首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Defects in the motor domain of kinesin family member 1A (KIF1A), a neuron‐specific ATP‐dependent anterograde axonal transporter of synaptic cargo, are well‐recognized to cause a spectrum of neurological conditions, commonly known as KIF1A‐associated neurological disorders (KAND). Here, we report one mutation‐negative female with classic Rett syndrome (RTT) harboring a de novo heterozygous novel variant [NP_001230937.1:p.(Asp248Glu)] in the highly conserved motor domain of KIF1A. In addition, three individuals with severe neurodevelopmental disorder along with clinical features overlapping with KAND are also reported carrying de novo heterozygous novel [NP_001230937.1:p.(Cys92Arg) and p.(Pro305Leu)] or previously reported [NP_001230937.1:p.(Thr99Met)] variants in KIF1A. In silico tools predicted these variants to be likely pathogenic, and 3D molecular modeling predicted defective ATP hydrolysis and/or microtubule binding. Using the neurite tip accumulation assay, we demonstrated that all novel KIF1A variants significantly reduced the ability of the motor domain of KIF1A to accumulate along the neurite lengths of differentiated SH‐SY5Y cells. In vitro microtubule gliding assays showed significantly reduced velocities for the variant p.(Asp248Glu) and reduced microtubule binding for the p.(Cys92Arg) and p.(Pro305Leu) variants, suggesting a decreased ability of KIF1A to move along microtubules. Thus, this study further expanded the phenotypic characteristics of KAND individuals with pathogenic variants in the KIF1A motor domain to include clinical features commonly seen in RTT individuals.  相似文献   

2.
Germline mutations of the CDKN2A gene are found in melanoma‐prone families and individuals with multiple sporadic melanomas. The encoded protein, p16INK4A, comprises four ankyrin‐type repeats, and the mutations, most of which are missense and occur throughout the entire coding region, can disrupt the conformation of these structural motifs as well as the association of p16INK4a with its physiological targets, the cyclin‐dependent kinases (CDKs) CDK4 and CDK6. Assessing pathogenicity of nonsynonymous mutations is critical to evaluate melanoma risk in carriers. In the current study, we investigate 20 CDKN2A germline mutations whose effects on p16INK4A structure and function have not been previously documented (Thr18_Ala19dup, Gly23Asp, Arg24Gln, Gly35Ala, Gly35Val, Ala57Val, Ala60Val, Ala60Arg, Leu65dup, Gly67Arg, Gly67_Asn71del, Glu69Gly, Asp74Tyr, Thr77Pro, Arg80Pro, Pro81Thr, Arg87Trp, Leu97Arg, Arg99Pro, and [Leu113Leu;Pro114Ser]). By considering genetic information, the predicted impact of each variant on the protein structure, its ability to interact with CDK4 and impede cell proliferation in experimental settings, we conclude that 18 of the 20 CDKN2A variants can be classed as loss of function mutations, whereas the results for two remain ambiguous. Discriminating between mutant and neutral variants of p16INK4A not only adds to our understanding of the functionally critical residues in the protein but provides information that can be used for melanoma risk prediction. Hum Mutat 0, 1–11, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
Derangements in voltage‐gated potassium channel function are responsible for a range of paroxysmal neurologic disorders. Pathogenic variants in the KCNA1 gene, which encodes the voltage‐gated potassium channel Kv1.1, are responsible for Episodic Ataxia Type 1 (EA1). Patients with EA1 have an increased incidence of epilepsy, but KCNA1 variants have not been described in epileptic encephalopathy. Here, we describe four patients with infantile‐onset epilepsy and cognitive impairment who harbor de novo KCNA1 variants located within the Kv‐specific Pro‐Val‐Pro (PVP) motif which is essential for channel gating. The first two patients have KCNA1 variants resulting in (p.Pro405Ser) and (p.Pro405Leu), respectively, and a set of identical twins has a variant affecting a nearby residue (p.Pro403Ser). Notably, recurrent de novo variants in the paralogous PVP motif of KCNA2 have previously been shown to abolish channel function and also cause early‐onset epileptic encephalopathy. Importantly, this report extends the range of phenotypes associated with KCNA1 variants to include epileptic encephalopathy when the PVP motif is involved.  相似文献   

4.
Arthrogryposis multiplex congenita (AMC) is characterized by heterogeneous nonprogressive multiple joint contractures appearing at birth. We present a consanguineous Israeli‐Druze family with several members presenting with AMC. A variable intra‐familial phenotype and pected autosomal recessive inheritance prompted molecular diagnosis by whole‐exome sequencing. Variant analysis focused on rare homozygous changes, revealed a missense variant in MYBPC1, NM_002465:c.556G>A (p.E286K), affecting the last nucleotide of Exon 8. This novel variant was not observed in the common variant databases and co‐segregated as expected within the extended family. MYBPC1 encodes a slow skeletal muscle isoform, essential for muscle contraction. Heterozygous mutations in this gene are associated with distal arthrogryposis types 1b and 2, whereas a homozygous nonsense mutation is implicated in one family with lethal congenital contractural syndrome 4. We present a novel milder MYBPC1 homozygous phenotype.  相似文献   

5.
Gross deletions involving the MEIS2 gene have been described in a small number of patients with overlapping phenotypes of atrial or ventricular septal defects, cleft palate, and variable developmental delays and intellectual disability. Non‐specific dysmorphic features were noted in some patients, including broad forehead with high anterior hairline, arched eyebrows, thin or tented upper lip, and short philtrum. Recently, a patient with a de novo single amino acid deletion, c.998_1000delGAA (p.Arg333del), and a patient with a de novo nonsense variant, (c.611C>G, p.Ser204*), were reported with a similar, but apparently more severe phenotypes. Clinical whole exome sequencing (WES) performed at our clinical molecular diagnostic laboratory identified four additional patients with predicted damaging de novo MEIS2 missense variants. Our patients’ features closely resembled those previously reported in patients with gross deletions, but also included some less commonly reported features, such as autism spectrum disorder, hearing loss, and short stature, as well as features that may be unique to nucleotide‐level variants, such as hypotonia, failure to thrive, gastrointestinal, skeletal, limb, and skin abnormalities. All of the observed missense variants, Pro302Leu, Gln322Leu, Arg331Lys, and Val335Ala, are located in the functionally important MEIS2 homeodomain. Pro302Leu is found in the region between helix 1 and helix 2, while the other three are located in the DNA‐binding helix 3. To our knowledge, these are the first described de novo missense variants in MEIS2, expanding the known mutation spectrum of the newly recognized human disorder caused by aberrations in this gene.  相似文献   

6.
XRCC2 genetic variants have been associated with breast cancer susceptibility. However, association studies have been complicated because XRCC2 variants are extremely rare and consist mainly of amino acid substitutions whose grouping is sensitive to misclassification by the predictive algorithms. We therefore functionally characterized variants in XRCC2 by testing their ability to restore XRCC2‐DNA repair deficient phenotypes using a cDNA‐based complementation approach. While the protein‐truncating variants p.Leu117fs, p.Arg215*, and p.Cys217* were unable to restore XRCC2 deficiency, 19 out of 23 missense variants showed no or just a minor (<25%) reduction in XRCC2 function. The remaining four (p.Cys120Tyr, p.Arg91Trp, p.Leu133Pro, and p.Ile95Leu) had a moderate effect. Overall, measured functional effects correlated poorly with those predicted by in silico analysis. After regrouping variants from published case‐control studies based on the functional effect found in this study and reanalysis of the prevalence data, there was no longer evidence for an association with breast cancer. This suggests that if breast cancer susceptibility alleles of XRCC2 exist, they are likely restricted to protein‐truncating variants and a minority of missense changes. Our study emphasizes the use of functional analyses of missense variants to support variant classification in association studies.  相似文献   

7.
Mucopolysaccharidosis type I (MPS I) is a rare disorder caused by deleterious sequence variants in the α‐L‐iduronidase (IDUA) gene. More than 200 pathogenic variants have been described so far, but their frequencies have not yet been analyzed on a worldwide scale. To address this, we analyzed the genotypes of MPS I patients from 35 published studies papers. The most common pathogenic variant observed was p.Trp402Ter. With frequencies of up to 63%, it was the major allele in most European countries, America and Australia. The variant p.Gln70Ter was also frequent; it was found mainly in Northern and Eastern Europe. The most frequent variant in North African countries was p.Pro533Arg; in Morocco, it represented more than 90% of mutant alleles. Variants observed in East Asians were not found in Western populations, including c.1190‐1G>A, p.Ala79Val, p.Leu346Arg and c.613_617dupTGCTC. Conversely, p.Trp402Ter and p.Pro533Arg were not found in patients from East Asia. In conclusion, the most common pathogenic IDUA variant in MPS I patients are p.Trp402Ter, p.Gln70Ter and p.Pro533Arg. Knowledge about the genetic background of MPS I for each population is essential when developing new genotype‐targeted therapies, as well as to enable faster genetic analysis and improve patient management.  相似文献   

8.
《Genetics in medicine》2023,25(7):100859
PurposeThe study aimed to clinically and molecularly characterize the neurodevelopmental disorder associated with heterozygous de novo variants in CNOT9.MethodsIndividuals were clinically examined. Variants were identified using exome or genome sequencing. These variants were evaluated using in silico predictions, and their functional relevance was further assessed by molecular models and research in the literature. The variants have been classified according to the criteria of the American College of Medical Genetics.ResultsWe report on 7 individuals carrying de novo missense variants in CNOT9, p.(Arg46Gly), p.(Pro131Leu), and p.(Arg227His), and, recurrent in 4 unrelated individuals, p.(Arg292Trp). All affected persons have developmental delay/intellectual disability, with 5 of them showing seizures. Other symptoms include muscular hypotonia, facial dysmorphism, and behavioral abnormalities. Molecular modeling predicted that the variants are damaging and would lead to reduced protein stability or impaired recognition of interaction partners. Functional analyses in previous studies showed a pathogenic effect of p.(Pro131Leu) and p.(Arg227His).ConclusionWe propose CNOT9 as a novel gene for neurodevelopmental disorder and epilepsy.  相似文献   

9.
ZC4H2 (MIM# 300897) is a nuclear factor involved in various cellular processes including proliferation and differentiation of neural stem cells, ventral spinal patterning and osteogenic and myogenic processes. Pathogenic variants in ZC4H2 have been associated with Wieacker-Wolff syndrome (MIM# 314580), an X-linked neurodevelopmental disorder characterized by arthrogryposis, development delay, hypotonia, feeding difficulties, poor growth, skeletal abnormalities, and dysmorphic features. Zebrafish zc4h2 null mutants recapitulated the human phenotype, showed complete loss of vsx2 expression in brain, and exhibited abnormal swimming and balance problems. Here we report 7 new patients (four males and three females) with ZC4H2-related disorder from six unrelated families. Four of the 6 ZC4H2 variants are novel: three missense variants, designated as c.142T>A (p.Tyr48Asn), c.558G>A (p.Met186Ile) and c.602C>T (p.Pro201Leu), and a nonsense variant, c.618C>A (p.Cys206*). Two variants were previously reported : a nonsense variant c.199C>T (p.Arg67*) and a splice site variant (c.225+5G>A). Five patients were on the severe spectrum of clinical findings, two of whom had early death. The male patient harboring the p.Met186Ile variant and the female patient that carries the p.Pro201Leu variant have a relatively mild phenotype. Of note, 4/7 patients had a tethered cord that required a surgical repair. We also demonstrate and discuss previously under-recognized phenotypic features including sleep apnea, arrhythmia, hypoglycemia, and unexpected early death. To study the effect of the missense variants, we performed microinjection of human ZC4H2 wild-type or variant mRNAs into zc4h2 null mutant zebrafish embryos. The p.Met186Ile mRNA variant was able to partially rescue vsx2 expression while p.Tyr48Asn and p.Pro201Leu mRNA variants were not. However, swimming and balance problems could not be rescued by any of these variants. These results suggest that the p.Met186Ile is a hypomorphic allele. Our work expands the genotypes and phenotypes associated with ZC4H2-related disorder and demonstrates that the zebrafish system is a reliable method to determine the pathogenicity of ZC4H2 variants.  相似文献   

10.
HFM1 is a meiosis‐specific gene and expressed in germ‐line tissues. More recently, evidence has indicated that variations in HFM1 gene could be causative for primary ovarian insufficiency (POI), also known as premature ovarian failure. The aim of this study was to investigate the association between HFM1 gene variants and sporadic POI in Chinese women. A total of 138 POI patients and 316 healthy controls (matched for ethnic background, sex, and age of the patients) were recruited in this study. We screened the entire HFM1 coding region by direct sequencing in all subjects and identified six variants of HFM1 gene in POI group, namely c.148G>A/p.Glu50Lys, c.1241A>C/p.His414Pro, c.2325C>A/p.Phe775Leu, c.3367T>C/p.Ser1123Pro, c.3580C>T/p.Arg1194Cys, and c.1686‐1G>C. The variation rate of HFM1 in POI group is significantly higher than control group (p < 0.01). The p.His414Pro and p.Arg1194Cys were predicted to be probably damaging to the HFM1 protein function, while p.Glu50Lys, p.Phe775Leu and p.Ser1123Pro mutants might not have any deleterious effect on the structure or function of the protein by online predictors. Taken together, our data suggested that HFM1 gene might be associated with primary ovarian insufficiency in Chinese population.  相似文献   

11.
Charcot‐Marie‐Tooth disease type 4D (CMT4D) is an autosomal‐recessive demyelinating form of CMT characterized by a severe distal motor and sensory neuropathy. NDRG1 is the causative gene for CMT4D. To date, only four mutations in NDRG1 —c.442C>T (p.Arg148*), c.739delC (p.His247Thrfs*74), c.538‐1G>A, and duplication of exons 6–8—have been described in CMT4D patients. Here, using targeted next‐generation sequencing examination, we identified for the first time two homozygous missense variants in NDRG1, c.437T>C (p.Leu146Pro) and c.701G>A (p.Arg234Gln), in two Chinese CMT families with consanguineous histories. Further functional studies were performed to characterize the biological effects of these variants. Cell culture transfection studies showed that mutant NDRG1 carrying p.Leu146Pro, p.Arg148*, or p.Arg234Gln variant degraded faster than wild‐type NDRG1, resulting in lower protein levels. Live cell confocal microscopy and coimmunoprecipitation analysis indicated that these variants did not disrupt the interaction between NDRG1 and Rab4a protein. However, NDRG1‐knockdown cells expressing mutant NDRG1 displayed enlarged Rab4a‐positive compartments. Moreover, mutant NDRG1 could not enhance the uptake of DiI‐LDL or increase the fraction of low‐density lipoprotein receptor on the cell surface. Taken together, our study described two missense mutations in NDRG1 and emphasized the important role of NDRG1 in intracellular protein trafficking.  相似文献   

12.
Corin is a serine protease that activates atrial natriuretic peptide (ANP). CORIN gene variants have been reported in patients with hypertension. To date, however, the prevalence of CORIN variants in hypertensive patients remains unknown. To understand the prevalence and functional significance of CORIN variants in hypertension, we sequenced CORIN exons in 300 normal and 401 hypertensive individuals in a Chinese population and identified nine nonsynonymous variants, of which eight were not characterized previously. Among them, variants c.131A > G (p.Tyr13Cys), c.376G > T (p.Asp95Tyr), c.1094T > G (p.Leu334Trp), and c.1667G > A (p.Arg525His) occurred similarly in both normal and hypertensive individuals. Variants c1139G > A (p.Arg349His), c.2689C > T (p.Pro866Ser), and c.2864C > T (p.Thr924Met) were found once each in hypertensive individuals. Variant c.1683G > T (p.Arg530Ser) occurred preferentially in hypertensive individuals [10/401 (2.5%) vs. 1/300 (0.3%) in normal individuals; = 0.023], which was confirmed in another independent cohort [9/368 (2.44%) in hypertensive and 2/377 (0.53%) in normal individuals; = 0.033]. In biochemical and cell‐based functional studies, variants p.Arg530Ser and p.Thr924Met, but not p.Tyr13Cys, p.Asp95Tyr, p.Leu334Trp, p.Arg349His, p.Arg525His, and p.Pro866Ser, exhibited reduced pro‐ANP processing activity, which was caused by endoplasmic reticulum retention and poor zymogen activation, respectively. These results indicate that genetic variants impairing corin function are not uncommon in general populations and that such variants may be an important contributing factor in hypertension.  相似文献   

13.
Intellectual disability (ID) is a major health problem in our society. Genetic causes of ID remain unknown because of its vast heterogeneity. Here we report two Finnish families and one Dutch family with affected individuals presenting with mild to moderate ID, neuropsychiatric symptoms and delayed speech development. By utilizing whole exome sequencing (WES), we identified a founder missense variant c.983T>C (p.Leu328Pro) in seven affected individuals from two Finnish consanguineous families and a deletion c.799_1034‐429delinsTTATGA (p.Gln267fs) in one affected individual from a consanguineous Dutch family in the C12orf4 gene on chromosome 12. Both the variants co‐segregated in the respective families as an autosomal recessive trait. Screening of the p.Leu328Pro variant showed enrichment in the North Eastern sub‐isolate of Finland among anonymous local blood donors with a carrier frequency of 1:53, similar to other disease mutations with a founder effect in that region. To date, only one Arab family with a three affected individuals with a frameshift insertion variant in C12orf4 has been reported. In summary, we expand and establish the clinical and mutational spectrum of C12orf4 variants. Our findings implicate C12orf4 as a causative gene for autosomal recessive ID.  相似文献   

14.
Specific mitochondrial enzymatic deficiencies in the catabolism of branched‐chain amino acids cause methylmalonic aciduria (MMA), propionic acidemia (PA) and maple syrup urine disease (MSUD). Disease‐causing mutations were identified in nine unrelated branched‐chain organic acidurias (BCOA) patients. We detected eight previously described mutations: p.Asn219Tyr, p.Arg369His p.Val553Glyfs*17 in MUT, p.Thr198Serfs*6 in MMAA, p.Ile144_Leu181del in PCCB, p.Gly288Valfs*11, p.Tyr438Asn in BCKDHA and p.Ala137Val in BCKDHB gene. Interestingly, we identified seven novel genetic variants: p.Leu549Pro, p.Glu564*, p.Leu641Pro in MUT, p.Tyr206Cys in PCCB, p.His194Arg, p.Val298Met in BCKDHA and p.Glu286_Met290del in BCKDHB gene. In silico and/or eukaryotic expression studies confirmed pathogenic effect of all novel genetic variants. Aberrant enzymes p.Leu549Pro MUT, p.Leu641Pro MUT and p.Tyr206Cys PCCB did not show residual activity in activity assays. In addition, activity of MUT enzymes was not rescued in the presence of vitamin B12 precursor in vitro which was in accordance with non‐responsiveness or partial responsiveness of patients to vitamin B12 therapy. Our study brings the first molecular genetic data and detailed phenotypic characteristics for MMA, PA and MSUD patients for Serbia and the whole South‐Eastern European region. Therefore, our study contributes to the better understanding of molecular landscape of BCOA in Europe and to general knowledge on genotype–phenotype correlation for these rare diseases.  相似文献   

15.
《Genetics in medicine》2023,25(2):100332
PurposeThis study aimed to establish the genetic cause of a novel autosomal recessive neurodevelopmental disorder characterized by global developmental delay, movement disorder, and metabolic abnormalities.MethodsWe performed a detailed clinical characterization of 4 unrelated individuals from consanguineous families with a neurodevelopmental disorder. We used exome sequencing or targeted-exome sequencing, cosegregation, in silico protein modeling, and functional analyses of variants in HEK293 cells and Drosophila melanogaster, as well as in proband-derived fibroblast cells.ResultsIn the 4 individuals, we identified 3 novel homozygous variants in oxoglutarate dehydrogenase (OGDH) (NM_002541.3), which encodes a subunit of the tricarboxylic acid cycle enzyme α-ketoglutarate dehydrogenase. In silico homology modeling predicts that c.566C>T:p.(Pro189Leu) and c.890C>A:p.(Ser297Tyr) variants interfere with the structure and function of OGDH. Fibroblasts from individual 1 showed that the p.(Ser297Tyr) variant led to a higher degradation rate of the OGDH protein. OGDH protein with p.(Pro189Leu) or p.(Ser297Tyr) variants in HEK293 cells showed significantly lower levels than the wild-type protein. Furthermore, we showed that expression of Drosophila Ogdh (dOgdh) carrying variants homologous to p.(Pro189Leu) or p.(Ser297Tyr), failed to rescue developmental lethality caused by loss of dOgdh. SpliceAI, a variant splice predictor, predicted that the c.935G>A:p.(Arg312Lys)/p.(Phe264_Arg312del) variant impacts splicing, which was confirmed through a mini-gene assay in HEK293 cells.ConclusionWe established that biallelic variants in OGDH cause a neurodevelopmental disorder with metabolic and movement abnormalities.  相似文献   

16.
Regulation of body water homeostasis occurs by the vasopressin‐dependent sorting of aquaporin‐2 (AQP2) water channels to and from the apical membrane of renal principal cells. Mutations in AQP2 cause autosomal nephrogenic diabetes insipidus (NDI), a disease that renders the kidney unresponsive to vasopressin, resulting in polyuria and polydipsia. The AQP2 mutant c.772G>A; p.Glu258Lys (AQP2–E258K) causes dominant NDI by oligomerizing with wild‐type AQP2 and missorting of this AQP2 complex to multivesicular bodies instead of the apical membrane. The motif causing this missorting of AQP2–E258K was identified here. Functional analyses and plasma membrane expression studies of truncation mutants in oocytes revealed that AQP2–E258K shortened to Leu259 is still intracellular retained. Alanine scanning and glutamic acid to arginine exchanges revealed increased function and plasma membrane expression for AQP2–E258K mutants with the following additional changes: Leu259Ala, Arg252Glu, Arg253Glu, or Arg252Ala–Arg254Ala, or for the AQP2 mutant p.Glu258Ala, indicating that the motif RRRxxxK258L confers AQP2–E258K retention. Fusion of this motif to aquaporin‐1 also resulted in missorting of that water channel, indicating that this retention motif is transferable. In conclusion, our data reveal that the RRRxxxKL motif and repulsion between K258 and the arginine‐triplet within this motif are the primary cause of missorting of AQP2–E258K in NDI. Hum Mutat 30:1–10, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
Markus B  Narkis G  Landau D  Birk RZ  Cohen I  Birk OS 《Human mutation》2012,33(10):1435-1438
Autosomal recessive lethal congenital contractural syndrome (LCCS) is a severe form of neuromuscular arthrogryposis. We previously showed that this phenotype is caused in two unrelated inbred Bedouin tribes by different defects in the phosphatidylinositol pathway. However, the molecular basis of the same phenotype in other tribes remained elusive. Whole exome sequencing identified a novel LCCS founder mutation within a minimal shared homozygosity locus of approximately 1 Mb in two affected individuals of different tribes: a homozygous premature stop producing mutation in MYBPC1, encoding myosin‐binding protein C, slow type. A dominant missense mutation in MYBPC1 was previously shown to cause mild distal arthrogryposis. We now show that a recessive mutation abrogating all functional domains in the same gene leads to LCCS. Hum Mutat 33:1435–1438, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
Characterized by early‐onset seizures, global developmental delay and severe motor deficits, CDKL5 deficiency disorder is caused by pathogenic variants in the cyclin‐dependent kinase‐like 5 gene. Previous efforts to investigate genotype‐phenotype relationships have been limited due to small numbers of recurrent mutations and small cohort sizes. Using data from the International CDKL5 Disorder Database we examined genotype‐phenotype relationships for 13 recurrent CDKL5 variants and the previously analyzed historic variant groupings. We have applied the CDKL5 Developmental Score (CDS) and an adapted version of the CDKL5 Clinical Severity Assessment (CCSA), to grade the severity of phenotype and developmental outcomes for 285 individuals with CDKL5 variants. Comparisons of adapted CCSA and CDS between recurrent variants and variant groups were performed using multiple linear regression adjusting for age and sex. Individuals with the missense variant, p.Arg178Trp, had the highest mean adapted CCSA and lowest mean developmental scores. Other variants producing severe phenotypes included p.Arg559* and p.Arg178Gln. Variants producing milder phenotypes included p.Arg134*, p.Arg550*, and p.Glu55Argfs*20. There are observed differences in phenotype severity and developmental outcomes for individuals with different CDKL5 variants. However, the historic variant groupings did not seem to reflect differences in phenotype severity or developmental outcomes as clearly as analyzed by individual variants.  相似文献   

19.
Vicente Rubio 《Human mutation》2018,39(7):1002-1013
Vitamin B6‐dependent genetic epilepsy was recently associated to mutations in PLPBP (previously PROSC), the human version of the widespread COG0325 gene that encodes TIM‐barrel‐like pyridoxal phosphate (PLP)‐containing proteins of unclear function. We produced recombinantly, purified and characterized human PROSC (called now PLPHP) and its six missense mutants reported in epileptic patients. Normal PLPHP is largely a monomer with PLP bound through a Schiff‐base linkage. The PLP‐targeting antibiotic d ‐cycloserine decreased the PLP‐bound peak as expected for pseudo‐first‐order reaction. The p.Leu175Pro mutation grossly misfolded PLPHP. Mutations p.Arg241Gln and p.Pro87Leu decreased protein solubility and yield of pure PLPHP, but their pure forms were well folded, similarly to pure p.Pro40Leu, p.Tyr69Cys, and p.Arg205Gln mutants (judged from CD spectra). PLPHP stability was decreased in p.Arg241Gln, p.Pro40Leu, and p.Arg205Gln mutants (thermofluor assays). The p.Arg241Gln and p.Tyr69Cys mutants respectively lacked PLP or had a decreased amount of this cofactor. With p.Tyr69Cys there was extensive protein dimerization due to disulfide bridge formation, and PLP accessibility was decreased (judged from d ‐cycloserine reaction). A 3‐D model of human PLPHP allowed rationalizing the effects of most mutations. Overall, the six missense mutations caused ill effects and five of them impaired folding or decreased stability, suggesting the potential of pharmacochaperone‐based therapeutic approaches.  相似文献   

20.
Arthrogryposis multiplex congenita (AMC) is a heterogeneous disorder characterized by multiple joint contractures often in association with other congenital abnormalities. Pretibial linear vertical creases are a rare finding associated with arthrogryposis, and the etiology of the specific condition is unknown. We aimed to genetically and clinically characterize a boy from a consanguineous family, presenting with AMC and pretibial vertical linear creases on the shins. Whole exome sequencing and variant analysis revealed homozygous novel missense variants of ECEL1 (c.1163T > C, p.Leu388Pro, NM_004826) and MUSK (c.2572C > T, p.Arg858Cys, NM_005592). Both variants are predicted to have deleterious effects on the protein function, with amino acid positions highly conserved among species. The variants segregated in the family, with healthy mother, father, and sister being heterozygous carriers and the index patient being homozygous for both mutations. We report on a unique patient with a novel ECEL1 homozygous mutation, expanding the phenotypic spectrum of Distal AMC Type 5D to include vertical linear skin creases. The homozygous mutation in MUSK is of unknown clinical significance. MUSK mutations have previously shown to cause congenital myasthenic syndrome, a neuromuscular disorder with defects in the neuromuscular junction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号