首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rituximab is a monoclonal chimeric antibody, which has been approved by the US Food and Drug Administration for immunotherapy of non–Hodgkin lymphoma. Bexxar and Zevalin are the two other approved radiolabeled antibodies for radioimmunotherapy of non–Hodgkin lymphoma; however, they are of murine origin that reduces their treatment efficacy. So as to circumvent this, efforts have been made to radiolabel Rituximab with various therapeutic radioisotopes. In the present study, an effort has been made to optimize the conjugation (bifunctional chelating agent and antibody) and radiolabeling procedures for the preparation of clinical‐scale 177Lu‐labeled Rituximab. An attempt was also made to prepare the freeze‐dried Rituximab kit for the easy and convenient clinical translation of the agent. Clinical‐scale 177Lu‐Rituximab (40 mCi, 1.48 GBq) was prepared with >95% radiochemical purity using the kit. Biological evaluation of 177Lu‐Rituximab was performed by in vitro cell binding studies in Raji cell lines, which showed satisfactory binding at 4°C and 37°C. Pharmacokinetic behavior of the agent, evaluated by biodistribution studies in normal Swiss mice, revealed high blood and liver uptake at the initial time points, although it exhibited slow and gradual clearance with time. The study indicates that clinical‐scale 177Lu‐Rituximab could be conveniently formulated using the methodology described in the present article.  相似文献   

2.
While radiation synovectomy (RSV) constitutes a successful paradigm for the treatment of arthritis, a major cornerstone of its success resides in the selection of appropriate radiolabeled agent. Among the radionuclide used for RSV, the scope of using 177Lu [T1/2 = 6.65 d, Eβ(max) = 497 keV, Eγ = 113 KeV (6.4%), 208 KeV (11%)] seemed to be attractive owing to its suitable decay characteristics, easy availability, and cost‐effective production route. The present article describes a formulation of 177Lu‐labeled hydroxyapatite (HA) using ready‐to‐use kits of HA particles of 1–10 µm size range. The developed kits enable convenient one‐step preparation of 177Lu‐HA (400 ± 30 MBq doses) in high radiochemical purity (>99%) and stability at hospital radiopharmacy. The preparation showed promising results in pre‐clinical studies carried out in Wistar rats bearing arthritis in knee joints. In preliminary clinical investigation, significant improvement in the disease conditions was reported in 10 patients with rheumatoid arthritis of knee joints treated with 333 ± 46 MBq doses of 177Lu‐HA. The studies reveal that while 177Lu labeled HA particles holds considerable promise as a cost‐effective agent for RSV, the adopted strategy of using HA kits could be a potential step toward wider clinical utilization of radiolanthanide‐labeled HA particles. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Currently, a popular strategy for designing novel radioprobes as bone‐imaging agents is based on the concept of bifunctional radiopharmaceuticals. Considering the dithiocarbamate ligand can act as a suitable bifunctional linking agent to attach technetium‐99m (99mTc) to corresponding target molecules, in this study, alendronate dithiocarbamate (ALNDTC) was synthesized and radiolabeled with [99mTc≡N]2+ core by ligand exchange reaction to produce 99mTcN‐ALNDTC complex, for the potential use as a novel probe for bone imaging. The radiochemical purity of the complex was over 90%. The complex was stable in vitro and could bind to hydroxyapatite. The partition coefficient result indicated it was hydrophilic, and an evaluation of biodistribution in mice indicated that the complex exhibited a higher bone uptake than did 99mTc‐labeled methylenediphosphonate (99mTc‐MDP). Further, single photon emission computed tomography imaging study indicated clear accumulation in bone, suggesting that 99mTcN‐ALNDTC would be a promising candidate for bone imaging.  相似文献   

4.
The purpose of this study was to develop preclinical evaluation of a novel radiolabeled gonadotropin‐releasing hormone (GnRH) receptor targeting peptide for prostate cancer therapy. The new antiproliferative agent of GnRH‐I analogue was developed on the basis of the D‐Trp6‐GnRH‐I scaffold, and in vivo pharmacokinetics and receptor binding affinity were enhanced by the substitution of Gly‐NHNH2 for Gly‐NH2 at position 10 in D‐Trp6‐GnRH‐I. To evaluate 177Lu‐DOTA‐triptorelin‐hydrazide as radionuclide therapy of tumor, the quality control tests and preclinical stage assessment were carried out. Solid‐phase method was used to synthesize new peptide. Characterization and purity of peptide were done by mass spectroscopy and high‐performance liquid chromatography (HPLC). In order to be utilized in targeted therapy, the new GnRH‐I agonist was coupled with pSCN‐Bn‐DOTA. The precipitate crude of DOTA‐triptorelin‐hydrazide was then purified via preparative HPLC. At optimal conditions of time, temperature, ligand amount, and lutetium content, DOTA‐triptorelin‐hydrazide was labeled with 177Lu (specific activity not less than 925 GBq/mg). Investigation of the in vivo biodistribution and in vitro studies for 177Lu‐DOTA‐TRPHYD was performed in three different ways, and the binding of radiopeptide to GnRH receptors was expressed on the human cell lines using 125I‐labeled D‐TRP6GnRH‐I as a tracer, respectively. Synthesized novel GnRH‐I was obtained with purity greater than 98%. Paper chromatography was found to be the most suitable with Rf of the complex and observed radiochemical purity of RTLC and HPLC greater than 97%. For in vivo studies, 177Lu‐DOTA‐triptorelin‐hydrazide showed promising results with fast clearance from the blood and resulted in good T/NT ratios at 1, 4, and 24 hours postinjection and satisfactory biodistribution with no significant activity seen in normal tissue. The values of internalization efficiency and receptor affinity of new radiopeptide binding were IC50 = 0.47 ± 0.06 vs 0.13 ± 0.01 nM for triptorelin and cellular uptake: 3.4 ± 0.7% at 1 hour and 6.8 ± 1.17% at 4 hours of the internal reference. The results showed a good stability and radiochemical purity of the obtained radioconjugate. For in vivo and in vitro studies, new radiopeptide showed a high uptake of 177Lu conjugate in tumor and rapid clearance from the blood stream almost entirely via the renal/urinary pathway and binding to the GnRH receptors with high specificity and affinity, respectively.  相似文献   

5.
Targeted radionuclide therapy using 177Lu‐labeled peptidomimetic inhibitor of prostate specific membrane antigen (PSMA) viz. PSMA‐617 is emerging as one the most effective strategies for management of metastatic prostate cancer, which is one of the leading causes of cancer related death. The aim of the present study is to develop a robust and easily adaptable protocol for formulation of therapeutic dose of 177Lu‐PSMA‐617 at hospital radiopharmacy using moderate specific activity 177Lu available at an affordable cost. Extensive radiochemical studies were performed to optimize the required [PSMA‐617] / [Lu] ratio and other parameters to formulate 7.4 GBq dose of 177Lu‐PSMA‐617. Based on these, 7.4 GBq therapeutic dose of 177Lu‐PSMA‐617 was formulated by incubating 160 µg of PSMA‐617 with indigenously produced 177LuCl3 (555 GBq/µg specific activity of 177Lu) at 90 °C for 30 min. The radiochemical purity of the formulation was 98.3 ± 0.6% (n = 7) which was retained to the extent of >95% after 7 d in normal saline at room temperature and >96% after 2 d in human serum at 37 °C. Preliminary clinical studies showed specific targeting of the agent in the lesion sites and similar physiological distribution as in diagnostic 68Ga‐PSMA‐11 PET scans performed earlier. The developed optimized protocol for formulating therapeutic dose of 177Lu‐PSMA‐617 could be useful for large number of nuclear medicine therapy clinics across the world having access to moderate specific activity 177Lu at an affordable cost.  相似文献   

6.
In this study, the radiocomplexation of risedronic acid, a potent bisphosphonate with a no carrier added (NCA) 177Lu, was investigated and followed by quality control studies, biodistribution evaluation, and dosimetry study for human based on biodistribution data in Wistar rats. The moderate energy β emitter, 177Lu (T ½ = 6.7 days, E βmax = 497 keV), has been considered as a potential agent for development of bone‐seeking radiopharmaceuticals. Because the specific activity of the radiolabeled carrier molecules should be high, the NCA radionuclides have an effective role in nuclear medicine. Many researchers illustrated an NCA 177Lu production; among these separation techniques, extraction chromatography has been considered more capable than other methods. The NCA 177Lu was produced with specific activity of 48 Ci/mg and radionuclidic purity of 99.99% by the irradiation of enriched 176Yb target in thermal neutron flux of 4 × 1013 n·cm2·s1 for 14 days. The NCA 177Lu was mixed to a desired amount of sodium risedronate (15 mg/mL, 200 μL) and incubated with stirring at 95°C for 30 minutes. The radiochemical purity of 177Lu‐risedronate was determined by radio thin‐layer chromatography, and high radiochemical purities (>97%) were obtained under optimized reaction conditions . The complex was injected to Wistar rats, and complex biodistribution was performed 4 hours to 7 days postinjections showing high bone uptake (9.8% ± 0.24% ID/g at 48 hours postinjection). Also, modeling the radiation dose delivery by RADAR software for the absorbed dose evaluation of each human organ showed a major accumulation of the radiocomplex in bone tissue.  相似文献   

7.
The conjugation of peptides to gold nanoparticles (AuNPs) produces biocompatible and stable multimeric systems with target‐specific molecular recognition. Peptides based on the cyclic Arg‐Gly‐Asp (RGD) sequence have been reported as high‐affinity agents for the α(ν)β(3) integrin. The aim of this research was to prepare a multimeric system of 177Lu‐labeled gold nanoparticles conjugated to c(RGDfK)C (cyclo(Arg‐Gly‐Asp‐Phe‐Lys)Cys) and to compare the radiation‐absorbed dose with that of 177Lu‐labeled monomeric and dimeric RGD peptides to α(ν)β(3) integrin‐positive U87MG tumors in mice. DOTA‐GGC (1,4,7,10‐tetraazacyclododecane‐N‐N′,N″,N?‐tetraacetic acid‐Gly‐Gly‐Cys) and c(RGDfK)C peptides were synthesized and conjugated to AuNPs by a spontaneous reaction of the thiol groups. Transmission electron microscopy, ultraviolet–visible, X‐ray photoelectron spectroscopy, Raman and far‐infrared spectroscopy techniques demonstrated that AuNPs were functionalized with the peptides. For the 177Lu‐AuNP‐c(RGDfK)C to be obtained, the 177Lu‐DOTA‐GGC radiopeptide was first prepared and added to a solution of AuNPs followed by c(RGDfK)C (25 µl, 5 µ m ) at 18 °C for 15 min. 177Lu‐DOTA‐GGC, 177Lu‐DOTA‐cRGDfK and 177Lu‐DOTA‐E‐c(RGDfK)2 were prepared by adding 177LuCl3 (370 MBq) to 5 µl (1 mg/ml) of the DOTA derivative diluted with 50 µl of 1 m acetate buffer pH 5. The mixture was incubated at 90 °C in a block heater for 30 min. Radiochemical purity was determined by ultrafiltration and HPLC analyses. Biokinetic studies were accomplished in athymic mice with U87MG‐induced tumors. The radiochemical purity for all 177Lu‐RGD derivatives was 96 ± 2%. 177Lu‐absorbed doses per injected activity delivered to U87MG tumors were 0.357 ± 0.052 Gy/MBq (multimer), 0.252 ± 0.027 Gy/MBq (dimer) and 0.102 ± 0.018 Gy/MBq (monomer). 177Lu‐labeled dimeric and multimeric RGD peptides demonstrated properties suitable for targeted radionuclide therapy of tumors expressing α(ν)β(3) integrins. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Use of bone‐seeking radiopharmaceuticals is an established modality in the palliative care of pain due to skeletal metastases. 177Lu‐DOTMP is a promising radiopharmaceutical for this application owing to the ideally suited decay properties of 177Lu and excellent thermodynamic stability and kinetic rigidity of the macrocyclic complex. The aim of the present study is to develop a robust and easily adaptable protocol for formulation of clinical doses of 177Lu‐DOTMP at hospital radiopharmacy. After extensive radiochemical studies, an optimized strategy for formulation of clinical doses of 177Lu‐DOTMP was developed, which involves simple mixing of approximately 3.7 GBq of 177Lu activity as 177LuCl3 solution to an aqueous solution containing 5 mg of DOTMP and 8 mg of NaHCO3. The proposed protocol yielded 177Lu‐DOTMP with >98% radiochemical purity, and the resultant formulation showed excellent in vitro stability and desired pharmacokinetic properties in animal model. Preliminary clinical investigations in 5 patients showed specific skeletal accumulation with preferential localization in the osteoblastic lesion sites and almost no uptake in soft tissue or any other major nontarget organ. The developed “mix‐and‐use” strategy would be useful for large number of nuclear medicine centers having access to 177Lu activity and would thereby accelerate the clinical translation of 177Lu‐DOTMP.  相似文献   

9.
To analyze erythropoietin receptor (EpoR) status in tumors, recombinant human erythropoietin (rHuEpo) was labeled with 99mTc by 99mTc‐centered 1‐pot synthesis, resulting in high radiochemical purity, stability, and biological activity. Both in vitro cell culture experiments and biodistribution studies of normal rats demonstrated successful EpoR targeting. The biodistribution of labeled rHuEpo in a NCI‐H1975 xenograft model showed tumor accumulation (tumor‐to‐muscle ratio, 4.27 ± 1.77), confirming the expression of active EpoR in tumors. Thus, as a novel single positron emission computerized tomography tracer for the imaging of EpoR expression in vivo, 99mTc‐rHuEpo is effective for exploring the role of EpoR in cancer growth, metastasis and angiogenesis.  相似文献   

10.
Kanamycin is an antibiotic, isolated from Streptomyces kanamyceticus, which is used to treat serious bacterial infections. The fact that the present radioligand 99mTc‐kanamycin used for diagnosis is short‐lived, raised a need to label and study kanamycin with one of the most important beta (β) radiation emitting isotope 177Lu. Labeling yield of 177Lu‐kanamycin was confirmed by different chromatography techniques such as paper chromatography, TLC, HPLC. Several experiments were performed to optimize labeling with changing reaction conditions such as pH, temperature, amount of ligand, and reaction time. In vitro stability analysis was performed incubation with human serum. Electrophoresis analysis was also conducted to determine the charge on 177Lu‐kanamycin. The biodistribution and scintigraphy were performed in normal mice and rabbit, respectively, at different time intervals of postinjection. 177Lu‐kanamycin was prepared with very high yield (~100%), with excellent stability in vivo and in vitro (>99% 6 hr postprep.), at pH 7. Maximum labeling was achieved at less reaction time (15 min), with maximum conjugation of the ligand (12.5 mg) with 177Lu. Electrophoresis analysis showed net neutral charge. The radioligand showed rapid clearance from body in biodistribution and scintigraphy studies. The preparation 177Lu‐kanamycin could be used as a radio‐pharmaceutical for infection imaging purpose, especially when transporting the radioligand to long‐range distances.  相似文献   

11.
Three radiolabeled diphosphonates, 99mTc‐labeled 1‐hydroxy‐3‐(2‐propyl‐1H‐imidazol‐1‐yl)propane‐1,1‐diyldiphosphonic acid (PIPrDP), 1‐hydroxy‐4‐(2‐propyl‐1H‐imidazol‐1‐yl)butane‐1,1‐diyldiphosphonic acid (PIBDP), and 1‐hydroxy‐5‐(2‐propyl‐1H‐imidazol‐1‐yl)pentane‐1,1‐diyldiphosphonic acid (PIPeDP), have been designed and synthesized with good chemical yields and high radiochemical purity. Their in vitro and in vivo biological properties were investigated and compared. All radiotracers evaluated in mice showed substantial retention in bone (8.42 ± 0.53, 9.08 ± 0.65, and 10.3 ± 0.61 ID%/g, respectively) at 1 h post‐injection and had rapid clearance in blood (1.9484, 1.3666, and 0.7704 ID%/g/min, respectively). 99mTc‐PIBDP has the highest uptake ratio of bone‐to‐soft tissue at 1 h post‐injection among the three radiotracers. The results indicate that 99mTc‐PIBDP is the most promising bone imaging agent. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
The gastrin-releasing peptide receptor (GRPR) is overexpressed in prostate cancer and other solid malignancies. Following up on our work on [68Ga]Ga-ProBOMB1 that had better imaging characteristics than [68Ga]Ga-NeoBOMB1, we investigated the effects of substituting 68Ga for 177Lu to determine if the resulting radiopharmaceuticals could be used with a therapeutic aim. We radiolabeled the bombesin antagonist ProBOMB1 (DOTA-pABzA-DIG-D-Phe-Gln-Trp-Ala-Val-Gly-His-Leu-ψ-Pro-NH2) with lutetium-177 and compared it with [177Lu]Lu-NeoBOMB1 (obtained in 54.2 ± 16.5% isolated radiochemical yield with >96% radiochemical purity and 440.8 ± 165.1 GBq/μmol molar activity) for GRPR targeting. Lu-NeoBOMB1 had better binding affinity for GRPR than Lu-ProBOMB1 (Ki values: 2.26 ± 0.24 and 30.2 ± 3.23nM). [177Lu]Lu-ProBOMB1 was obtained in 53.7 ± 5.4% decay-corrected radiochemical yield with 444.2 ± 193.2 GBq/μmol molar activity and >95% radiochemical purity. In PC-3 prostate cancer xenograft mice, tumor uptake of [177Lu]Lu-ProBOMB1 was 3.38 ± 1.00, 1.32 ± 0.24, and 0.31 ± 0.04%ID/g at 1, 4, and 24 hours pi. However, the uptake in tumor was lower than [177Lu]Lu-NeoBOMB1 at all time points. [177Lu]Lu-ProBOMB1 was inferior to [177Lu]Lu-NeoBOMB1, which had better therapeutic index for the organs receiving the highest doses.  相似文献   

13.
Radiolabeled antibiotics are promising radiopharmaceuticals for the precise diagnosis and detection of infectious lesions. Doxycycline Hyclate (DOX) was chosen to investigate new 99mTc‐labeled antibacterial agent. Ready to use freeze dry kits were formulated with optimum labeling conditions. Human serum stability, sterility, and pyrogenicity of kits were estimated, and gamma scintigraphy, in vivo biodistribution, and histopathological studies with bacterial infected rats were performed. DOX were successfully labeled by 99mTc with high radiochemical purity, and the labeled compound was stable in human serum. Kits were sterile, pyrogen‐free, and stable up to 6 months. Static images depicted rapid distribution throughout the body and high uptake in bacterial infected thigh muscle. The uptake ratios of radiopharmaceuticals in infected thigh muscle were found above 2 up to 5 h. Five hours after injection, the rats were sacrificed, and biodistribution was determined. Samples of bacterial infected muscle, healthy muscle, blood, liver, spleen, lung, kidney, stomach, intestine, urine and heart were weighed, and the radioactivity was measured by using a gamma counter. The %ID/g of 99mTc‐DOX was found 0.23 ± 0.06 for infected thigh muscle. According to the imaging, biodistribution, and histopathological studies, the promising characteristics of 99mTc‐DOX make the new radiopharmaceutical valuable to examine for future studies. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
Radiolabelled monoclonal antibodies (mAbs) are increasingly being utilized in cancer theranostics, which is a significant move toward tailored treatment for individual patients. Cetuximab is a recombinant, human–mouse chimeric IgG1 mAb that binds to the epidermal growth factor receptor with high affinity. We have optimized a protocol for formulation of clinically relevant doses (~2.22 GBq) of 90Y‐labelled Cetuximab and 177Lu‐labelled Cetuximab by conjugation of the mAb with a suitable bifunctional chelator, N‐[(R)‐2‐amino‐3‐(paraisothiocyanato‐phenyl)propyl]‐trans‐(S,S)‐cyclohexane‐1,2‐diamine‐N,N,N′,N″,N″‐pentaacetic acid (CHX‐A″‐DTPA). The radioimmunoconjugates demonstrated reasonably high specific activity (1.26 ± 0.27 GBq/mg for 90Y‐CHX‐A″‐DTPA‐Cetuximab and 1.14 ± 0.15 GBq/mg for 177Lu‐CHX‐A″‐DTPA‐Cetuximab), high radiochemical purity (>95%) and appreciable in vitro stability under physiological conditions. Preliminary biodistribution studies with both 90Y‐CHX‐A″‐DTPA‐Cetuximab and 177Lu‐CHX‐A″‐DTPA‐Cetuximab in Swiss mice bearing fibrosarcoma tumours demonstrated significant tumour uptake at 24‐h post‐injection (p.i.) (~16%ID/g) with good tumour‐to‐background contrast. The results of the biodistribution studies were further corroborated by ex vivo Cerenkov luminescence imaging after administration of 90Y‐CHX‐A″‐DTPA‐Cetuximab in tumour‐bearing mice. The tumour uptake at 24 h p.i. was significantly reduced with excess unlabelled Cetuximab, suggesting that the uptake was receptor mediated. The results of this study hold promise, and this strategy should be further explored for clinical translation.  相似文献   

15.
A fluorine‐18 labeled analog of the widely used chemotherapeutic agent cyclophosphamide was synthesized as a tracer for prognostic imaging with positron emission tomography. 2‐[(2‐Chloro‐2′‐[18F]fluoroethyl)amino]‐2H‐1,3,2‐oxazaphosphorinane‐2‐oxide (18F‐fluorocyclophosphamide), was prepared by direct halogen exchange reaction from the parent cyclophosphamide. In small‐scale syntheses, radiochemical yields of up to 4.9% and specific activities of 960 Ci/mmol were achieved in a total synthesis time of 60–75 min. The [18F]‐labeled cyclophosphamide analog with radioactive purity >99% and chemical purity >96% was suitable for in vivo (microPET imaging) and ex vivo studies of a murine model of human breast tumors. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
In order to develop a novel 99mTc‐labeled folate receptor (FR) imaging agent, a dithiocarbamate derivative, pteroyl‐lys‐DTC, was synthesized and radiolabeled with 99mTc through the [99mTcN]2+ intermediate. The radiochemical purity of the corresponding 99mTc‐complex, 99mTcN‐pteroyl‐lys‐DTC, was over 95% as measured by reversed‐phase HPLC. The 99mTcN complex was stable under physiological conditions. 99mTcN‐pteroyl‐lys‐DTC exhibited specific FR binding in FR‐positive KB cells in vitro. The biodistribution in tumor‐bearing mice showed that the 99mTcN‐labeled radiotracer had good uptake (3.56 ± 0.09%ID/g at 2 h postinjection) in FR‐positive KB tumors, as well as in the kidneys (30.34 ± 3.53%ID/g at 2 h postinjection). After coinjection with excess folic acid, the uptake in tumor and kidneys was significantly blocked. The results indicated that 99mTcN‐pteroyl‐lys‐DTC was able to target the FR‐positive tumor cells and tissues specifically both in vitro and in vivo. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
Trastuzumab is a humanized monoclonal antibody against the HER2 that has the potential to be used as radioimmunotherapy (RIT) agent in treatment of breast cancer. Lutetium‐177 has beta energy suitable for therapy and gamma photons for imaging. We labeled trastuzumab with lutetium‐177 via DOTA as chelator and performed some necessary tests for the first stage in using complex as a RIT agent. Radiochemical purity, immunoreactivity and stability of complex were determined. The biodistribution and imaging studies were determined in mice bearing breast tumor. The radiochemical purity was 94±0.9%. Lutetium‐Trastuzumab showed a good stability at biological condition. The tumor to blood ratio was calculated 3.29(±0.09) after 7 days. The good tumor uptake in biodistribution studies was agreed with gamma camera images after 7 days. The results showed that the new complex could be considered for further evaluation in animals and possibly in humans as a new radiopharmaceutical for use in RIT against breast cancer. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
The aim of this study is to develop 177Lu‐5‐Flourouracil as a potential cancer therapeutic radiopharmaceutical. 5‐Flourouracil (5‐FU) is widely accepted as an anticancer drug of broad spectrum fame. The labeling of 5‐FU was carried out at different set of experimental conditions using high specific activity of 177LuCl3. The optimum conditions for maximum radiochemical yield was set: 5‐FU (5 mg), 177LuCl3 (185 MBq), diethylenetriaminepentaacetic acid (10 µg), reaction volume (2 mL), pH (5.5), temperature (80°C), and reaction time (20 min). The radiochemical labeling was assessed with Whatman No. 2 paper, instant thin layer chromatographic, and radio‐HPLC, which revealed >94% labeling results with sufficient stability up to 6 h. Serum stability study also showed 177Lu‐5‐FU promising stability. Biodistribution study in normal rats and rabbits showed liver, stomach, kidney, and heart as area of increased tracer accumulation just after injection, which decreased to 1.4%, 0.4%, 0.2%, and 0.39% ID/g, respectively, after 72 h. Glomerular filtration rate and cytotoxicity study results of 177Lu‐5‐FU showed it had no adverse effect on renal function and nontoxic to blood cells. The promising characteristics of 177Lu‐5‐FU, that is, clever elimination from kidney and nontoxic nature toward blood cells make it the radiopharmaceutical for further testing in patients for therapeutic purposes.  相似文献   

19.
It has in recent years been reported that microemulsion (ME) delivery systems provide an opportunity to improve the efficacy of a therapeutic agent whilst minimising side effects and also offer the advantage of favourable treatment regimens. The prostate‐specific membrane antigen (PSMA) targeting agents PSMA‐11 and PSMA‐617, which accumulate in prostate tumours, allow for [68Ga]Ga3+‐radiolabelling and positron emission tomography/computed tomography (PET) imaging of PSMA expression in vivo. We herein report the formulation of [68Ga]Ga‐PSMA‐617 into a ME ≤40 nm including its evaluation for improved cellular toxicity and in vivo biodistribution. The [68Ga]Ga‐PSMA‐617‐ME was tested in vitro for its cytotoxicity to HEK293 and PC3 cells. [68Ga]Ga‐PSMA‐617‐ME was administered intravenously in BALB/c mice followed by microPET/computed tomography (CT) imaging and ex vivo biodistribution determination. [68Ga]Ga‐PSMA‐617‐ME indicated negligible cellular toxicity at different concentrations. A statistically higher tolerance towards the [68Ga]Ga‐PSMA‐617‐ME occurred at 0.125 mg/mL by HEK293 cells compared with PC3 cells. The biodistribution in wild‐type BALB/C mice showed the highest amounts of radioactivity (%ID/g) presented in the kidneys (31%) followed by the small intestine (10%) and stomach (9%); the lowest uptake was seen in the brain (0.5%). The incorporation of [68Ga]Ga‐PSMA‐617 into ME was successfully demonstrated and resulted in a stable nontoxic formulation as evaluated by in vitro and in vivo means.  相似文献   

20.
Folate receptor is an ideal target for tumor‐specific diagnostic and therapeutic. The aim of this study was to synthesize 99mTc‐labeled folate‐polyamidoamine dendrimer modified with 2‐hydrazinonicotinic acid (99mTc‐HP 3FA ) for FR imaging. The 99mTc‐HP 3FA conjugate was prepared using N‐tris‐(hydroxymethyl)‐methylglycine and trisodium triphenylphosphine‐3,3′,3″‐trisulfonate as coligands. Physicochemical properties, in vitro cell uptake study, and in vivo micro‐single‐photon emission computed tomography/CT imaging were performed. The radiolabeled 99mTc‐HP 3FA conjugate was prepared with high radiolabeling yield, good stability, and water solubility (logP  = ?1.70 ± 0.21). In cell uptake study, the radiolabeled conjugate showed high uptakes in the FR ‐abundant KB cells and could be blocked significantly by excess folic acid. The 7721 cells which served as control group substantially had no uptakes. The results of micro‐single‐photon emission computed tomography/CT imaging exhibited that high accumulation of activity was found in FR ‐overexpressed KB tumor, and the tumor‐to‐muscle ratio was approximately 25.78, while, using free FA as inhibitor, the uptakes of 99mTc‐HP 3FA in KB tumor and kidney were obviously inhibited. In summary, a new radiocompound was synthesized successfully with specific FR targeting ability. The feasibility of 99mTc‐HP 3FA for early diagnosis of FR ‐positive tumors with non‐invasive single‐photon emission computed tomography imaging was demonstrated and the possibility of imaging‐guided drug delivery based on multifunctional polyamidoamine will be studied in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号