首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the design and synthesis of several 4‐phenylpiperidine‐4‐carbonitrile derivatives as σ1 receptor ligands. In vitro radioligand competition binding assays showed that all the ligands exhibited low nanomolar affinity for σ1 receptors (Ki1) = 1.22–2.14 nM) and extremely high subtype selectivity (Ki2) = 830–1710 nM; Ki2)/Ki1) = 680–887). [18F]9 was prepared in 42–46% isolated radiochemical yield, with a radiochemical purity of >99% by HPLC analysis after purification, via nucleophilic 18F substitution of the corresponding tosylate precursor. Biodistribution studies in mice demonstrated high initial brain uptakes and high brain‐to‐blood ratios. Administration of SA4503 or haloperidol 5 min prior to injection of [18F]9 significantly reduced the accumulation of radiotracers in organs known to contain σ1 receptors. Two radioactive metabolites were observed in the brain at 30 min after radiotracer injection. [18F]9 may serve as a lead compound to develop suitable radiotracers for σ1 receptor imaging with positron emission tomography.  相似文献   

2.
We report the synthesis and evaluation of 1′‐(4‐[125I]iodobenzyl)‐3H‐spiro[isobenzofuran‐1,4′‐piperidine] ([125I]Spiro‐I) as a potential SPECT tracer for imaging of σ1 receptors. [125I]Spiro‐I was prepared in 55–65% isolated radiochemical yield, with radiochemical purity of >99%, via iododestannylation of the corresponding tributyltin precursor. In receptor binding studies, Spiro‐I displayed low nanomolar affinity for σ1 receptors (σ1: Ki=2.75±0.12 nM; σ2: Ki=340 nM) and high subtype selectivity (σ21=124). Biodistribution in mice demonstrated relatively high concentration of radioactivity in organs known to contain σ1 receptors, including the lung, kidney, heart, spleen, and brain. Administration of haloperidol 5 min prior to injection of [125I]Spiro‐I significantly reduced the concentration of radioactivity in the above‐mentioned organs. These findings suggest that the binding of [125I]Spiro‐I to σ1 receptors in vivo is specific. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
There is still no efficient fluorine‐18‐labeled dopamine D3 subtype selective receptor ligand for studies with positron emission tomography. We aim at improving the D3 selectivity and hydrophilicity of a candidate ligand by changing the substitution pattern to a 2,3‐dichlorophenylpiperazine and hydroxylation of the butyl chain. The compound [18F]3 exhibited D3 affinity of Ki = 3.6 nM, increased subtype selectivity (Ki(D2/D3) = 60), and low affinity to 5‐HT1A and α1 receptors (Ki (5‐HT1A/D3) = 34; Ki1/D3) = 100). The two‐step radiosynthesis was optimized for analog [18F]4 by reducing the necessary concentration of the precursor amine (57 mM), which reacted with [18F]fluorophenylazocarboxylic tert‐butylester under basic conditions. The optimization of the base (Cs 2CO3, 23 mM) and the adjustment of reaction temperature led to the radiochemical yield of 63% after 5 min at 35°C. The optimized reaction conditions were transferred on to the synthesis of [18F]3 with an overall non‐decay corrected yield of 8‐12% in a specific activity of 32‐102 GBq/µmol after a total synthesis time of 30‐35 min. This provides a D 3 radioligand candidate with improved attributes concerning selectivity and radiosynthesis for further preclinical studies.  相似文献   

4.
Uncharged derivatives of thioflavin‐T have known in vitro and in vivo affinity for amyloid β. We synthesized and evaluated two derivatives with a fluorine‐18 labelled fluoropropoxy substituent either at the 6‐position or at the 2′‐position of the 2‐(4′‐aminophenyl)‐1,3‐benzothiazole core with the aim to get suitable radiotracers to perform amyloid plaque imaging. The fluorine‐18 labelled compounds were obtained by nucleophilic substitution of the corresponding tosyl precursors with [18F]fluoride with a radiochemical yield of 50%, yielding 6‐(3′′‐[18F]fluoropropoxy)‐2‐(4′‐aminophenyl)‐1,3‐benzothiazole ([18F]2) and 2‐[2′‐(3′′‐[18F]fluoropropoxy)‐4′‐aminophenyl]‐1,3‐benzothiazole ([18F]3) with a specific activity between 33 and 51 GBq/µmol. The identity of the radiolabelled compounds was confirmed using radio‐LC‐MS and by comparing retention times on RP‐HPLC. Biodistribution studies in healthy mice showed for both compounds a relatively high initial brain uptake, which was significantly higher for [18F]2 than for [18F]3 (4.5% ID/g versus 3.0% ID/g, p<0.05). Wash‐out from control brain was faster for [18F]3. In vitro binding affinity tests using human AD brain homogenates revealed that only compound 2 has affinity for fibrillar amyloid β (Ki=14.5 nM). This was confirmed by the incubation of transgenic APP mouse brain sections with the cold compounds, where 3 did not stain any structure whereas 2 stained amyloid plaques present in APP mouse brain. These data suggest that [18F]2 may be a useful tracer for in vivo visualization of fibrillar amyloid β. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Four novel 18F‐labeled quinazoline derivatives with low lipophilicity, [18F]4‐(2‐fluoroethoxy)‐6,7‐dimethoxyquinazoline ( [ 18 F]I ), [18F]4‐(3‐((4‐(2‐fluoroethoxy)‐7‐methoxyquinazolin‐6‐yl)oxy)propyl)morpholine ( [ 18 F]II ), [18F]4‐(2‐fluoroethoxy)‐7‐methoxy‐6‐(2‐methoxyethoxy)quinazoline ( [ 18 F]III ), and [18F]4‐(2‐fluoroethoxy)‐6,7‐bis(2‐methoxyethoxy)quinazoline ( [ 18 F]IV ), were synthesized via a 2‐step radiosynthesis procedure with an overall radiochemical yield of 10% to 38% (without decay correction) and radiochemical purities of >98%. The lipophilicity and stability of labeled compounds were tested in vitro. The log P values of the 4 radiotracers ranged from 0.52 to 1.07. We then performed ELISA to measure their affinities to EGFR‐TK; ELISA assay results indicated that each inhibitor was specifically bounded to EGFR‐TK in a dose‐dependent manner. The EGFR‐TK autophosphorylation IC50 values of [ 18 F]I , [ 18 F]II , [ 18 F]III , and [ 18 F]IV were 7.732, 0.4698, 0.1174, and 0.1176 μM, respectively. All labeled compounds were evaluated via cellular uptake and blocking studies in HepG2 cell lines in vitro. Cellular uptake and blocking experiment results indicated that [ 18 F]I and [ 18 F]III had excellent cellular uptake at 120‐minute postinjection in HepG2 carcinoma cells (51.80 ± 3.42%ID/mg protein and 27.31 ± 1.94%ID/mg protein, respectively). Additionally, biodistribution experiments in S180 tumor‐bearing mice in vivo indicated that [ 18 F]I had a very fast clearance in blood and a relatively high uptake ratio of tumor to blood (4.76) and tumor to muscle (1.82) at 60‐minute postinjection. [ 18 F]III had a quick clearance in plasma, and its highest uptake ratio of tumor to muscle was 2.55 at 15‐minute postinjection. These experimental results and experiences were valuable for the further exploration of novel radiotracers of quinazoline derivatives.  相似文献   

6.
Positron emission tomography imaging of serotonin transporter (SERT) is useful for studying brain diseases with altered serotonergic function. A deuterated imaging agent, ([18F]2‐((2‐((bis(methyl‐d3)amino)methyl)‐4‐(3‐fluoropropoxy‐1,1,2,2,3,3‐d6)phenyl)thio)aniline, [18F]D12FPBM, [18F] 1 ), was prepared as a new chemical entity. The deuterated agent, 1 , showed excellent binding affinity to SERT; Ki was 0.086 nM, comparable with the undeuterated FPBM. In vivo biodistribution studies in rats with [18F] 1 showed good brain uptake (1.09% dose/g at 2 min post injection) and high specific uptake into the hypothalamus (HY) as compared with cerebellum (CB) (HY/CB = 7.55 at 120 min), suggesting a specific localization to SERT binding sites. Regional brain distribution in rats provided clear indication that [18F] 1 concentrated in the hypothalamus, hippocampus, and striatum, areas with a high SERT density. Results indicate that very little D to H substitution effect was found; [18F]FPBM and [18F] 1 showed very similar SERT binding. [18F] 1 might be an excellent candidate for SERT imaging.  相似文献   

7.
The palladium‐mediated N‐arylation of indoles with 4‐[18F]fluoroiodobenzene as a novel radiolabelling method has been developed. Optimized reaction conditions were elaborated by variation of different catalyst systems (CuI/1,2‐diamines and Pd2(dba)3/phosphine ligands), bases and solvents in the reaction of indole with 4‐[18F]fluoroiodobenzene. Optimized reaction conditions (Pd2(dba)3/(2‐(dicyclohexyl‐phosphino)‐2′‐(N,N‐dimethylamino)‐biphenyl, NaOBut, toluene, 100°C for 20 min) were applied for the synthesis of 18F‐labelled σ2 receptor ligands [18F]‐11 and [18F]‐13 which were obtained in 91 and 84% radiochemical yields, respectively. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
(E)‐3‐(Pyridin‐2‐yl ethynyl)cyclohex‐2‐enone O‐(3‐(2‐[18F]‐fluoroethoxy)propyl) oxime ([18F]‐(E)‐PSS232, [18F] 2a ) is a recently developed radiotracer that can be used to visualize metabotropic glutamate receptor subtype 5 (mGlu5) in vivo. The mGlu5 has become an attractive therapeutic and diagnostic target owing to its role in many neuropsychiatric disorders. Several carbon‐11‐labeled and fluorine‐18‐labeled radiotracers have been developed to measure mGlu5 receptor occupancy in the human brain. The radiotracer [18F] 2a , which is used as an analogue for [11C]ABP688 ([11C] 1 ) and has a longer physical half‐life, is a selective radiotracer that exhibits high binding affinity for mGlu5. Herein, we report the fully automated radiosynthesis of [18F] 2a using a commercial GE TRACERlab? FX‐FN synthesizer for routine production and distribution to nearby satellite clinics. Nucleophilic substitution of the corresponding mesylate precursor with cyclotron‐produced [18F]fluoride ion at 100°C in dimethyl sulfoxide (DMSO), followed by high‐performance liquid chromatography (HPLC) purification and formulation, readily provided [18F] 2a with a radiochemical yield of 40 ± 2% (decay corrected, n = 5) at the end of synthesis. Radiochemical purity for the [18F]‐(E)‐conformer was greater than 95%. Molar activity was determined to be 63.6 ± 9.6 GBq/μmol (n = 5), and the overall synthesis time was 70 minutes.  相似文献   

9.
Monocarboxylate transporters 1 and 4 (MCT1 and MCT4) are involved in tumor development and progression. Their expression levels are related to clinical disease prognosis. Accordingly, both MCTs are promising drug targets for treatment of a variety of human cancers. The noninvasive imaging of these MCTs in cancers is regarded to be advantageous for assessing MCT‐mediated effects on chemotherapy and radiosensitization using specific MCT inhibitors. Herein, we describe a method for the radiosynthesis of [18F] FACH ((E)‐2‐cyano‐3‐{4‐[(3‐[18F]fluoropropyl)(propyl)amino]‐2‐methoxyphenyl}acrylic acid), as a novel radiolabeled MCT1/4 inhibitor for imaging with PET. A fluorinated analog of α‐cyano‐4‐hydroxycinnamic acid ( FACH ) was synthesized, and the inhibition of MCT1 and MCT4 was measured via an L‐[14C]lactate uptake assay. Radiolabeling was performed by a two‐step protocol comprising the radiosynthesis of the intermediate (E)/(Z)‐[18F] tert‐Bu‐FACH (tert‐butyl (E)/(Z)‐2‐cyano‐3‐{4‐[(3‐[18F]fluoropropyl)(propyl)amino]‐2‐methoxyphenyl}acrylate) followed by deprotection of the tert‐butyl group. The radiofluorination was successfully implemented using either K[18F]F‐K2.2.2‐carbonate or [18F]TBAF. The final deprotected product [18F] FACH was only obtained when [18F] tert‐Bu‐FACH was formed by the latter procedure. After optimization of the deprotection reaction, [18F] FACH was obtained in high radiochemical yields (39.6 ± 8.3%, end of bombardment (EOB) and radiochemical purity (greater than 98%).  相似文献   

10.
5‐HT1A receptors are involved in a variety of psychiatric disorders and in vivo molecular imaging of the 5‐HT1A status represents an important approach to analyze and treat these disorders. We report herein the synthesis of three new fluoroethylated 5‐HT1A ligands (AH1.MZ, AH2.MZ and AH3.MZ) as arylpiperazine derivatives containing a norbornene group. AH1.MZ (Ki= 4.2 nM) and AH2.MZ (Ki=30 nM) showed reasonable in vitro affinities to the 5‐HT1A receptor, whereas AH3.MZ appeared to be non‐affine toward the 5‐HT1A receptor. The receptor profile of AH1.MZ and AH2.MZ showed selectivity within the 5‐HT system. 18F‐labelling via [18F]FETos to [18F]AH1.MZ was carried out in radiochemical yields of >70%. The final formulation of injectable solutions including [18F]FETos synthon synthesis, radiosynthesis and semi‐preparative high‐performance liquid chromatography (HPLC) separation took no longer than 130 min and provided [18F]AH1.MZ with a purity of >98% as indicated by analytical HPLC analyses. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
The novel sigma‐1 receptor PET radiotracer [18F]1‐(2‐fluoroethyl)‐4‐[(4‐cyanophenoxy)methyl]piperidine ([18F]WLS1.002, [18F]‐2) was synthesized (n=6) by heating the corresponding N‐ethylmesylate precursor in an anhydrous acetonitrile solution containing [18F]fluoride, Kryptofix K222 and potassium carbonate for 15 min. Purification was accomplished by reverse‐phase HPLC methods, providing [18F]‐2 in 59±8% radiochemical yield (EOB), with specific activity of 2.89±0.80 Ci/µmol (EOS) and radiochemical purity of 98.3±2.1%. Rat biodistribution studies revealed relatively high uptake in many organs known to contain sigma‐1 receptors, including the lungs, kidney, heart, spleen, and brain. Good clearance from normal tissues was observed over time. Blocking studies (60 min) demonstrated high (>80%) specific binding of [18F]‐2 in the brain, with reduction also noted in other organs known to express these sites. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
The radiotracer, [18F]‐THK‐5351, is a highly selective and high‐binding affinity PET imaging agent for aggregates of hyper‐phosphorylated tau protein. Our report is a simplified 1‐pot, 2‐step radiosynthesis of [18F]‐THK‐5351. This report is broadly applicable for routine clinical production and multi‐center trials on account of favorable half‐life of flourine‐18 and the use of a commercially available radiosynthesis module, the GE TRACERlab™ FXFN. First, the O‐THP protected tosyl precursor underwent nucleophilic fluorinating reaction with potassium cryptand fluoride ([18F] fluoride (K[18F]/K222)) in Dimethyl sulfoxide at 110°C for 10 minutes followed by O‐THP removal by using diluted hydrochloric acid (HCl) at same temperature. [18F]‐THK‐5351 was purified via semi‐preparative high‐performance liquid chromatography and formulated by using 10% EtOH, United States Pharmacopeia (USP) in 0.9% sodium chloride for injection, USP and an uncorrected radiochemical yield of 21 ± 3.5%, with a specific activity of 153.11 ± 25.9 GBq/μmol (4138 ± 700 mCi/μmol) at the end of synthesis (63 minutes; n  = 3).  相似文献   

13.
Cyclic nucleotide phosphodiesterase 10A (PDE10A) regulates the level of the second messengers cAMP and cGMP in particular in brain regions assumed to be associated with neurodegenerative and psychiatric diseases. A better understanding of the pathophysiological role of the expression of PDE10A could be obtained by quantitative imaging of the enzyme by positron emission tomography (PET). Thus, in this study we developed, radiolabeled, and evaluated a new PDE10A radioligand, 8‐bromo‐1‐(6‐[18F]fluoropyridin‐3‐yl)‐3,4‐dimethylimidazo[1,5‐a ]quinoxaline ([18F] AQ28A ). [18F] AQ28A was radiolabeled by both nucleophilic bromo‐to‐fluoro or nitro‐to‐fluoro exchange using K[18F]F‐K2.2.2‐carbonate complex with different yields. Using the superior nitro precursor, we developed an automated synthesis on a Tracerlab FX F‐N module and obtained [18F] AQ28A with high radiochemical yields (33 ± 6%) and specific activities (96‐145 GBq·μmol−1) for further evaluation. Initially, we investigated the binding of [18F] AQ28A to the brain of different species by autoradiography and observed the highest density of binding sites in striatum, the brain region with the highest PDE10A expression. Subsequent dynamic PET studies in mice revealed a region‐specific accumulation of [18F] AQ28A in this region, which could be blocked by preinjection of the selective PDE10A ligand MP‐10. In conclusion, the data suggest [18F] AQ28A is a suitable candidate for imaging of PDE10A in rodent brain by PET.  相似文献   

14.
Following our recently published fluorine‐18 labeling method, “Radio‐fluorination on the Sep‐Pak”, we have successfully synthesized 6‐[18F]fluoronicotinaldehyde by passing a solution (1:4 acetonitrile: t‐butanol) of its quaternary ammonium salt precursor, 6‐(N,N,N‐trimethylamino)nicotinaldehyde trifluoromethanesulfonate ( 2 ), through a fluorine‐18 containing anion exchange cartridge (PS‐HCO3). Over 80% radiochemical conversion was observed using 10 mg of precursor within 1 minute. The [18F]fluoronicotinaldehyde ([18F] 5 ) was then conjugated with 1‐(6‐(aminooxy)hexyl)‐1H‐pyrrole‐2,5‐dione to prepare the fluorine‐18 labeled maleimide functionalized prosthetic group, 6‐[18F]fluoronicotinaldehyde O‐(6‐(2,5‐dioxo‐2,5‐dihydro‐1H‐pyrrol‐1‐yl)hexyl) oxime, 6‐[18F]FPyMHO ([18F] 6 ). The current Sep‐Pak method not only improves the overall radiochemical yield (50 ± 9%, decay‐corrected, n = 9) but also significantly reduces the synthesis time (from 60‐90 minutes to 30 minutes) when compared with literature methods for the synthesis of similar prosthetic groups.  相似文献   

15.
This study reports the synthesis and characterization of 4‐chloro‐2‐tert‐butyl‐5‐[2‐[[1‐[2‐[18F]fluroethyl]‐1H‐1,2,3‐triazol‐4‐yl]methyl]phenylmethoxy]‐3(2H)‐pyridazinone ([18F]Fmp2) for myocardial perfusion imaging (MPI). The tosylate precursor and non‐radioactive compound [19F]Fmp2 were synthesized and characterized by infrared, 1H‐NMR, 13C‐NMR, and mass spectra (MS). The radiotracer [18F]Fmp2 was obtained by one‐step nucleophilic substitution of tosyl with 18F, and evaluated as an MPI agent in vitro and in vivo. Starting from [18F]KF/K222 solution, the typical decay‐corrected radiochemical yield (RCY) was 38 ± 8.8% with high radiochemical purity (>98%). The specific activity was calculated as 10 GBq/µmol at the end of synthesis determined by HPLC analysis. In the mice biodistribution, [18F]Fmp2 showed very high initial heart uptake (53.35 ± 5.47 %ID/g at 2 min after injection) and remarkable retention. The heart/liver, heart/lung, and heart/blood ratios were 7.98, 8.20, and 53.13, respectively at 2 min post‐injection. In the Positron Emission Tomography (PET) imaging study of Chinese mini‐swine, the standardized uptake value of the liver decreased modestly during the 2 h post‐injection, while the heart uptake and heart/liver ratios continued to increase with time. [18F]Fmp2 exhibited good stability, high heart uptake and low lung uptake in mice and Chinese mini‐swine. It may be worthy of further modification to improve liver clearance for MPI in the future.  相似文献   

16.
As analogues of some conformationally restricted spiropiperidine derivatives which are endowed with high affinity for σ1 receptor, a set of 16 spiro[1,2,4-benzotriazine-3(4H),4′-(1′-substituted)piperidines] and congeneric compounds was prepared and tested for affinity to σ1 receptor subtype. All N-arylalkyl substituted derivatives exhibited high affinity for the relevant receptor, with Ki in the low nanomolar range. Affinity for σ2 subtype (assayed only for a few representative compounds) was from one to three order of magnitude lower. Spiro[1,2,4-benzotriazine-3(4H),4′-(1′-benzyl)piperidine] (2), with a ratio Kiσ2/Kiσ1=7000 should represent the most selective σ1 ligand so far described.  相似文献   

17.
The neurotransmitter glutamate is thought to be crucially involved in a huge number of neurological and psychiatric disorders, such as Morbus Parkinson, Alzheimer's disease and schizophrenia. Aiming at an improved diagnostic tool for PET a new [18F]fluorine labelled NMDA receptor ligand was developed that may potentially allow the in vivo visualization of glutama‐tergic neurotransmission. The 19F‐analogue trans‐5,7‐dichloro‐4‐(3‐{4‐[4‐(2‐fluoroethyl)‐piperazin‐1‐yl]‐phenyl}‐ureido)‐1,2,3,4‐tetrahydro quinoline‐2‐carboxylic acid was synthesised to determine the binding affinity, lipophilicity and biodistribution of the ligand. This substance exhibits a Ki of 12 nM for the glycine binding site using [3H]MDL‐105,519 assays on pig cortical membranes. A logD of 1.3 was determined for this compound according to the OECD guidelines employing the HPLC method. Radiosynthesis of this ligand was achieved by labelling the precursor trans‐5,7‐dichloro‐4‐[3‐(4‐piperazin‐1‐yl‐phenyl)‐ureido]‐1,2,3,4‐tetrahydroquinoline‐2‐carboxylic acid methyl ester with 2‐[18F]fluoroethyltosylate and subsequent cleaving of the methyl ester moiety, resulting in an overall decay corrected yield of 35% of the final product trans‐5,7‐dichloro‐4‐(3‐{4‐[4‐(2‐[18F]fluoroethyl)‐piperazin‐1‐yl]‐phenyl}‐ureido)‐1,2,3,4‐tetrahydroquinoline‐2‐carboxylic acid. The biodistribution kinetics of this compound were determined with Sprague Dawley rats ex vivo for brain, liver, kidney, and bone. The ligand showed a maximum brain uptake 30 min.p.i. of about 0.1% ID/g. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

18.
Carboxylic acid derivatives of the amyloid‐binding dye Congo red do not enter the brain well and are thus unable to serve as in vivo amyloid‐imaging agents. A neutral amyloid probe, (E,E)‐1‐(3′,4′‐dihydroxystyryl)‐4‐(3′‐methoxy‐4′‐hydroxystyryl)benzene ( 3 ), devoid of any carboxylate groups has been designed and synthesized via a 12‐step reaction sequence with a total yield of 30%. The unsymmetric compound 3 has also been labelled with C‐11 via [11C]methyl iodide ([11C]CH3I) methylation of a symmetric 4,4′‐dimesyl protected precursor followed by deprotection. Preliminary evaluation indicated that compound 3 selectively stained plaques and neurofibrillary tangles in post‐mortem AD brain, and exhibited good binding affinity (Ki=38±8 nM) for Aβ(1–40) fibrils in vitro. In vivo pharmacokinetic studies indicated that [11C] 3 exhibited higher brain uptake than its carboxylic acid analogs and good clearance from normal control mouse brain. [11C] 3 also exhibited specific in vivo binding to pancreatic amyloid deposits in the NOR‐beta transgenic mouse model. These results justify further investigation of 3 and similar derivatives as surrogate markers for in vivo quantitation of amyloid deposits. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
LBT‐999 (8‐((E)‐4‐fluoro‐but‐2‐enyl)‐3β‐p‐tolyl‐8‐aza‐bicyclo[3.2.1]octane‐2β‐carboxylic acid methyl ester) is a cocaine derivative belonging to a new generation of highly selective dopamine transporter ligands (KD:9 nM). LBT‐999 was labelled with fluorine‐18 at its fluoromethylvinyl moiety using the following two‐step radiochemical process: (a) No‐carrier‐added nucleophilic aliphatic radiofluorination from (E)‐1, 4‐ditosyloxybut‐2‐ene and the activated K[18F]F‐Kryptofix®222 complex in acetonitrile at 70°C for 10 min giving (E)‐1‐[18F]fluoro‐4‐tosyloxybut‐2‐ene, followed by (b) condensation of the latter with 3β‐p‐tolyl‐8‐aza‐bicyclo[3.2.1]octane‐2β‐carboxylic acid methyl ester in N,N‐dimethylformamide containing potassium iodide for 20 min at 90°C and (c) HPLC purification (SunFire? C18, eluent H2O/CH3CN/TFA (72:28:0.1 (v/v/v)). Radiochemically pure (> 95%) [18F]LBT‐999 (2.03–2.96 GBq, 37–111 GBq/μmol) was obtained in 95–100 min starting from a 44.4 GBq [18F]fluoride ion production batch (4.6–6.7% non‐decay‐corrected overall yield). Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
DR4446 (1‐methyl‐2a‐[4‐(4,5,6,7‐tetrahydrothieno[3,2‐c]pyridin‐5‐yl)butyl]‐2a,3,4,5‐tetrahydro‐1H‐benz[cd]indole‐2‐one) is a potent 5‐HT7 receptor antagonist (Ki=9.7 nM) with a high selectivity over other 5‐HT family receptors (Ki for 5‐HT1A: 770 nM; for other 5‐HT receptors: >1000 nM). As a positron emission tomography (PET) tracer for the 5‐HT7 receptor, [11C]DR4446 was synthesized at high radiochemical purity ( >98%) with specific activity of 73–120 GBq/μmol at the end of synthesis by the alkylation of the desmethyl precursor (1) with [11C]CH3I in the presence of NaH. A PET study in monkey demonstrated that [11C]DR4446 had good permeability into the brain, and had a specific binding component in the brain regions including the thalamus, possibly an area in the 5‐HT7 receptors. Metabolite analysis showed that [11C]DR4446 was relatively stable and low percentages of two radio‐labeled metabolites were detected in the plasma of monkey using HPLC. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号