共查询到20条相似文献,搜索用时 15 毫秒
1.
Liang Kong DDsc Yingying Sun DDsc Kaijin Hu DDsc Dehua Li DDsc Rui Hou DDsc Jin Yang MSc & Baolin Liu DDsc 《Journal of prosthodontics》2008,17(4):286-293
Purpose: To evaluate continuous and simultaneous variations of implant diameter and length for an experimental cylinder implant.
Materials and Methods: A finite element model of a mandible segment with implant was created. The range of implant diameter (D) was set from 2.5 to 5.0 mm, and that of implant length (L) from 6.0 to 16.0 mm. The maximum Von Mises stresses in the mandible were evaluated, and the sensitivity of the stresses in the mandible to the variables was also evaluated.
Results: Under axial load, the maximum von Mises stresses in cortical and cancellous bones decreased by 73.3% and 69.4%, respectively, with D and L increasing. Under buccolingual load, those decreased 83.8% and 79.2%, respectively. When D exceeded 3.9 mm and L exceeded 10.0 mm, the tangent slope rate of the maximum von Mises stress response curve ranged from −1 to 0. The variation of the maximum von Mises stresses in the mandible was more sensitive to D than to L.
Conclusions: Buccolingual force is apt to be influenced by the two implant parameters; implant diameter and length favor stress distribution in cortical bone and cancellous bone, respectively. Implant diameter exceeding 3.9 mm and implant length exceeding 10.0 mm are the optimal choice for type B/2 bone in a cylinder implant. The implant diameter is more important than length in reducing bone stress. 相似文献
Materials and Methods: A finite element model of a mandible segment with implant was created. The range of implant diameter (D) was set from 2.5 to 5.0 mm, and that of implant length (L) from 6.0 to 16.0 mm. The maximum Von Mises stresses in the mandible were evaluated, and the sensitivity of the stresses in the mandible to the variables was also evaluated.
Results: Under axial load, the maximum von Mises stresses in cortical and cancellous bones decreased by 73.3% and 69.4%, respectively, with D and L increasing. Under buccolingual load, those decreased 83.8% and 79.2%, respectively. When D exceeded 3.9 mm and L exceeded 10.0 mm, the tangent slope rate of the maximum von Mises stress response curve ranged from −1 to 0. The variation of the maximum von Mises stresses in the mandible was more sensitive to D than to L.
Conclusions: Buccolingual force is apt to be influenced by the two implant parameters; implant diameter and length favor stress distribution in cortical bone and cancellous bone, respectively. Implant diameter exceeding 3.9 mm and implant length exceeding 10.0 mm are the optimal choice for type B/2 bone in a cylinder implant. The implant diameter is more important than length in reducing bone stress. 相似文献
2.
目的:建立天然牙-种植体联合支持固定桥的三维有限元模型.探讨不同种植体长度对天然牙-种植体联合支持固定桥的修复体上部结构、天然牙等应力分布的影响.方法:对模型施加200N垂直向集中的力和200N颊舌向集中的力,运用CT扫描、三维有限元分析方法等手段,对比观察不同长度的种植体对天然牙及其修复体上部结构应力分布的影响.结果... 相似文献
3.
目的应用Ansys Workbench DesignXplorer优化设计模块,探讨圆柱状V形螺纹种植体螺距变化对颌骨和
种植体应力大小的影响,为临床设计和选择最佳的螺纹参数提供理论依据。方法建立了包含圆柱状V形螺纹种植
体的颌骨骨块三维有限元模型,设定螺纹螺距( P)范围为0.5~1.6 mm,观察P变化对颌骨和种植体Equivale(nt EQV)
应力峰值的影响。结果在垂直向加载中皮质骨、松质骨和种植体的EQV应力峰值增幅分别为7.1%、123.4%和
28.7%;在颊舌向加载中皮质骨、松质骨和种植体的EQV增幅分别为2.8%、28.8%和14.9%;在各种加载情况下,当
变量P大于0.8 mm时,对颌骨及种植体的EQV应力峰值响应曲线曲率位于- 1和1之间。结论松质骨的应力大小更
易受到螺距的影响;螺纹对垂直加载时的力学传递影响更明显;螺距在保护种植体垂直受力时起着更为重要的作
用;圆柱状螺纹种植体螺距最佳设计应不小于0.8 mm,但同时应避免过大的螺距。 相似文献
4.
目的:比较不同悬臂设计下颌种植支持全口义齿的骨及种植体应力分布特点,为临床种植修复提供生物力学分析依据。方法:建立3组下颌6个种植支持全口义齿的三维有限元模型,悬臂分别为3、6、9 mm。在悬臂末端垂直加载100 N的力。结果:种植全口义齿悬臂末端垂直加载时,末端种植体骨应力集中,易发生松动失败;末端种植体及中间种植体颈部应力集中,易发生植入体与基桩连接失败;连梁应力集中在与末端种植体连接处,此处易发生折断。悬臂长度增加骨应力、种植体应力及连梁应力明显增加。结论:悬臂越短越有利于力的均匀分布。6个种植体支持短悬臂修复设计较符合生物力学分布原理。 相似文献
5.
《Journal of endodontics》2022,48(12):1517-1525.e1
IntroductionThis study aimed to determine if stress distribution from occlusal loads after targeted endodontic microsurgery (TEMS) differed for trephine-resected flat and curved root-ends, with and without bone graft.MethodsFinite element analysis models were constructed from cone-beam computed tomography data of a TEMS-treated maxillary central incisor. Models included flat and curved resected root-ends, with and without apical bone graft, and normal or root canal filled controls. In centric occlusion, axial force was directed on mesial and distal lingual marginal ridges at 120° angle. For lateral excursion, additional mesiodistal forces were applied from centric occlusion. For edge biting, axial force was directed on the incisal edge. Under occlusal loads, stress distribution patterns on tooth and root-end circumference were analyzed.ResultsIn normal and root filled controls, occlusal stress was distributed on labial and palatal root surfaces, concentrated in the labial cervical area, and maximized at the apex. For resected root-ends, occlusal loads concentrated stress on the labial cervical area. With bone graft, maximum stress concentration shifted to the apex, which implied stress relief and dispersion from the cervical root area. Stress patterns on the root-end were more widely spread in models with apical bone graft, whereas curved root-end showed stress concentrating arc especially when without apical bone support. The mean stress values on root-end circumference were significantly higher in curved than flat root-end (P < .05), especially with apical bone support (P < .05).ConclusionsOcclusal stress patterns on a maxillary central incisor were markedly affected by root-end resection configuration and apical bone support. Trephine-resected curved root-end had stress pattern concentrated on its circumference. Curved and flat root-ends had labial cervical stress that was relieved by bone graft. TEMS resected root-ends should be flattened and bone grafted to disperse stress from occlusal loads. 相似文献
6.
目的:根据现有普通种植体的几何参数,设计分区式多孔结构种植体进行拓扑优化,并通过有限元方法分析有无多孔、不同孔形以及不同位置的种植体在下颌骨模型中的应力分布,比较其优劣势。方法:通过“六维齿科牙种植设计软件”确定几何参数并UG建模;在有限元软件中模拟咬合力加载,分析4种种植体在最大力、适合力下的应力分布。结果:4种不同种植体的应力分布有较大差异,正菱形交错排布多孔种植体应力分布明显小于其它3组。结论:对于种植体修复,合适的多孔结构种植体在力学性能上比现有的普通实心种植体更具优势。 相似文献
7.
K. Premnath J. Sridevi N. Kalavathy Prakash Nagaranjani M. Ranganath Sharmila 《Journal of Indian Prosthodontic Society》2013,13(4):555-559
A key factor for the success or failure of a dental implant is the manner in which stresses are transferred to the surrounding bone. This depends on the type of loading, bone–implant interface, the shape and characteristics of the implant surface and the quality and quantity of the surrounding bone. This study was done to evaluate the pattern of stress distribution with two different implant designs in four different densities of bone using 3D finite element analysis. Graphic pre-processing software Ansys version 10 was used for creating the geometric configuration of a section of the mandible with a missing first molar. Eight 3D models of this section restored with implant-supported all ceramic crowns were created. Four of these models were created to simulate a single threaded implant placed in four different densities of bone (D1, D2, D3 and D4). The other four models were created to simulate a single cylindrical implant placed in four different densities of bone (D1, D2, D3, and D4). The Poisson’s ratio (μ) and Young’s modulus (E) of elasticity of the material were incorporated into the model. An average vertical load of 400 N was applied on the occlusal surface of the first molar between the buccal cusp, central fossa and the marginal ridge. Maximum Von Mises stresses in all the eight models were observed at the crestal region or neck of the implant. The stresses observed were more for the threaded implants in all the four densities of bone when compared to that of the cylindrical implants. The study concluded that the cylindrical implant design was more favorable in softer bone than the threaded implant design. 相似文献
8.
微螺钉型种植体支抗长度及直径对应力分布影响的三维有限元研究 总被引:12,自引:0,他引:12
目的探索微螺钉型种植体支抗的长度及直径对种植体周围骨组织内应力分布的影响。方法建立简单的上颌骨及不同长度直径的微螺钉型种植体的三维有限元模型,模拟临床实际情况,记录不同尺寸的种植体在相同的加载条件下周围骨组织内应力分布的情况,并进行比较。结果随着种植体直径的增加,骨组织内的应力明显降低;种植体长度的增加对降低应力没有明显作用。结论在所研究的尺寸范围内,种植体的直径对应力分布有重要影响,而种植体的长度对应力分布影响不大。 相似文献
9.
S. Shyam Sundar B. Nandlal D. Saikrishna G. Mallesh 《Journal of maxillofacial and oral surgery》2013,12(3):297-306
This study aims to know the post-surgical Von Mises stress of the mandible after two different vertical ramus marginal resection designs, analyze the results, compare with stress pattern of normal adult mandible without simulation and infer regarding the better of the two. Three groups of 3D finite element models of human adult mandibles were created. Group I (control)—normal mandible. Group II: Mandible with a quadrilateral vertical ramus marginal resection simulated. Group III: Mandible with an arc shaped vertical ramus marginal resection simulated. Finite element analysis (FEA) models were subjected to a point load of 475 N over right and left first molars, along with masticatory loads of masseter, medial pterygoid, anterior belly of digastric and temporalis loads in varying combinations (with and without bilateral temporalis and without right temporalis). The models were analyzed to infer the overall Von Mises stress in (a) the mandible (b) the sigmoid notch (c) postero-inferior resection corners. Results of our present study provides scientific evidence for the common practice of using arc form for marginal resection of vertical ramus of mandible whenever executed. Scientific evidence behind the concept of marginal resection of horizontal ramus is available but only scanty biomechanical evidence using finite element method (FEM) is available behind the same when performed in the vertical ramus, as magnitude and direction of loads in this region vary when compared to the horizontal ramus. The results ratify that incorporating arc shaped design pattern and removal of ipsilateral temporalis load by removal of coronoid, an area prone to stress concentration on loading, significantly decreases the post surgical Von Mises stress and hence would reduce the progressive micro-damage of the mandible after marginal resections of the vertical ramus of mandible. 相似文献
10.
José Henrique Rubo DDS MSc PhD Edson Antonio Capello Souza MEng PhD 《Clinical implant dentistry and related research》2010,12(2):105-113
Background: Understanding how clinical variables affect stress distribution facilitates optimal prosthesis design and fabrication and may lead to a decrease in mechanical failures as well as improve implant longevity. Purpose: In this study, the many clinical variations present in implant‐supported prosthesis were analyzed by 3‐D finite element method. Materials and Method: A geometrical model representing the anterior segment of a human mandible treated with 5 implants supporting a framework was created to perform the tests. The variables introduced in the computer model were cantilever length, elastic modulus of cancellous bone, abutment length, implant length, and framework alloy (AgPd or CoCr). The computer was programmed with physical properties of the materials as derived from the literature, and a 100N vertical load was used to simulate the occlusal force. Images with the fringes of stress were obtained and the maximum stress at each site was plotted in graphs for comparison. Results: Stresses clustered at the elements closest to the loading point. Stress increase was found to be proportional to the increase in cantilever length and inversely proportional to the increase in the elastic modulus of cancellous bone. Increasing the abutment length resulted in a decrease of stress on implants and framework. Stress decrease could not be demonstrated with implants longer than 13 mm. A stiffer framework may allow better stress distribution. Conclusion: The relative physical properties of the many materials involved in an implant‐supported prosthesis system affect the way stresses are distributed. 相似文献
11.
12.
目的:探讨直径与长度连续变化时选择种植体尺寸的方法。方法 :运用Pro/E和ANSYS软件建立不同长度(716 mm)、不同直径(316 mm)、不同直径(36 mm)的三维有限元模型,施加垂直荷载和侧向荷载,观察种植体位移峰值和骨组织VonMises应力峰值等评估指标。结果:垂直或侧向荷载作用下,随着直径和长度的增大,各评估指标均明显下降(60%6 mm)的三维有限元模型,施加垂直荷载和侧向荷载,观察种植体位移峰值和骨组织VonMises应力峰值等评估指标。结果:垂直或侧向荷载作用下,随着直径和长度的增大,各评估指标均明显下降(60%80%),相关度分析显示,两种荷载下直径的影响均较大(约90%),长度的影响与荷载有关(垂直荷载:18%80%),相关度分析显示,两种荷载下直径的影响均较大(约90%),长度的影响与荷载有关(垂直荷载:18%60%;侧向荷载:<7%)。直径-长度比兼顾种植体直径与长度,当确定皮质骨承载力及安全系数,便可由直径-长度关系曲线选择合适的种植体直径与长度。结论:种植体直径与长度均可明显影响种植体位移和骨组织应力峰值。本文介绍的直径长度比法可为临床医生选择、优化种植体提供一种新的思路。 相似文献
13.
种植体长度对骨界面应力分布影响的三维有限元分析 总被引:8,自引:6,他引:8
目的:研究种植体长度对种植体骨界面应力的影响。进一步探讨种植体长度对种植体骨界面应力的影响。方法:采用三维有限元的方法对三种不同长度的种植体,在受到垂直力和侧向力时对骨界面上的应力分布进行分析。结果:垂直加载时,随着种植体长度的增加,种植体骨界面的应力值改变不明显。水平加载时,随着种植体长度的增加,种植体骨界面的应力值下降。结论:增加种植体的长度可以提高种植牙随侧向力的能力,临床上在选择种植体时,应尽量地选择较长的种植体。 相似文献
14.
15.
种植体直径对骨界面应力分布影响的三维有限元分析 总被引:7,自引:4,他引:7
目的:种植直径对种植体骨界面应力的影响,引起了许多学者的关注,国内外研究报告的观点不一。本研究是为了进一步探讨种植体直径对种植体骨界面应力的影响。方法:采用三维有限元的方法对6种不同直径的种植体在受垂直和侧向力时骨界面的应力进行分析。结果:种植体受垂直和水平加载时,随着种植体直径的增加,种植体骨界面的应力值和应和集中值下降,应力趋向均布。结论:增加种植体的直径可以提高种植牙的轴向和侧向的承受力,临床上在选择种植体时,应昼地选择粗直径的种植体。 相似文献
16.
Jins John V. Rangarajan Ravindra C. Savadi K. S. Satheesh Kumar Preeti Satheesh Kumar 《Journal of Indian Prosthodontic Society》2012,12(1):37-44
Today implant dentistry has made great inroads into the treatment modalities that are available in treating an edentulous patient. Popularity of a two implant retained overdenture has created a necessity to examine the various attachment systems being used and the stresses that are transmitted to the alveolar bone. Hence a Three dimensional Finite Element Analysis was done to analyze the stress distribution in the mandibular bone with implant-supported overdenture having Ball/O-ring and Magnet attachments of different diameters. A segment of the anterior region of the mandible was modeled with implant and the overdenture. Four different models were generated having Ball/O-Ring and Magnet Attachments. Forces of 10 N, 35 N and 70 N were applied from the horizontal, vertical and oblique directions respectively and the stress distribution studied. It was concluded that the greatest stress concentrations were seen at the crest of the cortical bone and could be reduced by using smaller sized attachments for implant supported-overdenture. 相似文献
17.
《Journal of endodontics》2022,48(7):893-901
IntroductionThis study aimed to investigate whether the direction of force applied to the occlusal surface influenced the pattern of tensile stresses in roots of sound and root canal–prepared mandibular molar teeth. The effect of obturation forces on the development of apical stress was also investigated. To this end, models were constructed using micro–computed tomographic imaging and investigated using finite element analysis.MethodsMicro–computed tomographic data established boundaries of internal and external model surfaces to allow finite element analysis. Individually segmented components were modeled based on mechanical properties in precedent literature. The following conditions were considered: axial force directed over the mesial marginal ridge, a mesial or a distal tipping force, a combination of both a torquing force and axial loading, and hydrostatic pressure. The maximum principal stresses were determined.ResultsThe highest root stress occurred in the cervical third of root surfaces (ie, not apically) under all loading conditions. Importantly, mesial tipping forces resulted in tension on distal roots, whereas distal tipping resulted in tension in the mesial roots. Intracanal pressures produced tensile stress on the internal root canal walls in the cervical third of the root. Stresses were calculated to be less than the fatigue tensile strength of dentin.ConclusionsStatic loading, under the conditions modeled, does not result in stress concentration at the root apices that would cause root fracture under normal masticatory loads. Stress patterns developing from mesial and distal tipping forces help to explain the appearance of vertical root fractures reported in sound nonrestored molar teeth. 相似文献
18.
目的对下颌中切牙及其牙周膜在打开咬合时所产生的力学系统进行有限元分析,了解打开咬合时下颌中切牙及牙周膜应力分布的情况。方法建立下颌牙列各牙齿、牙槽骨及切牙牙周膜的三维有限元模型。然后,进一步模拟临床,在中切牙处加载15 g 垂直向下的力,求得牙齿以及牙周膜的应力分布情况。结果牙根表面最大应力值分布复杂,在根尖处可见应力集中区,应力集中区集中在颈缘处,向根方应力值逐渐变小,表现为典型的弯曲变形应力分布特征。舌侧、近中面主应力值相对较小,最大应力值在远唇轴角处。牙槽嵴顶部的应力值最大值达20.5×10~5g/mm~2。结论 1)本研究建立的下颌牙列的三维有限元模型,可以适用于临床上打开咬合等矫治技术的研究。2)矫治力作用下下颌中切牙牙周膜上应力从颈缘到根尖逐渐减小,但在牙槽嵴顶部应力峰值明显增大。 相似文献
19.
20.
种植牙根端接触骨质类型对骨界面应力分布影响的三维有限元分析 总被引:1,自引:1,他引:1
目的为了探讨种植牙根端接触骨质类型对种植牙周骨界面应力分布的影响方法应用三维有限元方法对螺旋型种植牙周骨界面应力分布进行了分析结果种植牙根端与密质骨或与松质骨接触时在骨界面应力分布上有较大的差异种植牙根端与松质骨接触时最大压应力位于颈周而与密质骨接触时则位于根端骨内结论种植牙根端与密质骨接触可降低种植牙颈周骨内应力减小骨界面的位移运动但增加了根端骨内的应力从减小颈周骨内应力的角度出发种植牙根端与密质骨接触也是一种良好有效的手段 相似文献