首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
5-HT(1A) receptor function can be assessed in rat hippocampal and cortical membrane preparations as agonist-stimulated [35S]GTPgammaS binding. Membranes were preincubated in vitro with N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ). R(+)-8-hydroxy-2-(di-n-propylamino)tetralin [R(+)-8-OH-DPAT]-stimulated [35S]GTPgammaS binding and [3H]8-OH-DPAT binding assays were used to assess 5-HT(1A) receptor function and density, respectively. EEDQ decreased both R(+)-8-OH-DPAT-stimulated [35S]GTPgammaS and [3H]8-OH-DPAT binding in hippocampal and cortical membranes. The E(max) but not the EC(50) of R(+)-8-OH-DPAT to stimulate [35S]GTPgammaS binding was decreased by EEDQ in both preparations. Additionally, the IC(50) for EEDQ to reduce R(+)-8-OH-DPAT-stimulated [35S]GTPgammaS and [3H]8-OH-DPAT binding was the same for both brain regions in both assays. In contrast to EEDQ alone, agonist-stimulated [35S]GTPgammaS binding was not reduced in hippocampal membranes preincubated with EEDQ and the 5-HT(1A) receptor antagonist N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-2-pyridinyl- cyclohexanecarboxamide maleate (WAY 100,635), suggesting that EEDQ acts directly on the receptor. Due to parallel reductions in receptor density and maximal functional response, it is concluded that there is little or no reserve for 5-HT(1A) receptor coupling to G(alpha) in these preparations. In addition, the sensitivity of hippocampal and cortical 5-HT(1A) receptors to inactivation by EEDQ in vitro is the same.  相似文献   

2.
Binding sites for [3H]5-hydroxytryptamine (5-HT) in postmortem human frontal cortex, hippocampus and amygdala were studied by displacement with 5-HT selective drugs. The results demonstrated the selective labelling of 5-HT1-like sites by [3H]5-HT in the cortex, with little or no labelling of 5-HT2 or 5-HT3 sites. Self-displacement of the binding of [3H]5-HT is consistent with the presence of a single population of sites, indicating that 5-HT is non-selective for the 5-HT1 subtypes. Around 40% of the 5-HT1 sites in the frontal cortex and amygdala were of the 5-HT1A subtype, in contrast to 60% in the hippocampus. The drug RU 24969 consistently displaced with, a high affinity, a greater proportion of [3H]5-HT sites than did 8-OH-DPAT in all three regions of the brain. The nature of these additional sites was not established. A small proportion (less than 10%) of [3H]5-HT sites in the frontal cortex appeared to be of the 5-HT1C subtype, as these sites were displaced with high affinity by mianserin.  相似文献   

3.
Previous studies have demonstrated the existence of a large receptor reserve for agonists at somatodendritic 5-hydroxytryptamine1A (5-HT1A) serotonin receptors in the raphe nuclei of the rat. 5-HT1A agonists with anxiolytic properties (e.g., buspirone, gepirone, and ipsapirone) display full intrinsic activity at these receptors but are partial agonists at postsynaptic 5-HT1A receptors, which suggests that the latter sites may be devoid of a receptor reserve. In the present studies, this was directly determined by examining the relationship between receptor occupancy and response at postsynaptic 5-HT1A receptors, in rat hippocampus, mediating the inhibition of forskolin-stimulated adenylyl cyclase activity, using the method of partial irreversible receptor inactivation. Rats were treated with vehicle or the irreversible antagonist N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ), and 24 hr later hippocampi were removed for saturation analysis of [3H]8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT) binding to 5-HT1A receptors or for adenylyl cyclase assays. EEDQ (1 and 6 mg/kg) dose-dependently reduced the maximal number of [3H]8-OH-DPAT binding sites by 68.5 and 80%, respectively, without altering the Kd. Concentration-response curves were generated for inhibition of forskolin-stimulated adenylyl cyclase activity by 5-HT and the selective 5-HT1A agonist N,N-dipropyl-5-carboxamidotryptamine (DP-5-CT). EEDQ treatment dose-dependently reduced the maximal inhibitory effect of 5-HT [percentage of inhibition: control, 23.6; EEDQ (1 mg/kg), 13.4; EEDQ (6 mg/kg), 8.9], without altering either the slope factor (1.01) or the EC50 (96.4 nM). Analogous results were obtained with DP-5-CT [percentage of maximal inhibition: control, 24.1; EEDQ (1 mg/kg), 15.2; EEDQ (6 mg/kg), 10.7), again without changes in slope factor (0.89) or EC50 (9.9 nM). Analysis of double-reciprocal plots of equieffective concentrations of agonist, followed by calculation of fractional receptor occupancy, revealed a linear relationship between receptor occupancy and response for both 5-HT and DP-5-CT (i.e., an absence of receptor reserve). The receptor specificity of the effect of EEDQ was demonstrated in two ways. First, it was shown that pretreatment of rats with the selective 5-HT1A partial agonist BMY 7378 (10 mg/kg) before EEDQ afforded substantial protection (about 75%) against loss of the inhibitory effect of DP-5-CT on forskolin-stimulated adenylyl cyclase activity. Second, EEDQ did not alter the inhibition of forskolin-stimulated adenylyl cyclase activity induced by the adenosine A1 receptor agonist phenylisopropyladenosine (PIA).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
The present study was to investigate some aspects of the 5-HT1A receptor system in adult-aged rats (50-60 days) that were either exposed to prenatal stress (PS) or not exposed to prenatal stress (CON). In the first series of experiments, rats were pretreated with vehicle, the 5-HT1A agonist 8-OH-DPAT or the 5-HT1A antagonist, WAY-100635 and exposed to 120 acoustic startle stimuli (95 dB) using a 30 s inter-trial interval. 8-OH-DPAT produced a dose-dependent increase in acoustic startle responding in CON and PS rats, with the PS rats exhibiting greater responding than CON rats. WAY-100635 depressed startle amplitudes only in the CON group. Finally, radioligand binding studies using [3H]-8-OH-DPAT indicated a significant decrease in receptor density in hippocampal homogenates from PS rats but no difference in [3H]-8-OH-DPAT binding from homogenates of the amygdala. Our results are consistent with earlier reports indicating that prenatal stress alters the serotonergic system. Specifically, our results indicate that gestational exposure to chronic mild stress enhances startle amplitudes following 8-OH-DPAT administration, prevents the depression in startle amplitudes following WAY-100635 administration and reduces [3H]-8-OH-DPAT binding in hippocampal preparations.  相似文献   

5.
8-Hydroxy-(di-n-propylamino)tetralin (8-OH-DPAT) has antidepressant-like effects in rats and selectively reduces presynaptic 5-HT1A function a day after administration. In the present study, the effect of 8-OH-DPAT (1 mg/kg s.c.) pretreatment on presynaptic (raphe nuclei) and postsynaptic (frontal cortex and hippocampus) [3H]8-OH-DPAT binding was studied. Bmax values were markedly reduced in the raphe, but not in the hippocampus and frontal cortex. Kd values were unchanged. Electrical stimulation of the dorsal raphe (300 microA, 1 ms, 20 Hz, 30 min) significantly increased 5-hydroxyindoleacetic acid in the frontal cortex, but not in the amygdala or the nucleus accumbens and caused smaller increases in the rest of the brain. The increase in the frontal cortex was significantly potentiated one day after giving 8-OH-DPAT. These results confirm the ability of 8-OH-DPAT to desensitise presynaptic 5-HT1A receptors and suggest that this may lead to a loss of feedback control so that, on neuronal stimulation, the increase of 5-HT function is enhanced. This effect may underlie the antidepressant-like action of 8-OH-DPAT pretreatment, i.e. its ability to oppose restraint-induced defects in locomotion on placement in an open field one day later. A requirement of presynaptic 5-HT for this behavioural effect is consistent with its prevention by the 5-HT synthesis inhibitor parachlorophenylalanine.  相似文献   

6.
The role of 5-HT1A and 5-HT2 receptors in mediating foot-shock-induced ultrasonic vocalisation has been studied in rats. Furthermore, behavioural effects were correlated to receptor reserves in the brain by means of receptor inactivation with N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ). The dose-dependent inhibition of ultrasonic vocalisation by the 5-HT precursor, L-5-hydroxy-L-tryptophan (110-450 micromol/kg), was abolished by pretreatment with the 5-HT1A/1B antagonist, (-)-penbutolol (27 micromol/kg), and the 5-HT2A/2C antagonist, ritanserin (10 micromol/kg). The inhibitory actions of the 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) and the 5-HT2A/5-HT2C. agonist, 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) were reversed by the 5-HT1A antagonist, (N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl) cyclohexanecarboxamide (WAY-100635), and the 5-HT2A antagonist, (+/-)alpha-(2,3-dimethoxyphenyl)-1-[2-(4-fluorphenyl)ethyl]-4-pipe ridine-methanol (MDL 100151), respectively. Pretreatment with EEDQ (24 h, subcutaneous [s.c.]) inhibited foot-shock-induced ultrasonic vocalisation (effective dose50=0.95 micromol/kg) and decreased [3H]-8-OH-DPAT and [3H]-ketanserin binding in the brain. Pretreatment with WAY-100635 (0.3-20 micromol/kg) 20 min prior to EEDQ administration (1.3 micromol/kg, s.c.) did not reverse the EEDQ-induced inhibition of ultrasonic vocalisation but protected the 5-HT1A receptors against EEDQ inactivation. Pretreatment with MDL 100151 (0.83-54 micromol/kg) 20 min prior to EEDQ administration both reversed the EEDQ-induced inhibition of ultrasonic vocalisation and protected the 5-HT2A receptors against EEDQ inactivation. These findings demonstrate that 5-HT1A and 5-HT2 receptors are involved in the regulation of ultrasonic vocalisation in rats. However, the function of 5-HT1A and 5-HT2 receptors in this model seems to differ as vocalisation was preserved after protection of 5-HT2 but not 5-HT1A receptors.  相似文献   

7.
Quantitative receptor autoradiography and behavioral studies were employed to investigate whether the aqueous extract of Albizzia julibrissin (AEAJ) specifically targets serotonergic systems in rat brain. AEAJ was orally administered at 50 and 200 mg/kg to adult male SD rats for 7 days. Treatment with AEAJ (200 mg/kg) significantly increased time-spent in open arms and the number of open arm entries in an elevated plus-maze (EPM) versus saline controls (P<0.05). Moreover, those effects of AEAJ were blocked by WAY 100635, a 5-HT1A receptor antagonist. Following behavioral evaluation, the binding of [3H]8-hyroxy-2-(di-n-propylamino) tertalin ([3H]8-OH-DPAT) to 5-HT1A receptors in rat brain was investigated. [3H]8-OH-DPAT binding after AEAJ (200 mg/kg) treatment showed a marked increase in the frontal cortex, hippocampus (CA2 and CA3 regions) and in the lateral septum versus vehicle-treated controls. No changes of [3H]8-OH-DPAT binding were observed in the caudate putamen, dentate gyrus and CA1 areas of the hippocampus or in the hypothalamus. In the dorsal raphe region, [3H]8-OH-DPAT binding was significantly reduced by AEAJ (50 mg/kg) treatment but was unchanged by AEAJ (200 mg/kg). These results suggest that the anxiolytic-like effect of A. julibrissin is mediated by the changes of serotonergic nervous system, especially 5-HT1A receptors.  相似文献   

8.
A new photoaffinity ligand derived from the potent 5-HT agonist, 8-OH-DPAT, has been synthesized. In the dark, this compound, 8-methoxy-2-(N-n-propyl,N-3-(2-nitro-4-azidophenyl)aminopropyl) aminotetralin or 8-methoxy-3'-NAP-amino-PAT, displaced [3H]8-OH-DPAT and [3H]5-HT bound to 5-HT1A and 5-HT1 sites in hippocampal membranes with IC50 values of 6.6 and 18.1 nM respectively. The apparent affinity of 8-methoxy-3'-NAP-amino-PAT for the 5-HT1A binding sites was at least 20 times higher than for the other 5-HT receptor sites (5-HT2 and 5-HT3) or the dopamine-related [3H]spiperone and [3H]7-OH-DPAT binding sites. Under UV irradiation (lambda = 366 nm), 8-methoxy-3'-NAP-amino-PAT produced an irreversible blockade of 5-HT1A sites which could be prevented by prior site occupancy by a saturating concentration (10 microM) of reversible 5-HT ligands such as 5-HT itself, 8-OH-DPAT or LSD. The blockade of 5-HT1A binding sites was concentration-dependent, and two successive irradiations of rat brain membranes in the presence of 30 nM 8-methoxy-3'-NAP-amino-PAT were found to be more efficient that a single exposure to 100 nM of the photosensitive ligand. Thus, a 55-60% irreversible blockade of 5-HT1A binding sites was achieved following 2 cumulative irradiations of hippocampal membranes with 30 nM 8-methoxy-3'-NAP-amino-PAT. Under such conditions, cortical 5-HT2 receptor binding sites as well as striatal 5-HT3 and dopamine-related binding sites remained unaltered.  相似文献   

9.
This ex vivo study in rat frontal cortex determined the influence of 5-HT receptor agonists and antagonists on EEDQ-induced depletion of 5-HT2A binding sites and reduction in their functional coupling to phospholipid hydrolysis. Twenty-four hours after EEDQ (6 mg/kg) administration a marked reduction (66%) of cortical 5-HT2A binding sites with no change in binding affinity was observed. The 5HT2A antagonists ritanserin (1 mg/kg), ketanserin (1 and 5 mg/kg), metergoline (3 mg/kg) or the 5HT2A agonist, DOI (3 and 10 mg/kg) also significantly reduced (by 15-44%) these binding sites 24 h after injection. Thirty minute pretreatment with ritanserin, ketanserin, metergoline or DOI (at the doses above) afforded 49-65% protection against the loss of 5-HT2A binding sites induced by EEDQ (6 mg/kg). DOI (10 mg/kg) pretreatment (-24 h) decreased by 26% the accumulation of [3H]inositol phosphates (IPs) evoked by 5-HT (100 microM), but did not affect that produced by DOI (100 microM). Ketanserin (5 mg/kg, -24 h) decreased 5-HT- and DOI-induced IP formation by 65% and 53%, respectively. The EEDQ (6 mg/kg, -24 h)-evoked reductions (-50%) of 5-HT- and DOI-induced IP formation were not altered by DOI (10 mg/kg) or ketanserin (5 mg/kg) given 30 min before EEDQ. G-protein-stimulated IP accumulation was unaffected by EEDQ (6 mg/kg). Overall, EEDQ reduces 5-HT2A binding sites and function in rat frontal cortex, whereas its effects on binding were attenuated by various 5-HT receptor antagonists and agonists, its effects on function was unaltered by these drugs.  相似文献   

10.
1. Because changes 5-HT(1A) receptor number do not occur following repeated agonist treatment, we hypothesized that the basis for 5-HT(1A) receptor desensitization involves changes in receptor-G protein coupling. We measured the effect of repeated agonist administration on 5-HT(1A) receptor-stimulated [(35)S]-GTPgammaS binding in forebrain areas, (i.e. anterior cingulate cortex, lateral septum, hippocampus, entorhinal cortex), and serotonergic cell body areas, the dorsal and median raphe nuclei. 2. Following treatment of rats with (+/-)8-OH-DPAT (1 mg kg(-1), s.c.) for 7 or 14 days, 5-HT(1A) receptor-stimulated [(35)S]-GTPgammaS binding was significantly attenuated in both the dorsal and median raphe nuclei. 3. 5-HT(1A) receptor-stimulated [(35)S]-GTPgammaS binding was significantly attenuated in the CA(1) region of the hippocampus after 7, but not 14 days of 8-OH-DPAT administration. 5-HT(1A) receptor-stimulated [(35)S]-GTPgammaS binding was not altered in other forebrain areas examined. 4. The binding of [(3)H]-MPPF to 5-HT(1A) receptor sites was not altered in any brain region examined following repeated agonist administration, suggesting that the observed changes in (+/-)8-OH-DPAT-stimulated [(35)S]-GTPgammaS binding were not due to changes in 5-HT(1A) receptor number. 5. Our data indicate that in serotonergic cell body areas the regulation of presynaptic 5-HT(1A) receptor function following repeated agonist administration occurs at the level of receptor-G protein interaction. In forebrain areas, however, the regulation of postsynaptic 5-HT(1A) receptor sensitivity appears not to be at the level of receptor-G protein coupling.  相似文献   

11.
The irreversible receptor antagonist N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) was used to determine the relationship between receptor occupancy and response at central 5-hydroxytryptamine1A (5-HT1A) serotonin receptors mediating the inhibition of serotonin synthesis in rat cortex and hippocampus. Rats were treated with vehicle or EEDQ (2 or 6 mg/kg) and 24 hr later dose-response curves were constructed for inhibition of 5-hydroxytrytophan (5-HTP) accumulation (after decarboxylase inhibition with NSD-1015) by the selective 5-HT1A agonists 8-hydroxy-2(di-n-propylamino)tetralin (8-OH-DPAT) (0.01-3 mg/kg), buspirone (0.1-7.5 mg/kg), and ipsapirone (0.1-6.25 mg/kg) and the 5-HT1A agonist/antagonist BMY 7378 (0.015-5 mg/kg). In vehicle-pretreated rats, a similar maximal inhibition of 5-HT synthesis (range, 52-59%) was observed in both brain areas with 8-OH-DPAT, buspirone, and ipsapirone. These three agonists were also more potent in reducing 5-HTP accumulation in the cortex than in the hippocampus (ED50, 8-OH-DPAT, 14 and 30 microgram/kg; buspirone, 0.42 and 0.63 mg/kg; ipsapirone, 0.44 and 1.26 mg/kg, respectively). In the cortex, EEDQ treatment shifted the dose-response curves for 8-OH-DPAT, buspirone, and ipsapirone 8.6-, 2.0-, and 2.8-fold to the right, respectively. Corresponding rightward shifts in the hippocampus were smaller, 6.0-, 1.6-, and 2.1-fold, respectively. The EEDQ-induced shifts in the dose-response curves were accompanied by reductions in maximal response. In contrast, whereas the maximal inhibition of cortical 5-HTP accumulation by BMY 7378 (55%) was similar to that obtained with the agonists, maximal response in the hippocampus was much smaller (32%). Furthermore, in both brain regions EEDQ reduced the maximal response to BMY 7378 without shifting the dose-response curves. Analysis of the data by the double-reciprocal method of Furchgott, followed by calculation of fractional receptor occupancy for each dose of agonist, revealed a nonlinear relationship between receptor occupancy and response for 8-OH-DPAT, buspirone, and ipsapirone in both brain regions, demonstrating the presence of a large receptor reserve. For BMY 7378, in contrast, linear relationships were obtained. Because 5-HT1A receptor-mediated regulation of 5-HT synthesis appears to be mediated by somatodendritic autoreceptors on 5-HT neurons in the midbrain raphé nuclei, the results suggest that these autoreceptors possess a large receptor reserve for agonists. The relevance of these findings for the mechanism of action of nonbenzodiazepine anxiolytics is discussed.  相似文献   

12.
The kinetic and pharmacological characteristics of the binding of [3H]5-HT (serotonin), [3H]8-OH-DPAT (8-OH-2-di-n-propylaminotetraline), [3H]LSD, [3H]ketanserin and [3H]mesulergine to membranes from frontal cortex, hippocampus and choroid plexus of pig brain were studied. The binding of these ligands to frontal cortex and hippocampus demonstrated the presence of 5-HT1 and 5-HT2 sites in both tissues, although hippocampus was richer in 5-HT1 (subtype 5-HT1A) sites. [3H]5-HT, [3H]mesulergine and [3H]LSD labeled the pig choroid plexus with high affinity. The pharmacological profiles of [3H]5-HT and [3H]mesulergine binding to this tissue were closely comparable. Ligands reported as selective for 5-HT1A, 5-HT1B or 5-HT2 subtypes did not show high affinity for these binding sites. Therefore, these 5-HT binding sites in pig choroid plexus could be named 5-HT1C. Other drugs with a high affinity for these sites were methysergide and mianserine. In pig frontal cortex, [3H]5-HT labeled the different subtypes of 5-HT1 sites. In contrast, [3H]mesulergine bound in pig frontal cortex to a small population of sites with pharmacological properties similar to those of the choroid plexus 5-HT1C sites. Possible physiological functions in which these sites might be involved are discussed.  相似文献   

13.
Vilazodone has been reported to be an inhibitor of 5-hydoxytryptamine (5-HT) reuptake and a partial agonist at 5-HT1A receptors. Using [35S]GTPgammaS binding in rat hippocampal tissue, vilazodone was demonstrated to have an intrinsic activity comparable to the 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT). Vilazodone (1-10 mg/kg p.o.) dose-dependently displaced in vivo [3H]DASB (N,N-dimethyl-2-(2-amino-4-cyanophenylthio)benzylamine) binding from rat cortex and hippocampus, indicating that vilazodone occupies 5-HT transporters in vivo. Using in vivo microdialysis, vilazodone (10 mg/kg p.o.) was demonstrated to cause a 2-fold increase in extracellular 5-HT but no change in noradrenaline or dopamine levels in frontal cortex of freely moving rats. In contrast, administration of 8-OH-DPAT (0.3 mg/kg s.c.), either alone or in combination with a serotonin specific reuptake inhibitor (SSRI; paroxetine, 3 mg/kg p.o.), produced no increase in cortical 5-HT whilst increasing noradrenaline and dopamine 2 and 4 fold, respectively. A 2-fold increase in extracellular 5-HT levels (but no change in noradrenaline or dopamine levels) was observed after combination of the 5-HT(1A) receptor antagonist, N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(pyridinyl)cyclohexanecarboxamide) (WAY-100635; 0.3 mg/kg s.c.) and paroxetine (3 mg/kg p.o.). In summary, vilazodone behaved as a high efficacy partial agonist at the rat hippocampal 5-HT1A receptors in vitro and occupied 5-HT transporters in vivo. In vivo vilazodone induced a selective increase in extracellular levels of 5-HT in the rat frontal cortex. This profile was similar to that seen with a 5-HT1A receptor antagonist plus an SSRI but in contrast to 8-OH-DPAT either alone or in combination with paroxetine.  相似文献   

14.
The effects of chronic treatment with imipramine or lithium on serotonin (5-HT) receptor subtypes were analyzed in the frontal cortex, hippocampus and choroid plexus of rat brain by quantitative receptor autoradiographic procedures, using radioligands [3H]-5-HT, [3H]-8-hydroxy-2-(di-n-propylamino)tetralin ([3H]-8-OH-DPAT), [125I]-iodocyanopindolol ([125I]-CYP), [3H]-mesulergine and [125I]-7-amino-8-iodo-ketanserin ([125I]-ketanserin) or [3H]-spiperone. Chronic i.p. administration of imipramine (20 mg/kg/day for 21 days) decreased the densities of 5-HT1, 5-HT1A, 5-HT1C and 5-HT2 sites in the frontal cortex, hippocampus and choroid plexus. Lithium (2 mEq/kg/day for 21 days) also decreased the densities of 5-HT1, 5-HT1C and 5-HT2 sites in the frontal cortex, and the densities of those including 5-HT1A sites in the hippocampus and choroid plexus. Imipramine and lithium very markedly decreased the density of 5-HT1C sites in the choroid plexus. We propose that methods employing quantitative receptor autoradiographic analysis can be used to characterize and understand the local effects of these drugs on 5-HT receptor subtypes.  相似文献   

15.
The Fawn-Hooded strain of rats exhibits a hemorrhagic disorder, known as platelet storage pool deficiency. In addition to the platelet dysfunction, there is an altered response to certain serotonin drugs. To assess the characteristics of the binding to 5-HT1A and 5-HT2 receptors in this strain, regions of the brain from Fawn-Hooded, Sprague-Dawley and Wistar male rats were examined. The drug [3H]8-OH-DPAT was used to label 5-HT1A receptors and the Kd values for frontal cortex, hippocampus, striatum, hypothalamus and brainstem were similar in all three strains of rat. As with the 5-HT1A receptors, no differences were observed in the Kd values for 5-HT2 receptors, in any of the regions examined, among the three strains. However, the Bmax for the binding of [3H]8-OH-DPAT in the striatum and brainstem of Fawn-Hooded rats was less than in the Sprague-Dawley and Wistar animals. Furthermore, 5-HT2 receptors displayed a greater Bmax value in the striatum and in the frontal cortex of Fawn-Hooded animals, compared to Sprague-Dawley and Wistar rats. These differences in receptors are consistent with previous studies in which Fawn-Hooded rats were found to have altered serotonergic function, relative to Wistar and Sprague-Dawley animals.  相似文献   

16.
1 High affinity binding of [3H]-dopamine and [3H]-5-hydroxytryptamine ([3H]-5-HT) was measured in membrane fractions prepared from cerebral cortex, amygdala, hypothalamus, thalamus and brain stem of rats of either sex and of rats which had been either neonatally castrated or androgenized. 2 Binding was measured in rats of 8, 20 and 30 days old as well as in adults. 3 [3H]-dopamine bound with approximately 30 nM affinity ahd [3H]-5-HT with approximately 10 nM affinity to all areas of the brain tested. The relative inhibitory effects of haloperidol, apomorphine, cis-flupenthixol, unlabelled dopamine, noradrenaline, spiroperone, (+)-butaclamol, fluphenazine, pimozide and 5-HT on [3H]-dopamine binding in the cerebral cortex was consistent with receptor status for the binding components there as were the relative inhibitory effects of methysergide, dopamine, fluoxetine and ouabain on [3H]-5-HT binding in the fore brain. 4 Neither [3H]-dopamine nor [3H]-5-HT binding varied with the state of the sexual cycle in females. 5 There were no sexual differences in [3H]-5-HT binding in any of the brain areas tested nor was it affected by neonatal androgenization or neonatal castration. 6 [3H]-dopamine binding was greater in the cerebral cortex and amygdala of male than of female rats. These differences could be mimicked artificially by neonatal castration of males (female type development) or neonatal androgenization of females (male type development). Sexual dimorphism did not become overt until 20 days of age and did not extend to hypothalamus, thalamus or brain stem. 7 It is concluded that neonatal sex differences in exposure to steroid hormones has permanent effects on the number of dopamine binding sites in the cerebral cortex and is suggested that this sexual dimorphism extends to the amygdala.  相似文献   

17.
The 5-hydroxytryptamine1A (5-HT1A) receptor subtype seems to be of importance in the pathogenesis of depression and in the mode of action of antidepressants. In this study, behavioural experiments were performed in rats after oral administration of desipramine for 18-20 days, followed by an acute injection of the selective 5-HT1A receptor agonist, 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), either systemically or intrathecally. Chronic administration of desipramine prolonged the behavioural 5-HT syndrome in the animals injected systemically with 8-OH-DPAT. Treatment with desipramine was also found to potentiate and prolong the antinociceptive effect of an acute injection, systemically or intrathecally, of 8-OH-DPAT in the increasing temperature hot plate test. After systemic administration of 8-OH-DPAT, the colonic temperature was lowered similarly in the desipramine-treated group and in controls, whereas an intrathecal injection of 8-OH-DPAT resulted in a fall in the colonic temperature in the desipramine-treated group only. In vitro receptor binding studies, using [3H]8-OH-DPAT as the ligand, showed a statistically significant reduction of Kd and Bmax in the frontal cortex and of Kd in the spinal cord, after treatment with desipramine. No changes of Kd and Bmax were found in the hippocampus after this treatment. Thus, desipramine, administered chronically, resulted in a functional up-regulation of the 5-HT1A-receptors, both spinally and supraspinally, whereas in the in vitro receptor binding, a slight down-regulation or no change was found. It seems therefore that the results of in vitro receptor binding studies do not necessarily reflect the functional state of the neuronal system.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The effects of single or repeated administration of the racemic mixture of 3,4-methylenedioxymethamphetamine (MDMA; 20 mg/kg, s.c.) on the number (Bmax) of serotonin (5-HT) uptake sites as determined by [3H]paroxetine binding and the concentration of 5-HT and its major metabolite, 5-hydroxyindoleacetic acid (5-HIAA), were measured in the frontal cortex and blood platelets of rats 1 and 7 days following its administration. A single injection of MDMA significantly (P less than 0.05) decreased the number of [3H]paroxetine binding sites as well as the concentrations of 5-HT and 5-HIAA in the frontal cortex but not in platelets 7 days following administration. Repeated injections of MDMA (twice daily for 4 days) significantly (P less than 0.05) decreased the number of 5-HT uptake sites and the concentration of 5-HT and 5-HIAA in the frontal cortex but not in platelets 7 days following administration. Pretreatment with the 5-HT2/5-HT1C antagonist, ketanserin, inhibited the MDMA-induced decrease in 5-HT and 5-HIAA concentrations and the number of [3H]paroxetine binding sites in the frontal cortex 7 days following a single administration. These data are suggestive that blood platelets are less sensitive than brain tissue to the 5-HT-depleting effects of MDMA. The ability of ketanserin pretreatment to block MDMA-induced decreases in [3H]paroxetine binding sites in the frontal cortex is suggestive that 5-HT2/5-HT1C receptors may be involved in the neurotoxic effects of MDMA.  相似文献   

19.
Administration of p-chloroamphetamine (PCA, 10 mg/kg i.p. on two occasions) to rats resulted in a severe depletion of [3H]paroxetine binding sites, a measure of presynaptic serotonergic terminals, in both cortex and hippocampus, but did not affect [3H]8-hydroxy-2-(di-n-propylamino)tetralin [( 3H]8-OH-DPAT) binding or 5-hydroxytryptamine (5-HT)-induced inhibition of forskolin-stimulated adenylate cyclase in hippocampal membranes. Administration of either imipramine (15 mg/kg i.p. for 2 weeks) or lithium (0.2% for 2 weeks) to PCA-treated rats did not affect [3H]8-OH-DPAT binding but reduced the degree of inhibition of forskolin-stimulated adenylate cyclase by 5-HT in hippocampal membranes. It is concluded that the effects of imipramine and Li+ on 5-HT1A receptor-mediated responses in the hippocampus are exerted postsynaptically, possibly at a level distal to the receptor.  相似文献   

20.
The present study was undertaken to investigate the hyperphagic responses to the 5-HT1A receptor agonist, 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), in young and adult rats fed either a powder diet or pellets. In the young rats, 8-OH-DPAT (500 micrograms/kg s.c.) increased the consumption of pellets--but not powder--during the 2 h following drug administration. On the other hand, 8-OH-DPAT did not promote hyperphagia in adult rats presented with either pellets or a powdered diet. The influence of the 5-HT1A agonist on midbrain serotonin (5-hydroxytryptamine, 5-HT) turnover was examined. Administration of 8-OH-DPAT (500 micrograms/kg s.c.) induced similar decreases in 5-HT turnover, as reflected by the ratio of 5-hydroxyindoleacetic acid (5-HIAA) to 5-HT, in young and adult rats 1 h after administration. Nevertheless, some metabolic responses to 8-OH-DPAT were found to be influenced by age. Young and adult rats were injected with a low dose of 8-OH-DPAT (50 micrograms/kg s.c.) to specifically test the presynaptic regulation of 5-HT turnover. Again, midbrain 5-HIAA to 5-HT ratios were decreased to the same extent in both young and adult rats. The results suggest that (i) gnawing may be an important parameter in the food consumption that is triggered by a high dose of 8-OH-DPAT, (ii) analysis of the presynaptic effects of 8-OH-DPAT on 5-HT turnover cannot solely explain the influence of the agonist on feeding behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号