic axons for synaptic sites on tectal neurons. Invader optic axons are initially uniformly distributed over the entire tectal lobe. With time, the invader and resident optic axons progressively segregate so that the invaders are localized in bands or islands separated by areas that are innervated mainly by the residents. When the resident optic axons are destroyed by ablating the eye opposite to the experimental eye, the invader axons remain continuously distributed and the segregation process apparently does not occur. We investigated the relationship between the segregation process and the recovery of visual function by the invader axons. Visual recovery was measured with a behavioral method in which the index of vision was the occurrence of a branchial suppression response to a moving spot of red light that was classically conditioned to an electric shock stimulus. The minimum time to reappearance of vision following ablation of the contralateral lobe of the tectum in two-eye fish was similar to the reported time of onset of the segregation process. Visual recovery occurred sooner when the opposite eye was removed. The restored vision in both groups disappeared following subsequent ablation of the remaining lobe of the tectum. These results suggest that the goldfish optic tectum normally contains no free synaptic sites for anomalous optic afferents and that the invader axons must compete for targets with the resident optic afferents. The invader axons can apparently remain unconnected or non-functional for several weeks following their arrival in the ipsilateral tectal lobe.  相似文献   

3.
The physiology and biochemistry of the in vitro goldfish optic tectum are examined. Following surgical removal of the intact optic tectum by severing its connectives, the tectal explant is maintained in a brain slice chamber in a specified medium for up to 24 hours. Electrophysiological studies show that the in vitro tectum displays the same response properties to optic nerve stimulation as does an in vivo tectum. Concurrent biochemical studies that RNA and protein synthesis is actively maintained for at least 17 hrs in vitro. Thus both biochemical and electrophysiological measurements indicate that the integrity of the tectal explant can be maintained in vitro making it a suitable model system for investigations of a variety of neurobiological questions.  相似文献   

4.
Retinotectal topography is established during development and relies on the sequential recruitment of glutamate receptors within postsynaptic tectal cells. NMDA receptors underpin plastic changes at early stages when retinal ganglion cell (RGC) terminal arbors are widespread and topography is coarse; AMPA/kainate receptors mediate fast secure neurotransmission characteristic of mature circuits once topography is refined. Here, we have examined the relative contributions of these receptors to visually evoked activity in normal adult goldfish, in which retinotectal topography is constantly adjusted to compensate for the continual neurogenesis and the addition of new RGC arbors. Furthermore, we examined animals at two stages of optic nerve regeneration. In the first, RGC arbors are widespread and receptive fields large resulting in coarse topography; in the second, RGC arbors are pruned to reduce receptive fields leading to refined topography. Antagonists were applied to the tectum during multiunit recording of postsynaptic responses. Normal goldfish have low levels of NMDA receptor-mediated activity and high levels of AMPA/kainate. When coarse topography has been restored, NMDA receptor-mediated activity is increased and that of AMPA/kainate decreased. Once topography has been refined, the balance of NMDA and AMPA/kainate receptor-mediated activity returns to normal. The data suggest that glutamatergic neurotransmission in normal adult goldfish is dual with NMDA receptors fine-tuning topography and AMPA receptors allowing stable synaptic function. Furthermore, the normal operation of both receptors allows a response to injury in which the balance can be transiently reversed to restore topography and vision.  相似文献   

5.
The distribution of normal and regenerating retinal fibers and synapses was studied on tectum in goldfish by light (LM) and electron microscopy (EM). Since labeling of the early regenerating fibers was previously reported to be difficult, a new 'cold-fill' HRP labeling protocol was developed, which labeled regenerating optic fibers and terminals on tectum as early as 14 days after nerve crush when they first arrive on tectum. In order to characterize the laminar distribution of optic afferents in normal fish and in fish regenerating for 14-240 days, EM photomontages of areas 14 microns wide by 160 microns deep through the HRP-labeled primary optic innervation layer (S-SO-SFGS) were constructed. The time points in regeneration that were examined spanned the period in which others have shown that an initially diffuse retinotopic map becomes spatially restricted. At the LM level regenerating optic fibers were restricted to the optic lamina. They reinnervated tectum in an anterior to posterior sequence as previously seen with autoradiography. In addition, at 14 days, some "pioneer" optic fascicles were found to have already grown to posterior tectum where they gave rise to branches with boutonlike terminations and growth-cone-like processes. Form the ultrastructural analysis it was clear that optic fibers and terminals observed strict laminar boundaries as they partitioned themselves in the optic laminae (S, SO and SFGS) in both normal and regenerating fish. The behavior of optic fibers was lamina specific with respect to synapse formation and the orientation of fiber outgrowth. As early as 14 days regeneration, optic fibers made synapses onto the four types of postsynaptic profiles observed in normal fish. Numerous optic terminals were labeled at 14 days, and there appeared to be no waiting period between fiber ingrowth to the SO and synapse formation in the S and SFGS. At 14-60 days, atypical synaptic contacts which appear to be nascent synapses were made by labeled optic fibers in fascicles and by growth-cone-like processes. By 21-30 days, the density of optic terminals was high and there were many more fasciculated optic fibers in the SFGS than normal as late as 350 days. These findings suggest that optic fiber lamination is highly constrained by tectal cues, that fibers rapidly regenerate many synaptic terminals before retinotopic map refinement is complete, and that fibers have a strong affinity for each other.  相似文献   

6.
Injury to the optic axons of goldfish elicits dramatic changes in the cell bodies of the neurons from which these axons arise, the retinal ganglion cells. The changes include a large increase in cell size and in synthesis and axonal transport of protein. The cells begin to return to normal about 3 weeks after the injury, when the axons invade the contralateral (homotopic) lobe of the optic tectum, and recovery is essentially complete by 8-10 weeks after the lesion. However, if the homotopic lobe of the tectum was removed at the time of nerve crush, we found that the cell body reaction was greatly prolonged. The cells remained enlarged, and [3H]proline incorporation and fast axonal transport of protein remained elevated, until at least 10-12 weeks after nerve crush, although by this time most of the regenerating axons had probably regained their normal length and many had entered the remaining ipsilateral (heterotopic) lobe of the tectum. The cells showed partial recovery by the latest time tested, 26 weeks after nerve crush, when the projections from the two eyes had segregated into separate bands in the heterotopic tectal lobe.  相似文献   

7.
Summary An association between axonal regeneration and failure of the blood-brain barrier to plasma proteins has been studied in the goldfish. Vascular permeability was examined by fluorescence microscopy following injection of rhodamine B-labelled bovine serum albumin. Axonal regeneration was studied in adjacent silver-stained sections. Following transection of axons by crushing one optic nerve, it was found that a zone of increased vascular permeability accompanied the advancing front of regenerating axons through the optic nerve, chiasma and tract and into the stratum opticum of the tectum.These observations lend support to a hypothesis in which it is postulated that axons are able to regenerate only when plasma proteins are available to their growth-cones. However, it is also possible that the increased permeability is a consequence rather than a cause of the presence of regenerated axons.  相似文献   

8.
EphA receptors and their ligands the ephrin-As, expressed as retinal and tectal gradients, are required for the development of retino-tectal topography [Neuron 25 (2000) 563] and its restoration during goldfish optic nerve regeneration [Mol. Cell. Neurosci. 25 (2004) 56]. We have reported previously that, during regeneration, a transient EphA3/A5 gradient is formed by differential expression across the entire retinal ganglion cell (RGC) population [Neurosci. Abs. 33 (2003) 358.2; Exp. Neurol. 183 (2003) 593]. In retino-recipient tectal layers, ephrin-A2 is normally expressed by only a sub-population of cells, but during regeneration, there is a graded increase with more expressing cells caudally than rostrally [Exp. Neurol. 166 (2000) 196]. Here, we examine the characteristics of tectal ephrin-A2 expression during regeneration. We report that the level of ephrin-A2 expression is comparable for all ephrin-A2-positive cells in normal animals and during regeneration. Using double-labelling immunohistochemistry for ephrin-A2 and specific cell markers (NeuN for neurons, GA5 for astrocytes, NN-1 for microglia/endothelial cells and 6D2 for oligodendrocytes), we demonstrate that ephrin-A2-expressing cells, as in normal animals, are exclusively neuronal. Moreover, double labelling with BrdU showed that ephrin-A2 is expressed in resident cells and not those generated during optic nerve regeneration [Brain Res. 854 (2000) 178, 153 (1978) 345].  相似文献   

9.
The number of optic synapses in the half tectum of goldfish was counted by using an improved HRP-labeling protocol and a columnar sampling method that spanned the entire optic innervation layer, S-SO-SFGS. It was previously found by using this procedure in intact tectum that the normal number of optic synapses was regenerated by 30 days and maintained thereafter even in the absence of impulse activity. This suggested that the number of synapses in this system was intrinsically fixed. In order to examine whether this limit was imposed by optic fibers or by target cells, optic synapses were counted in surgically halved tecta which received compressed optic projections consisting of regenerating optic fibers from the entire retina. We reasoned that if synapse number is a function of the number of afferents, then there should be twice the normal number of optic synapses per column; on the other hand, if their number is fixed by target, then their number per column should be normal. We found that the number of optic (labeled) synapses was normal in sample columns from fish at 70 days and 160 days after optic nerve crush. Thus, retinal ganglion cells, on average, formed half as many synapses on the half tectum compared to intact tectum, indicating the number of optic synapses was limited by the tectum. The number of nonoptic (unlabeled) synapses was also found to be normal. By contrast, the S-SO-SFGS was found to be 88-103% thicker compared to normal fish, apparently because of a 20-fold increase in the number of optic fibers. As a result, the density of synapses was about half normal in half tecta, and so, in contrast to synapse number, synaptic density is not constrained during regeneration. We infer from these data that optic fibers compete for limited numbers of postsynaptic sites during regeneration and suggest that this competition promotes neural map refinement and the various plasticities described for this projection.  相似文献   

10.
Intraocular injections of tetrodotoxin were used to block activity for 27 days in normal fish and for the first 27 or 31 days of regeneration in fish with one optic nerve crushed. Synaptic activity was then assessed by a current source-density analysis of field potentials evoked by optic nerve shock at different times following the TTX treatment. In normal fish, the lack of activity for 4 weeks had no significant effect on the maintenance of synaptic strength. Likewise, in fish with nerve crush, lack of activity did not prevent the regenerating optic fibers from forming synapses that were nearly as effective as those formed in controls injected with the citrate buffer vehicle. The earliest synapses were formed at the rostromedial corner of the tectum (where the tract enters) at 20 days after nerve crush, when fibers had not yet reached the caudal areas. By 28 days synaptic potentials could be recorded everywhere on the surface of the tectum in both controls and TTX injected fish. However, the latency of the responses with TTX were longer, suggesting a smaller caliber of fiber, which is consistent with an earlier finding of decreased axonal transport in TTX fish. Maturation of the regenerating fibers proceeded slowly in both TTX and control fish. After more than 5 months, the projections were nearly normal but still not completely normal.  相似文献   

11.
Eph tyrosine kinase receptors and their ligands, the ephrins, play a key role in the establishment of retinotectal topography during development. Tectal up-regulation of ephrin-A2 in goldfish, coincident with the reestablishment of a retinotectal map, suggests a similar role during optic nerve regeneration. Here we report a complementary study of EphA3, EphA5 and ephrin-A2 expression in the retina. EphA3 and EphA5 are transiently up-regulated as ascending naso-temporal gradients, whereas ephrin-A2 remains uniform. The expression profiles differ from those in developing chick and mouse, suggesting that different combinations of retinal Eph receptors and ligands can generate topographic guidance information.  相似文献   

12.
13.
The projection of the nucleus isthmi to the ipsilateral optic tectum was examined in normal goldfish. This was compared to the projection in animals in which the entire visual field had been induced to compress onto a rostral half tectum by caudal tectal ablation. The isthmo-tectal projection was examined by making localized injections of horseradish peroxidase into the optic tecta and observing the patterns of labeled cells within the nucleus isthmi. The teleost nucleus isthmi consists of a cell sparse medulla covered by a cellular cortex, which is thick on the rostral, medial, and dorsal surfaces of the nucleus. Almost all isthmic cells projecting to the tectum were located in the area of thick cortex. In normal fish, rostral tectal injections labeled cells in the rostroventral portion of the thick cortex; injections midway in the rostrocaudal tectal axis labeled more caudodorsally located cells, and caudal tectal injections labeled cells a little further caudally in extreme dorsal cortex. The rostroventral to caudodorsal isthmic axis was therefore seen to project rostrocaudally along the tectum. This topography contrasts somewhat with the situation seen in amphibia where the rostrocaudal tectal axis receives projections from the rostrocaudal isthmic axis. In fish with half-tectal ablations, injections near the caudal edge of the half tectum (at a site that had originally been midtectal) labeled cells that had previously projected to caudal tectum. Rostral tectal injections in fish with compression of the visual field gave a normal pattern of labeled isthmic cells. The results indicate that a topographically ordered isthmo-tectal projection exists in goldfish that may be induced to compress onto a half tectum.  相似文献   

14.
Acetoxycycloheximide (AXM) or dibutyryl cyclic AMP (dbcAMP) was injected unilaterally into the vitreous humor of the eye beginning 5-6 days after bilateral optic nerve crush. Injections were repeated every 12-24 h for a total of 3-5 days; goldfish were sacrificed 10 days after lesioning the nerves. At a low dosage of AXM (0.1 microgram daily for 5 days), the mean outgrowth distance in treated neurons was 60% less than in contralateral control neurons. At a high dosage (0.3 microgram daily for 4 days), outgrowth was immediately blocked in both treated and contralateral control axons. Dibutyryl cyclic AMP, in a dose of 5 microM every 12 h for 3 days, produced a 38% reduction in outgrowth distance, associated with a 30% reduction in protein synthesis by the retinal ganglion cells and a 73% reduction in the amount of protein carried by the fast component of axonal transport.  相似文献   

15.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号