首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Charcot‐Marie‐Tooth disease type 4D (CMT4D) is an autosomal‐recessive demyelinating form of CMT characterized by a severe distal motor and sensory neuropathy. NDRG1 is the causative gene for CMT4D. To date, only four mutations in NDRG1 —c.442C>T (p.Arg148*), c.739delC (p.His247Thrfs*74), c.538‐1G>A, and duplication of exons 6–8—have been described in CMT4D patients. Here, using targeted next‐generation sequencing examination, we identified for the first time two homozygous missense variants in NDRG1, c.437T>C (p.Leu146Pro) and c.701G>A (p.Arg234Gln), in two Chinese CMT families with consanguineous histories. Further functional studies were performed to characterize the biological effects of these variants. Cell culture transfection studies showed that mutant NDRG1 carrying p.Leu146Pro, p.Arg148*, or p.Arg234Gln variant degraded faster than wild‐type NDRG1, resulting in lower protein levels. Live cell confocal microscopy and coimmunoprecipitation analysis indicated that these variants did not disrupt the interaction between NDRG1 and Rab4a protein. However, NDRG1‐knockdown cells expressing mutant NDRG1 displayed enlarged Rab4a‐positive compartments. Moreover, mutant NDRG1 could not enhance the uptake of DiI‐LDL or increase the fraction of low‐density lipoprotein receptor on the cell surface. Taken together, our study described two missense mutations in NDRG1 and emphasized the important role of NDRG1 in intracellular protein trafficking.  相似文献   

2.
Four private mutations responsible for three forms demyelinating of Charcot‐Marie‐Tooth (CMT) or hereditary motor and sensory neuropathy (HMSN) have been associated with the Gypsy population: the NDRG1 p.R148X in CMT type 4D (CMT4D/HMSN‐Lom); p.C737_P738delinsX and p.R1109X mutations in the SH3TC2 gene (CMT4C); and a G>C change in a novel alternative untranslated exon in the HK1 gene causative of CMT4G (CMT4G/HMSN‐Russe). Here we address the findings of a genetic study of 29 Gypsy Spanish families with autosomal recessive demyelinating CMT. The most frequent form is CMT4C (57.14%), followed by HMSN‐Russe (25%) and HMSN‐Lom (17.86%). The relevant frequency of HMSN‐Russe has allowed us to investigate in depth the genetics and the associated clinical symptoms of this CMT form. HMSN‐Russe probands share the same haplotype confirming that the HK1 g.9712G>C is a founder mutation, which arrived in Spain around the end of the 18th century. The clinical picture of HMSN‐Russe is a progressive CMT disorder leading to severe weakness of the lower limbs and prominent distal sensory loss. Motor nerve conduction velocity was in the demyelinating or intermediate range.  相似文献   

3.
The aim of this study is to explore the phenotypic and genotypic features of X‐linked Charcot–Marie‐Tooth (CMT) disease in the mainland of China and to study the cellular effects of six novel Gap junction protein beta‐1 variants. We identified 25 missense and 1 non‐sense mutations of GJB1 in 31 unrelated families out of 226 CMT families. The frequency of GJB1 mutations was 13.7% of the total and 65% of intermediate CMT. Six novel GJB1 variants (c.5A>G, c.8G>A, c.242T>C, c.269T>C, c.317T>C and c.434T>G) were detected in six unrelated intermediate CMT families. Fluorescence revealed that HeLa cells transfected with EGFP‐GJB1‐V74M, EGFP‐GJB1‐L81P or EGFP‐GJB1‐L90P had diffuse endoplasmic reticulum staining, HeLa cells transfected with EGFP‐GJB1‐L106P had diffuse intracellular staining, and HeLa cells transfected with EGFP‐GJB1‐N2S had cytoplasmic and nuclear staining. The distribution of Cx32 in HeLa cells transfected with EGFP‐GJB1‐F145C was similar to that of those transfected with wild‐type (WT). These six variants resulted in a higher percentage of apoptosis than did WT as detected by flow cytometry and Hoechst staining. In conclusion, mutation screening should be first performed in intermediate CMT patients, especially those with additional features. The novel GJB1 variants c.5A>G, c.8G>A, c.242T>C and c.269T>C are considered pathogenic, and c.317T>C and c.434T>G are classified as probably pathogenic.  相似文献   

4.
Charcot‐Marie‐Tooth disease type 4H (CMT4H) is an autosomal recessive demyelinating subtype of peripheral enuropathies caused by mutations in the FGD4 gene. Most CMT4H patients are in consanguineous Mediterranean families characterized by early onset and slow progression. We identified two CMT4H patients from a Korean CMT cohort, and performed a detailed genetic and clinical analysis in both cases. Both patients from nonconsanguineous families showed characteristic clinical manifestations of CMT4H including early onset, scoliosis, areflexia, and slow disease progression. Exome sequencing revealed novel compound heterozygous mutations in FGD4 as the underlying cause in both families (p.Arg468Gln and c.1512‐2A>C in FC73, p.Met345Thr and c.2043+1G>A (p.Trp663Trpfs*30) in FC646). The missense mutations were located in highly conserved RhoGEF and PH domains which were predicted to be pathogenic in nature by in silico modeling. The CMT4H occurrence frequency was calculated to 0.7% in the Korean demyelinating CMT patients. This study is the first report of CMT4H in Korea. FGD4 assay could be considered as a means of molecular diagnosis for sporadic cases of demyelinating CMT with slow progression.  相似文献   

5.
Mucolipidosis (ML) II and MLIII alpha/beta are two pediatric lysosomal storage disorders caused by mutations in the GNPTAB gene, which encodes an α/β‐subunit precursor protein of GlcNAc‐1‐phosphotransferase. Considerable variations in the onset and severity of the clinical phenotype in these diseases are observed. We report here on expression studies of two missense mutations c.242G>T (p.Trp81Leu) and c.2956C>T (p.Arg986Cys) and two frameshift mutations c.3503_3504delTC (p.Leu1168GlnfsX5) and c.3145insC (p.Gly1049ArgfsX16) present in severely affected MLII patients, as well as two missense mutations c.1196C>T (p.Ser399Phe) and c.3707A>T (p.Lys1236Met) reported in more mild affected individuals. We generated a novel α‐subunit‐specific monoclonal antibody, allowing the analysis of the expression, subcellular localization, and proteolytic activation of wild‐type and mutant α/β‐subunit precursor proteins by Western blotting and immunofluorescence microscopy. In general, we found that both missense and frameshift mutations that are associated with a severe clinical phenotype cause retention of the encoded protein in the endoplasmic reticulum and failure to cleave the α/β‐subunit precursor protein are associated with a severe clinical phenotype with the exception of p.Ser399Phe found in MLIII alpha/beta. Our data provide new insights into structural requirements for localization and activity of GlcNAc‐1‐phosphotransferase that may help to explain the clinical phenotype of MLII patients.  相似文献   

6.
DJ‐1 mutations are associated to early‐onset Parkinson's disease and accounts for about 1–2% of the genetic forms. The protein is involved in many biological processes and its role in mitochondrial regulation is gaining great interest, even if its function in mitochondria is still unclear. We describe a 47‐year‐old woman affected by a multisystem disorder characterized by progressive, early‐onset parkinsonism plus distal spinal amyotrophy, cataracts and sensory‐neural deafness associated with a novel homozygous c.461C>A [p.T154K] mutation in DJ‐1. Patient's cultured fibroblasts showed low ATP synthesis, high ROS levels and reduced amount of some subunits of mitochondrial complex I; biomarkers of oxidative stress also resulted abnormal in patient's blood. The clinical pattern of multisystem involvement and the biochemical findings in our patient highlight the role for DJ‐1 in modulating mitochondrial response against oxidative stress.  相似文献   

7.
Transport of newly synthesized lysosomal enzymes to the lysosome requires tagging of these enzymes with the mannose 6‐phosphate moiety by UDP‐GlcNAc:lysosomal enzyme N‐acetylglucosamine‐1‐phosphotransferase (GlcNAc‐1‐phosphotransferase), encoded by two genes, GNPTAB and GNPTG. GNPTAB encodes the α and β subunits, which are initially synthesized as a single precursor that is cleaved by Site‐1 protease in the Golgi. Mutations in this gene cause the lysosomal storage disorders mucolipidosis II (MLII) and mucolipidosis III αβ (MLIII αβ). Two recent studies have reported the first patient mutations within the N‐terminal transmembrane domain (TMD) of the α subunit of GlcNAc‐1‐phosphotransferase that cause either MLII or MLIII αβ. Here, we demonstrate that two of the MLII missense mutations, c.80T>A (p.Val27Asp) and c.83T>A (p.Val28Asp), prevent the cotranslational insertion of the nascent GlcNAc‐1‐phosphotransferase polypeptide chain into the endoplasmic reticulum. The remaining four mutations, one of which is associated with MLII, c.100G>C (p.Ala34Pro), and the other three with MLIII αβ, c.70T>G (p.Phe24Val), c.77G>A (p.Gly26Asp), and c.107A>C (p.Glu36Pro), impair retention of the catalytically active enzyme in the Golgi with concomitant mistargeting to endosomes/lysosomes. Our results uncover the basis for the disease phenotypes of these patient mutations and establish the N‐terminal TMD of GlcNAc‐1‐phosphotransferase as an important determinant of Golgi localization.  相似文献   

8.
The GUCA1A gene encodes the guanylate cyclase activating protein 1 (GCAP1) of mammalian rod and cone photoreceptor cells, which is involved in the Ca2+‐dependent negative feedback regulation of membrane bound guanylate cyclases in the retina. Mutations in the GUCA1A gene have been associated with different forms of cone dystrophies leading to impaired cone vision and retinal degeneration. Here we report the identification of three novel and one previously detected GUCA1A mutations: c.265G>A (p.Glu89Lys), c.300T>A (p.Asp100Glu), c.476G>T (p.Gly159Val) and c.451C>T (p.Leu151Phe). The clinical data of the patients carrying these mutations were compared with the functional consequences of the mutant GCAP1 forms. For this purpose we purified the heterologously expressed GCAP1 forms and investigated whether the mutations affected the Ca2+‐triggered conformational changes and the apparent interaction affinity with the membrane bound guanylate cyclase. Furthermore, we analyzed Ca2+‐dependent regulatory modes of wildtype and mutant GCAP1 forms. Although all novel mutants were able to act as a Ca2+‐sensor protein, they differed in their Ca2+‐dependent activation profiles leading to a persistent stimulation of guanylate cyclase activities at physiological intracellular Ca2+ concentration. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
In six index cases/families referred for Marfan syndrome (MFS) molecular diagnosis, we identified six novel mutations in the FBN1 gene: c.1753G>C (p.Gly585Arg), c.2456G>A (p.Gly819Glu), c.4981G>A (p.Gly1661Arg), c.5339G>A (p.Gly1780Glu), c.6418G>A (p.Gly2140Arg) and c.6419G>A (p.Gly2140Glu). These variants, predicted to result in Glycine substitutions are located at the third position of a 4 amino acids loop‐region of calcium‐binding Epidermal Growth Factor‐like (cb‐EGF) fibrillin‐1 domains 5, 9, 24, 25 and 32. Familial segregation studies showing cosegregation with MFS manifestations or de novo inheritance in addition to in silico analyses (conservation, 3D modeling) suggest evidence for a crucial role of the respective Glycine positions. Extending these analyses to all Glycine residue at position 3 of this 4 residues loop in fibrillin‐1 cb‐EGF with the UMD predictor tool and alignment of 2038 available related sequences strongly support a steric strain that only allows Glycine or even Alanine residues for domain structure maintenance and for the fibrillin functions. Our data compared with those of the literature strongly suggest the existence of a cb‐EGF domain subtype with implications for related diseases. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
We have previously shown that mutations in the genes encoding DNA Ligase IV (LIGIV) and RAD50, involved in DNA repair by nonhomologous‐end joining (NHEJ) and homologous recombination, respectively, lead to clinical and cellular features similar to those of Nijmegen Breakage Syndrome (NBS). Very recently, a new member of the NHEJ repair pathway, NHEJ1, was discovered, and mutations in patients with features resembling NBS were described. Here we report on five patients from four families of different ethnic origin with the NBS‐like phenotype. Sequence analysis of the NHEJ1 gene in a patient of Spanish and in a patient of Turkish origin identified homozygous, previously reported mutations, c.168C>G (p.Arg57Gly) and c.532C>T (p.Arg178Ter), respectively. Two novel, paternally inherited truncating mutations, c.495dupA (p.Asp166ArgfsTer20) and c.526C>T (p.Arg176Ter) and two novel, maternal genomic deletions of 1.9 and 6.9 kb of the NHEJ1 gene, were found in a compound heterozygous state in two siblings of German origin and in one Malaysian patient, respectively. Our findings confirm that patients with NBS‐like phenotypes may have mutations in the NHEJ1 gene including multiexon deletions, and show that considerable clinical variability could be observed even within the same family. Hum Mutat 31:1059–1068, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
Inactivating mutations in the BCKDK gene, which codes for the kinase responsible for the negative regulation of the branched‐chain α‐keto acid dehydrogenase complex (BCKD), have recently been associated with a form of autism in three families. In this work, two novel exonic BCKDK mutations, c.520C>G/p.R174G and c.1166T>C/p.L389P, were identified at the homozygous state in two unrelated children with persistently reduced body fluid levels of branched‐chain amino acids (BCAAs), developmental delay, microcephaly, and neurobehavioral abnormalities. Functional analysis of the mutations confirmed the missense character of the c.1166T>C change and showed a splicing defect r.[520c>g;521_543del]/p.R174Gfs1*, for c.520C>G due to the presence of a new donor splice site. Mutation p.L389P showed total loss of kinase activity. Moreover, patient‐derived fibroblasts showed undetectable (p.R174Gfs1*) or barely detectable (p.L389P) levels of BCKDK protein and its phosphorylated substrate (phospho‐E1α), resulting in increased BCKD activity and the very rapid BCAA catabolism manifested by the patients’ clinical phenotype. Based on these results, a protein‐rich diet plus oral BCAA supplementation was implemented in the patient homozygous for p.R174Gfs1*. This treatment normalized plasma BCAA levels and improved growth, developmental and behavioral variables. Our results demonstrate that BCKDK mutations can result in neurobehavioral deficits in humans and support the rationale for dietary intervention.  相似文献   

12.
Odonto‐onycho‐dermal dysplasia (OODD) is a rare autosomal recessive syndrome characterized by multiple ectodermal abnormalities. Mutations of the wingless‐type MMTV integration site family member 10A (WNT10A) gene have been associated with OODD. To date, only 11 OODD‐associated WNT10A mutations have been reported. In this report, we Characterized the clinical manifestations with focusing on dental phenotypes in four unrelated OODD patients. By Sanger sequencing, we identified five novel mutations in the WNT10A gene, including two homozygous nonsense mutations c.1176C>A (p.Cys392*) and c.742C>T (p.Arg248*), one homozygous frame‐shift mutation c.898‐899delAT (p.Ile300Profs*126), and a compound heterozygous mutation c.826T>A (p.Cys276Ser) and c.949delG (p.Ala317Hisfs*121). Our findings confirmed that bi‐allelic mutations of WNT10A were responsible for OODD and greatly expanded the mutation spectrum of OODD. For the first time, we demonstrated that bi‐allelic WNT10A mutations could lead to anodontia of permanent teeth, which enhanced the phenotypic spectrum of WNT10A mutations. Interestingly, we found that bi‐allelic mutations in the WNT10A gene preferentially affect the permanent dentition rather the primary dentition, suggesting that the molecular mechanisms regulated by WNT10A in the development of permanent teeth and deciduous teeth might be different.  相似文献   

13.
Retinoschisin (RS1) is a cell‐surface adhesion molecule expressed by photoreceptor and bipolar cells of the retina. The 24‐kDa protein encodes two conserved sequence motifs: the initial signal sequence targets the protein for secretion while the larger discoidin domain is implicated in cell adhesion. RS1 helps to maintain the structural organization of the retinal cell layers and promotes visual signal transduction. RS1 gene mutations cause X‐linked retinoschisis disease (XLRS) in males, characterized by early‐onset central vision loss. We analyzed the biochemical consequences of several RS1 signal‐sequence mutants (c.1A>T, c.35T>A, c.38T>C, and c.52G>A) found in our subjects. Expression analysis in COS‐7 cells demonstrates that these mutations affect RS1 biosynthesis and result in an RS1 null phenotype by several different mechanisms. By comparison, discoidin‐domain mutations generally lead to nonfunctional conformational variants that remain trapped inside the cell. XLRS disease has a broad heterogeneity in general, but subjects with the RS1 null‐protein signal‐sequence mutations are on the more severe end of the clinical phenotype. Results from the signal‐sequence mutants are discussed in the context of the discoidin‐domain mutations, clinical phenotypes, genotype–phenotype correlations, and implications for RS1 gene replacement therapy. Hum Mutat 31:1251–1260, 2010. Published 2010 Wiley‐Liss, Inc.  相似文献   

14.
Charcot–Marie–Tooth disease type 2D (CMT2D) is an autosomal‐dominant axonal peripheral neuropathy characterized by impaired motor and sensory function in the distal extremities. Mutations in the glycyl‐tRNA synthetase (GARS) gene cause CMT2D. GARS is a member of the ubiquitously expressed aminoacyl‐tRNA synthetase (ARS) family and is responsible for charging tRNA with glycine. To date, 13 GARS mutations have been identified in patients with CMT disease. While functional studies have revealed loss‐of‐function characteristics, only four GARS mutations have been rigorously studied. Here, we report the functional evaluation of nine CMT‐associated GARS mutations in tRNA charging, yeast complementation, and subcellular localization assays. Our results demonstrate that impaired function is a common characteristic of CMT‐associated GARS mutations. Additionally, one mutation previously associated with CMT disease (p.Ser581Leu) does not demonstrate impaired function, was identified in the general population, and failed to segregate with disease in two newly identified families with CMT disease. Thus, we propose that this variant is not a disease‐causing mutation. Together, our data indicate that impaired function is a key component of GARS‐mediated CMT disease and emphasize the need for careful genetic and functional evaluation before implicating a variant in disease onset.  相似文献   

15.
A rare syndromic form of intellectual disability with impaired speech was recently found associated with mutations in CHAMP1 (chromosome alignment‐maintaining phosphoprotein 1), the protein product of which is directly involved in microtubule‐kinetochore attachment. Through whole‐exome sequencing in six unrelated nonconsanguineous families having a sporadic case of intellectual disability, we identified six novel de novo truncating mutations in CHAMP1: c.1880C>G p.(Ser627*), c.1489C>T; p.(Arg497*), c.1876_1877delAG; p.(Ser626Leufs*4), c.1043G>A; p.(Trp348*), c.1002G>A; p.(Trp334*), and c.958_959delCC; p.(Pro320*). Our clinical observations confirm the phenotypic homogeneity of the syndrome, which represents therefore a distinct clinical entity. Besides, our functional studies show that CHAMP1 protein variants are delocalized from chromatin and are unable to bind to two of its direct partners, POGZ and HP1. These data suggest a pathogenic mechanism of the CHAMP1‐associated intellectual disability syndrome mediated by direct interacting partners of CHAMP1, several of which are involved in chromo/kinetochore‐related disorders.  相似文献   

16.
Hermansky–Pudlak syndrome type 2 (HPS2) is a syndrome caused by mutations in the beta‐3A subunit of the adaptor protein (AP)‐3 complex (AP3B1 gene). We describe five unreported cases with four novel mutations, one of which caused aberrant pre‐mRNA splicing. A point mutation c.2702C>G in exon 23 of the AP3B1 gene caused deletion of 112 bp in the mRNA in two siblings. This mutation activates a cryptic donor splice site that overrules the wild‐type donor splice site of this exon. Three other novel mutations in AP3B1 were identified, that is, a nonsense mutation c.716G>A (p.Trp239Ter), a 1‐bp and a 4‐bp deletion c.177delA and c.1839_1842delTAGA, respectively, both causing frameshift and premature termination of translation. Mass spectrometry in four of these HPS2 patients demonstrated the (near) absence of all AP‐3 complex subunits. Immunoelectron microscopy on the neutrophils of two of these patients showed abnormal granule formation. We found clear mislocalization of myeloperoxidase in the neutrophils even though the content of this protein but not the activity seemed to be present at normal levels. In sum, HPS2 is the result of the absence of the entire AP‐3 complex, which results in severe neutropenia with a defect in granule formation as the major hematological finding.  相似文献   

17.
The lysosomal storage disorder ML III γ is caused by defects in the γ subunit of UDP‐GlcNAc:lysosomal enzyme N‐acetylglucosamine‐1‐phosphotransferase, the enzyme that tags lysosomal enzymes with the mannose 6‐phosphate lysosomal targeting signal. In patients with this disorder, most of the newly synthesized lysosomal enzymes are secreted rather than being sorted to lysosomes, resulting in increased levels of these enzymes in the plasma. Several missense mutations in GNPTG, the gene encoding the γ subunit, have been reported in mucolipidosis III γ patients. However, in most cases, the impact of these mutations on γ subunit function has remained unclear. Here, we report that the variants c.316G>A (p.G106S), c.376G>A (p.G126S), and c.425G>A (p.C142Y) cause misfolding of the γ subunit, whereas another variant, c.857C>T (p.T286M), does not appear to alter γ subunit function. The misfolded γ subunits were retained in the ER and failed to rescue the lysosomal targeting of lysosomal acid glycosidases.  相似文献   

18.
We describe a West syndrome (WS) patient with unidentified etiology that evolved to Lennox–Gastaut syndrome. The mitochondrial respiratory chain of the patient showed a simple complex I deficiency in fibroblasts. Whole‐exome sequencing (WES) uncovered two heterozygous mutations in NDUFV2 gene that were reassigned to a pseudogene. With the WES data, it was possible to obtain whole mitochondrial DNA sequencing and to identify a heteroplasmic variant in the MT‐ND1 (MTND1) gene (m.3946G>A, p.E214K). The expression of the gene in patient fibroblasts was not affected but the protein level was significantly reduced, suggesting that protein stability was affected by this mutation. The lower protein level also affected assembly of complex I and supercomplexes (I/III2/IV and I/III2), leading to complex I deficiency. While ATP levels at steady state under stress conditions were not affected, the amount of ROS produced by complex I was significantly increased.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号